Geometrijske in mehanske lastnosti celičnih metamaterialov

Avtorji

Nejc Novak
Univerza v Mariboru, Fakulteta za strojništvo
https://orcid.org/0000-0001-8263-9753
Branko Nečemer
Univerza v Mariboru, Fakulteta za strojništvo
https://orcid.org/0009-0008-8554-458X

Ključne besede:

celični metamateriali, mehanske lastnosti, geometrijske lastnosti, mehansko testiranje, računalniške simulacije

Kratka vsebina

Učbenik z naslovom "Mehanske in geometrijske lastnosti celičnih metamaterialov" je namenjen kot študijsko gradivo pri predavanjih predmetov Konstruiranje s celičnimi gradivi in Dimenzioniranje lahkih konstrukcij za študente Univerze v Mariboru. Učbenik temelji na raziskavah naprednih metamaterialov, ki združujejo edinstvene mehanske in geometrijske lastnosti. Vsebuje pregled sodobnih celičnih metamaterialov in izdelovalnih tehnologij, uporaba eksperimentalnih in numeričnih pristopov, ter izsledke opravljenih raziskav mehanske in geometrijske karakterizacije. Vsebina učbenika je v skladu z učnimi načrti omenjenih predmetov.

Prenosi

Podatki o prenosih še niso na voljo.

Biografije avtorja

Nejc Novak, Univerza v Mariboru, Fakulteta za strojništvo

Nejc Novak je docent na Fakulteti za strojništvo Univerze v Mariboru. Njegovo raziskovalno delo je na področju naprednega računalniškega modeliranja, celičnih struktur, karakterizaciji in optimizaciji celičnih struktur in odzivu struktur na trke in eksplzijske, ter balistične obremenitve. Njegova bibliografija obsega več kot 130 bibliografskih enot, od tega več kot 41 izvirnih znanstvenih člankov, objavljenih večinoma v visoko rangiranih revijah s področja mehanike in kompozitov. Bil je gostujoči raziskovalec na Kumamoto University na Japonskem, na Georgia Institute of Technology v ZDA, na Beijing institute of technology na Kitajskem ter na Politecnico di Milano v Italiji.

Maribor, Slovenija. E-pošta: n.novak@um.si

Branko Nečemer, Univerza v Mariboru, Fakulteta za strojništvo

Branko Nečemer je docent na Fakulteti za strojništvo Univerze v Mariboru. Raziskovalno deluje na področju dimenzioniranja dinamično obremenjenih strojnih delov in konstrukcij, numeričnih simulacij ter na področju mehanske karakterizacije inženirskih materialov pri stadični in ciklični dinamični obremenitvi. Svoje delo je objavil v številnih znanstvenih publikacijah v priznanih mednarodnih revijah. Bil je gostujoči raziskovalec na inštituto za termomehaniko v Pragi, Češka ter na Fakulteti za strojništvo in ladjedelništvo Univerze v Zagrebu, Hrvaška.

Maribor, Slovenija. E-pošta: branko.necemer@um.si

Literatura

L. J. . Gibson and M. F. . Ashby, “The mechanics of 2D cellular material,” Proc. R. Soc., no. 382, pp. 25–45, 1982.

D. Lehmhus, M. Vesenjak, S. de Schampheleire, and T. Fiedler, “From stochastic foam to designed structure: Balancing cost and performance of cellular metals,” Materials (Basel)., vol. 10, no. 922, pp. 1–32, 2017, doi: 10.3390/ma10080922.

K. Stöbener, J. Baumeister, G. Rausch, and M. Rausch, “Forming metal foams by simpler methods for cheaper solutions,” Metal Powder Report, vol. 60, no. 1. pp. 12–16, 2005. doi: 10.1016/S0026-0657(05)00316-4.

A. Mauko, “Visokohitrostna karakterizacija mehanskih lastnosti celičnih metamaterialov,” Univerza v Mariboru, 2022. [Online]. Available: www.fg.um.si

B. Nečemer, F. Zupanič, and Z. Ren, “Celični kovinski materiali,” Vakuumist, vol. 36, no. 1, pp. 13–18, 2016.

J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Progress in Materials Science, vol. 46, no. 6. pp. 559–632, 2001. doi: 10.1016/S0079-6425(00)00002-5.

