Geometrijske in mehanske lastnosti celičnih metamaterialov

Authors

Nejc Novak
University of Maribor, Faculty of Mechanical Engineering
https://orcid.org/0000-0001-8263-9753
Branko Nečemer
University of Maribor, Faculty of Mechanical Engineering
https://orcid.org/0009-0008-8554-458X

Keywords:

cellular metamaterials, mechanical properties, geometrical properties, mechanical testing, computational simulations

Synopsis

Mechanical and Geometrical Properties of Cellular Metamaterials. The textbook entitled "Mechanical and geometrical properties of cellular metamaterials" is intended as study material for lectures on the course Design with Cellular Materials and Dimensioning of Lightweight Structures for students of the University of Maribor. The textbook is based on research into advanced metamaterials that combine unique mechanical and geometric properties. It contains an overview of modern cellular metamaterials and manufacturing technologies, the use of experimental and numerical approaches, and the results of mechanical and geometric characterisation research. The textbook's content is in accordance with the curricula of the mentioned subjects.

Downloads

Download data is not yet available.

Author Biographies

Nejc Novak, University of Maribor, Faculty of Mechanical Engineering

Nejc Novak is an assistant professor at the Faculty of Mechanical Engineering, University of Maribor, Slovenia. His research interest is in advanced computational modelling and simulations, cellular structures, characterisation and optimisation of cellular structures, crashworthiness, blast and ballistic loading. His bibliography comprises of more than 130 bibliographical units, from which is more than 41 original scientific papers published mostly in high ranked journals in the field of composites and mechanics. He was the visiting researcher at the University of Kumamoto, Japan, at the Georgia Institute of Technology, USA, at the Beijing Institute of Technology, China, as well as at the Politecnico di Milano, Italy.

Maribor, Slovenija. E-pošta: n.novak@um.si

Branko Nečemer, University of Maribor, Faculty of Mechanical Engineering

Branko Nečemer is an assistant professor at the Faculty of Mechanical Engineering, University of Maribor. He conducts research in the field of dimensioning of dynamically loaded machine parts and structures, numerical simulations, and mechanical characterisation of engineering materials under static and cyclic dynamic loading conditions. He has published his work in numerous scientific publications in recognised international journals. He was a visiting researcher at the Institute of Thermomechanics in Prague, Czech Republic and at the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia.  

Maribor, Slovenia. E-mail: branko.necemer@um.si

References

L. J. . Gibson and M. F. . Ashby, “The mechanics of 2D cellular material,” Proc. R. Soc., no. 382, pp. 25–45, 1982.

D. Lehmhus, M. Vesenjak, S. de Schampheleire, and T. Fiedler, “From stochastic foam to designed structure: Balancing cost and performance of cellular metals,” Materials (Basel)., vol. 10, no. 922, pp. 1–32, 2017, doi: 10.3390/ma10080922.

K. Stöbener, J. Baumeister, G. Rausch, and M. Rausch, “Forming metal foams by simpler methods for cheaper solutions,” Metal Powder Report, vol. 60, no. 1. pp. 12–16, 2005. doi: 10.1016/S0026-0657(05)00316-4.

A. Mauko, “Visokohitrostna karakterizacija mehanskih lastnosti celičnih metamaterialov,” Univerza v Mariboru, 2022. [Online]. Available: www.fg.um.si

B. Nečemer, F. Zupanič, and Z. Ren, “Celični kovinski materiali,” Vakuumist, vol. 36, no. 1, pp. 13–18, 2016.

J. Banhart, “Manufacture, characterisation and application of cellular metals and metal foams,” Progress in Materials Science, vol. 46, no. 6. pp. 559–632, 2001. doi: 10.1016/S0079-6425(00)00002-5.

M. Borovinšek, “Računalniško modeliranje celičnih gradiv neurejene strukture,” University of Maribor, 2009.

A. G. Evans, J. W. Hutchinson, and M. F. Ashby, “Multifunctionality of cellular metal systems,” vol. 43, 1999.

Y. Li, “The anisotropic behavior of Poisson’s ratio, Young’s modulus, and shear modulus in hexagonal materials,” Phys. Status Solidi, vol. 38, no. 1, pp. 171–175, 1976, doi: 10.1002/pssa.2210380119.

N. Novak, M. Vesenjak, and Z. Ren, “Auxetic cellular materials - a Review,” Strojniški Vestn. - J. Mech. Eng., vol. 62, no. 9, pp. 485–493, 2016, doi: 10.5545/sv-jme.2016.3656.

A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Volume 1. Cambridge University Press, 1892. [Online]. Available: https://books.google.com/books?id=JFTbrz0Fs5UC&pgis=1

K. E. Evans, “Auxetic polymers: a new range of materials,” Endeavour, vol. 15, no. 4, pp. 170–174, 1991, doi: 10.1016/0160-9327(91)90123-S.

A. Alderson, “A triumph of lateral thought,” Chem. Ind., vol. 10, pp. 384–391, 1999, [Online]. Available: http://cat.inist.fr/?aModele=afficheN&cpsidt=10067728

N. Chan and K. E. Evans, “Indentation resilience of conventional and auxetic foams,” J. Cell. Plast., vol. 34, no. 3, pp. 231–260, 1998, doi: 10.1177/0021955X9803400304.

R. S. Lakes and K. Elms, “Indentability of conventional and negative Poisson’s ratio foams,” J. Compos. Mater., vol. 27, no. 12, pp. 1193–1202, 1993, doi: 10.1177/002199839302