M. Borovinšek, “Računalniško modeliranje celičnih gradiv neurejene strukture,” University of Maribor, 2009.

A. G. Evans, J. W. Hutchinson, and M. F. Ashby, “Multifunctionality of cellular metal systems,” vol. 43, 1999.

Y. Li, “The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials,” Phys. Status Solidi, vol. 38, no. 1, pp. 171–175, 1976, doi: 10.1002/pssa.2210380119.

N. Novak, M. Vesenjak, and Z. Ren, “Auxetic cellular materials - a Review,” Strojniški Vestn. - J. Mech. Eng., vol. 62, no. 9, pp. 485–493, 2016, doi: 10.5545/sv-jme.2016.3656.

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Volume 1. Cambridge University Press, 1892. [Online]. Available: https://books.google.com/books?id=JFTbrz0Fs5UC&pgis=1

K. E. Evans, “Auxetic polymers: a new range of materials,” Endeavour, vol. 15, no. 4, pp. 170–174, 1991, doi: 10.1016/0160-9327(91)90123-S.

A. Alderson, “A triumph of lateral thought,” Chem. Ind., vol. 10, pp. 384–391, 1999, [Online]. Available: http://cat.inist.fr/?aModele=afficheN&cpsidt=10067728

N. Chan and K. E. Evans, “Indentation resilience of conventional and auxetic foams,” J. Cell. Plast., vol. 34, no. 3, pp. 231–260, 1998, doi: 10.1177/0021955X9803400304.

R. S. Lakes and K. Elms, “Indentability of conventional and negative Poisson’s ratio foams,” J. Compos. Mater., vol. 27, no. 12, pp. 1193–1202, 1993, doi: 10.1177/002199839302701203.

K. L. Alderson, A. Fitzgerald, and K. . Evans, “The strain dependent indentation resilience of auxetic microporous polyethylene,” J. Mater. Sci., vol. 35, no. 16, pp. 4039–4047, 2000, doi: 10.1023/A:1004830103411.

H. M. A. Kolken and A. A. Zadpoor, “Auxetic mechanical metamaterials,” RSC Adv., vol. 7, pp. 5111–5129, 2017, doi: 10.1039/C6RA27333E.

W. Yang, Z. M. Li, W. Shi, B. H. Xie, and M. B. Yang, “On auxetic materials,” J. Mater. Sci., vol. 39, no. 10, pp. 3269–3279, 2004, doi: 10.1023/B:JMSC.0000026928.93231.e0.

F. Scarpa, L. G. Ciffo, and J. R. Yates, “Dynamic properties of high structural integrity auxetic open cell foam,” Smart Mater. Struct., vol. 13, no. 1, pp. 49–56, 2004, doi: 10.1088/0964-1726/13/1/006.

S. Krödel, T. Delpero, A. Bergamini, P. Ermanni, and D. M. Kochmann, “3D auxetic microlattices with independently controllable acoustic band gaps and quasi-static elastic moduli,” Adv. Eng. Mater., vol. 16, no. 4, pp. 357–363, 2014, doi: 10.1002/adem.201300264.

S. Yang, C. Qi, D. Wang, R. Gao, H. Hu, and J. Shu, “A Comparative Study of Ballistic Resistance of Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores,” Adv. Mech. Eng., vol. 5, pp. 1–15, Jan. 2013, doi: 10.1155/2013/589216.

R. La Magna and J. Knippers, “Tailoring the Bending Behaviour of Material Patterns for the Induction of Double Curvature,” in Humanizing Digital Reality - Design Modelling Symposium Paris 2017, 2018, no. September. doi: 10.1007/978-981-10-6611-5.

Y. C. Fung, Foundations of Solid Mechanics. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1965.

R. S. Lakes, “Advances in negative Poisson’s ratio materials,” Adv. Mater., vol. 5, no. 4, pp. 293–296, 1993, doi: 10.1002/adma.19930050416.

N. Benbattouche, G. A. Saunders, E. F. Lambson, and W. Honle, “The dependences of the elastic stiffness moduli and the Poisson ratio of natural iron pyrites FeS2 upon pressure and temperature,” J. Phys. D. Appl. Phys., vol. 22, no. 5, pp. 670–675, 1989, doi: 10.1088/0022-3727/22/5/015.

D. J. Gunton and G. a. Saunders, “The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth,” J. Mater. Sci., vol. 7, pp. 1061–1068, 1972, doi: 10.1007/BF00550070.

K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers, “Molecular Network Design,” Nature, vol. 353, p. 124, 1991, doi: 10.1038/353124a0.

K. Muto, R. W. Bailey, and K. J. Mitchell, “Special requirements for the design of nuclear power stations to withstand earthquakes,” Proc. Inst. Mech. Eng., vol. 177, pp. 155–203, 1963, doi: 10.1243/PIME_PROC_1963_177_018_02.

A. Yeganeh-Haeri, D. J. Weidner, and J. B. Parise, “Elasticity of a-Cristobalite: A Silicon Dioxide with a Negative Poisson’s Ratio,” Science (80-. )., vol. 257, no. July, pp. 30–32, 1992, doi: 10.1126/science.257.5070.650.

W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik). Leipzig; Berlin: B.G. Teubner, 1928.

C. Lees, J. F. Vincent, and J. E. Hillerton, “Poisson’s ratio in skin,” Biomed. Mater. Eng., vol. 1, no. 1, pp. 19–23, 1991, doi: 10.3233/BME-1991-1104.

R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio=-1,” J. Elast., vol. 15, pp. 427–430, 1985, doi: 10.1007/BF00042531.

R. S. Lakes, “Foam Structures with a Negative Poisson’s Ratio,” Science (80-. )., vol. 235, pp. 1038–1040, 1987, doi: 10.1126/science.235.4792.1038.

K. E. Evans and B. D. Caddock, “Microporous materials with negative Poisson’s ratios. II. Mechanisms and interpretation,” J. Phys. D. Appl. Phys., vol. 22, pp. 1883–1887, 1989, doi: 10.1088/0022-3727/22/12/013.

B. D. Caddock and K. E. Evans, “Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties,” J. Phys. D. Appl. Phys., vol. 22, no. 12, pp. 1877–1882, 1989, doi: 10.1088/0022-3727/22/12/012.

G. W. Milton, “Composite materials with poisson’s ratios close to — 1,” J. Mech. Phys. Solids, vol. 40, no. 5, pp. 1105–1137, 1992, doi: 10.1016/0022-5096(92)90063-8.

J. B. Choi and R. S. Lakes, “Nonlinear analysis of the Poisson’s Ratio in negative Poisson’s Ratio Foams,” J. Compos. Mater., vol. 29, no. 1, pp. 113–128, 1995.

J. N. Grima and K. E. Evans, “Auxetic behavior from rotating squares,” J. Mater. Sci. Lett., vol. 19, no. 17, pp. 1563–1565, 2000, doi: 10.1023/A:1006781224002.

J. N. Grima, A. Alderson, and K. E. Evans, “Auxetic behaviour from rotating rigid units,” Phys. Status Solidi Basic Res., vol. 242, no. 3, pp. 561–575, 2005, doi: 10.1002/pssb.200572706.

A. Alderson and K. E. Evans, “Microstructural modelling of auxetic microporous polymers,” J. Mater. Sci., vol. 30, no. 13, pp. 3319–3332, 1995, doi: 10.1007/BF00349875.

J. N. Grima, V. Zammit, R. Gatt, A. Alderson, and K. E. Evans, “Auxetic behaviour from rotating semi-rigid units,” Phys. Status Solidi Basic Res., vol. 244, no. 3, pp. 866–882, 2007, doi: 10.1002/pssb.200572706.

M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, and K. Bertoldi, “Low Porosity Metallic Periodic Structures with Negative Poisson’s Ratio,” Adv. Mater., vol. 26, no. 15, pp. 2365–2370, 2013, doi: 10.1002/adma.201304464.

C. W. Smith, J. N. Grima, and K. E. Evans, “A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model,” Acta Mater., vol. 48, no. 17, pp. 4349–4356, 2000, doi: 10.1016/S1359-6454(00)00269-X.

C. Körner and Y. Liebold-Ribeiro, “A systematic approach to identify cellular auxetic materials,” Smart Mater. Struct., vol. 24, p. 025013, 2014, doi: 10.1088/0964-1726/24/2/025013.

X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie, “Auxetic metamaterials and structures: A review,” Smart Mater. Struct., 2018.

R. S. Lakes, “Deformation mechanisms in negative Poisson’s ratio materials: structural aspects,” J. Mater. Sci., vol. 26, no. 9, pp. 2287–2292, 1991, doi: 10.1007/BF01130170.

D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a poisson’s ratio of — 1,” Int. J. Mech. Sci., vol. 39, no. 3, pp. 305–314, Mar. 1997, doi: 10.1016/S0020-7403(96)00025-2.

H. Abramovitch et al., “Smart tetrachiral and hexachiral honeycomb: Sensing and impact detection,” Compos. Sci. Technol., vol. 70, no. 7, pp. 1072–1079, 2010, doi: 10.1016/j.compscitech.2009.07.017.

A. Alderson et al., “Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,” Compos. Sci. Technol., vol. 70, no. 7, pp. 1042–1048, 2010, doi: 10.1016/j.compscitech.2009.07.009.

C. He, P. Liu, and A. C. Griffin, “Toward Negative Poisson Ratio Polymers through Molecular Design,” Macromolecules, vol. 31, no. Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved., pp. 3145–3147, 1998, doi: 10.1021/ma970787m.

Y. T. Yao, M. Uzun, and I. Patel, “Workings of auxetic nano-materials,” J. Achiev. Mater. Manuf. Eng., vol. 49, no. 2, pp. 585–593, 2011.

N. Ravirala, A. Alderson, and K. L. Alderson, “Interlocking hexagons model for auxetic behaviour,” J. Mater. Sci., vol. 42, no. 17, pp. 7433–7445, 2007, doi: 10.1007/s10853-007-1583-0.

A. Alderson and K. E. Evans, “Rotation and dilation deformation mechanisms for auxetic behaviour in the ??-cristobalite tetrahedral framework structure,” Phys. Chem. Miner., vol. 28, no. 10, pp. 711–718, 2001, doi: 10.1007/s002690100209.

N. Gaspar, C. W. Smith, a. Alderson, J. N. Grima, and K. E. Evans, “A generalised three-dimensional tethered-nodule model for auxetic materials,” J. Mater. Sci., vol. 46, no. 2, pp. 372–384, 2011, doi: 10.1007/s10853-010-4846-0.

J. Schwerdtfeger, P. Heinl, R. F. Singer, and C. Körner, “Auxetic cellular structures through selective electron beam melting,” Phys. Status Solidi B, vol. 247, no. 2, pp. 269–272, 2010, doi: 10.1002/pssb.200945513.

R. Critchley, I. Corni, J. a. Wharton, F. C. Walsh, R. J. K. Wood, and K. R. Stokes, “The preparation of auxetic foams by three-dimensional printing and their characteristics,” Adv. Eng. Mater., vol. 15, no. 10, pp. 980–985, 2013, doi: 10.1002/adem.201300030.

T. Fíla et al., “Impact Testing of Polymer-filled Auxetics Using Split Hopkinson Pressure Bar,” Adv. Eng. Mater., p. n/a--n/a, 2017, doi: 10.1002/adem.201700076.

Josephine V. Carstensen and James K. Guest, “Topology Optimization of Cellular Materials,” in 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference AIAA, 2016, no. June, pp. 1–10. doi: 10.1115/DETC2015-47757.

A. Rafsanjani and D. Pasini, “Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs,” Extrem. Mech. Lett., vol. 9, no. December, pp. 291–296, 2016, doi: 10.1016/j.eml.2016.09.001.

W. H. Meeks and J. Pérez, “The classical theory of minimal surfaces,” Bull. Am. Math. Soc., vol. 48, no. 3, pp. 325–407, 2011, doi: 10.1090/S0273-0979-2011-01334-9.

J. W. Neuberger, Minimal Surfaces, vol. 1670. 2010. doi: 10.1007/978-3-642-04041-2_16.

W. H. Meeks and G. Tinaglia, “Triply periodic constant mean curvature surfaces,” Adv. Math. (N. Y)., vol. 335, pp. 809–837, Sep. 2018, doi: 10.1016/j.aim.2018.07.018.

M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. . G. Wadley, Metal foams: a design guide. Burlington, MA, Massachusetts: Elsevier Science, 2000. doi: 10.1016/S0261-3069(01)00049-8.

T. Fiedler et al., “Determination of the thermal conductivity of periodic APM foam models,” Int. J. Heat Mass Transf., vol. 73, no. 0, pp. 826–833, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.02.056.

K. . Alderson and K. . Evans, “The fabrication of microporous polyethylene having a negative Poisson’s ratio,” Polymer (Guildf)., vol. 33, no. 20, pp. 4435–4438, 1992, doi: 10.1016/0032-3861(92)90294-7.

A. P. Pickles, R. S. Webber, K. L. Alderson, P. Neale, and K. E. Evans, “The effect of the processing parameters on the fabrication of auxetic polyethylene - Part I The effect of compaction conditions,” J. Mater. Sci., vol. 30, no. 16, pp. 4059–4068, 1995, doi: 10.1007/BF00360709.

N. Chan and K. E. Evans, “Fabrication methods for auxetic foams,” J. Mater. Sci., vol. 32, pp. 5945–5953, 1997, doi: 10.1023/A:1018606926094.

J. N. Grima, D. Attard, R. Gatt, and R. N. Cassar, “A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form,” Adv. Eng. Mater., vol. 11, no. 7, pp. 533–535, 2009, doi: 10.1002/adem.200800388.

J. N. Grima, J. J. Williams, and K. E. Evans, “Networked calix[4]arene polymers with unusual mechanical properties.,” Chem. Commun., vol. 1, pp. 4065–4067, 2005, doi: 10.1039/b505839b.

N. Novak, M. Vesenjak, L. Krstulović-Opara, and Z. Ren, “Mechanical characterisation of auxetic cellular structures built from inverted tetrapods,” Compos. Struct., vol. 196, no. January, pp. 96–107, 2018, doi: 10.1016/j.compstruct.2018.05.024.

Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gu, and M. Ruzzene, “Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading,” Compos. Part B Eng., vol. 59, pp. 33–42, 2014, doi: 10.1016/j.compositesb.2013.10.084.

B. Nečemer, “Malociklično utrujanje avksetičnih celičnih struktur,” University of Maribor, 2021.

O. Al‐Ketan and R. K. Abu Al‐Rub, “MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces,” Mater. Des. Process. Commun., vol. 3, no. 6, pp. 1–10, Dec. 2021, doi: 10.1002/mdp2.205.

X. Z. Zhang, H. P. Tang, M. Leary, T. Song, L. Jia, and M. Qian, “Toward Manufacturing Quality Ti-6Al-4V Lattice Struts by Selective Electron Beam Melting (SEBM) for Lattice Design,” JOMThe J. Miner. Met. Mater. Soc., vol. 70, no. 9, pp. 1870–1876, 2018, doi: 10.1007/s11837-018-3030-x.

J. Schwerdtfeger, P. Heinl, R. F. Singer, and C. Körner, “Selective Electron Beam Melting : A New Way to Auxetic Cellular Structures,” Mater. Sci. Technol., pp. 724–729, 2009.

T. Hipke, G. Lange, and R. Poss, Taschenbuch für Aluminiumschäume. Düsseldorf: Alu Media, 2007.

ISO 13314:2011 - Mechanical testing of metals - ductility testing - compression test for porous and cellular metals. Geneva, Switzerland: International Organization for Standardization, 2011. [Online]. Available: www.iso.org

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and properties. Cambridge, U.K.: Cambridge University Press, 1997.

S. Glodež, J. Flašker, D. Jelaska, and M. Opalić, Dimenzioniranje na življenjsko dobo. Maribor: Fakulteta za strojništvo, 2006.

J. M. Hyzak and I. M. Bernstein, “The effect of defects on the fatigue crack initiation process in two p/m superalloys: part i. fatigue origins,” Metall. Trans. A, vol. 13, no. 1, pp. 33–43, Jan. 1982, doi: 10.1007/BF02642413.

P. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” J. Basic Eng., vol. 85, no. 4, p. 528, 1963, doi: 10.1115/1.3656900.

P. C. Paris, M. P. Gomez, and W. E. Anderson, “A rational analytic theory of fatigue,” Trend Eng., no. 13, pp. 9–14, 1961.

L. Krstulović-Opara, M. Surjak, M. Vesenjak, Z. Tonković, J. Kodvanj, and Ž. Domazet, “Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials,” Infrared Phys. Technol., vol. 73, pp. 166–174, 2015, doi: 10.1016/j.infrared.2015.09.014.

I. Duarte, M. Vesenjak, L. Krstulović-Opara, and Z. Ren, “Static and dynamic axial crush performance of in-situ foam-filled tubes,” Compos. Struct., vol. 124, pp. 128–139, 2015, doi: 10.1016/j.compstruct.2015.01.014.

L. Krstulović-Opara, M. Vesenjak, I. Duarte, and Z. Ren, “Infrared thermography as a method for energy absorption evaluation of metal foams,” Mater. Today Proc., vol. 3, no. 4, pp. 1025–1030, 2016, doi: 10.1016/j.matpr.2016.03.041.

N. Novak et al., “Quasi-static and impact behaviour of foam-filled graded auxetic panel,” Int. J. Impact Eng., vol. 178, no. October 2022, p. 104606, Aug. 2023, doi: 10.1016/j.ijimpeng.2023.104606.

F. Warmuth, F. Osmanlic, and L. Adler, “Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting,” Smart Mater. Struct., vol. 26, p. 8, 2017, doi: 10.1088/1361-665X/26/2/025013.

O. Duncan et al., “Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection,” Appl. Sci., vol. 8, no. 6, pp. 941–974, Jun. 2018, doi: 10.3390/app8060941.

N. Novak et al., “Quasi-static and dynamic compressive behaviour of sheet TPMS cellular,” Compos. Struct., vol. 266, no. February, p. 113801, 2021, doi: 10.1016/j.compstruct.2021.113801.

P. J. Tan, S. R. Reid, J. J. Harrigan, Z. Zou, and S. Li, “Dynamic compressive strength properties of aluminium foams. Part I - Experimental data and observations,” J. Mech. Phys. Solids, vol. 53, no. 10, pp. 2174–2205, 2005, doi: 10.1016/j.jmps.2005.05.007.

N. Novak, M. Vesenjak, S. Tanaka, K. Hokamoto, and Z. Ren, “Compressive behaviour of chiral auxetic cellular structures at different strain rates,” Int. J. Impact Eng., vol. 141, no. February, p. 103566, Jul. 2020, doi: 10.1016/j.ijimpeng.2020.103566.

X. Cao et al., “Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure,” Thin-Walled Struct., vol. 148, no. December 2019, p. 106586, 2020, doi: 10.1016/j.tws.2019.106586.

Z. Zheng, J. Yu, and J. Li, “Dynamic crushing of 2D cellular structures: A finite element study,” Int. J. Impact Eng., vol. 32, no. 1–4, pp. 650–664, 2005, doi: 10.1016/j.ijimpeng.2005.05.007.

Y. Sun and Q. M. Li, “Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling,” Int. J. Impact Eng., vol. 112, no. October 2017, pp. 74–115, 2018, doi: 10.1016/j.ijimpeng.2017.10.006.

N. Novak, K. Hokamoto, M. Vesenjak, and Z. Ren, “Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates,” Int. J. Impact Eng., vol. 122, no. August, pp. 83–90, 2018, doi: https://doi.org/10.1016/j.ijimpeng.2018.08.001.

D. Šeruga, M. Nagode, and J. Klemenc, “Eliminating friction between flat specimens and an antibuckling support during cyclic tests using a simple sensor,” Meas. Sci. Technol., vol. 30, no. 9, 2019, doi: 10.1088/1361-6501/ab1e35.

B. Nečemer, T. Vuherer, S. Glodež, and J. Kramberger, “Fatigue behaviour of re-entrant auxetic structures made of the aluminium alloy AA7075-T651,” Thin-Walled Struct., vol. 180, no. August, p. 109917, 2022, doi: 10.1016/j.tws.2022.109917.

N. Novak, L. Starčevič, M. Vesenjak, and Z. Ren, “Blast response study of the sandwich composite panels with 3D chiral auxetic core,” Compos. Struct., vol. 210, no. November 2018, pp. 167–178, 2019, doi: https://doi.org/10.1016/j.compstruct.2018.11.050.

M. Vesenjak, K. Hokamoto, M. Sakamoto, T. Nishi, L. Krstulović-Opara, and Z. Ren, “Mechanical and microstructural analysis of unidirectional porous (UniPore) copper,” Mater. Des., vol. 90, pp. 867–880, 2016, doi: 10.1016/j.matdes.2015.11.038.

N. Novak et al., “Compressive Behaviour of Closed-Cell Aluminium Foam at Different Strain Rates,” Materials (Basel)., vol. 12, no. 24, p. 4108, 2019, doi: 10.3390/ma12244108.

M. Vesenjak, C. Veyhl, and T. Fiedler, “Analysis of anisotropy and strain rate sensitivity of open-cell metal foam,” Mater. Sci. Eng. A, vol. 541, pp. 105–109, 2012, doi: 10.1016/j.msea.2012.02.010.

N. Novak, M. Vesenjak, M. Nishi, S. Tanaka, K. Hokamoto, and Z. Ren, “Mechanical behavior of cellular materials—from quasistatic to high strain rate impact response,” in Explosion, Shock-Wave and high-strain rate phenomena of advanced materials, K. Hokamoto, Ed. Elsevier, 2021.

N. Novak, M. Vesenjak, and Z. Ren, “High Strain Rate Hardening of Metallic Cellular Metamaterials,” J. Dyn. Behav. Mater., May 2024, doi: 10.1007/s40870-024-00425-x.

M. Borovinšek, M. Vesenjak, M. Jože, and Z. Ren, “Computational Reconstruction of Scanned Aluminum Foams for Virtual Testing,” J. Serbian Soc. Comput. Mech., vol. 2, no. 2, pp. 16–28, 2008.

M. Borovinšek, “PrePoMax.” https://prepomax.fs.um.si/

J. Hallquist, LS-DYNA keyword user’s manual. Livermore, California: Livermore Software Technology Corporation, 2007.

S. Marzi, O. Hesebeck, M. Brede, and F. Kleiner, “A Rate-Dependent , Elasto-Plastic Cohesive Zone Mixed-Mode Model for Crash Analysis of Adhesively Bonded Joints,” 2009.

N. Novak, M. Borovinšek, O. Al-ketan, Z. Ren, and M. Vesenjak, “Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures,” Compos. Struct., vol. 300, no. April, 2022, doi: 10.1016/j.compstruct.2022.116174.

N. Novak, M. Vesenjak, G. Kennedy, N. Thadhani, and Z. Ren, “Response of Chiral Auxetic Composite Sandwich Panel to Fragment Simulating Projectile Impact,” Phys. Status Solidi B, vol. 1900099, no. 10, pp. 1–6, 2019, doi: 10.1002/pssb.201900099.

B. Nečemer, J. Klemenc, F. Zupanič, and S. Glodež, “Modelling and predicting of the LCF-behaviour of aluminium auxetic structures,” Int. J. Fatigue, vol. 156, no. November 2021, p. 106673, 2022, doi: 10.1016/j.ijfatigue.2021.106673.

B. Nečemer, F. Zupanič, D. Gabriel, E. A. Tarquino, M. Šraml, and S. Glodež, “Low cycle fatigue behaviour of ductile aluminium alloys using the inelastic energy approach,” Mater. Sci. Eng. A, vol. 800, no. October 2020, 2021, doi: 10.1016/j.msea.2020.140385.

B. Nečemer, F. Zupanič, T. Vuherer, and S. Glodež, “High-Cycle Fatigue Behaviour of the Aluminium Alloy 5083-H111,” Materials (Basel)., vol. 16, no. 7, 2023, doi: 10.3390/ma16072674.

“Ansys Mechanical Finite Element Analysis (FEA) Software for Structural Engineering 2023.”

H. M. A. Kolken, S. Janbaz, S. M. A. Leeflang, K. Lietaert, H. H. Weinans, and A. A. Zadpoor, “Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials,” Mater. Horiz., 2017, doi: 10.1039/C7MH00699C.

Izdano

13.05.2025

Podrobnosti o monografski publikaciji

COBISS.SI ID (00)

ISBN-13 (15)

978-961-286-990-8

THEMA Subject Codes (93)

TGM

Date of first publication (11)

13.05.2025

Kako citirati

Geometrijske in mehanske lastnosti celičnih metamaterialov. (2025). Univerzitetna založba Univerze v Mariboru. https://doi.org/10.18690/um.fs.4.2025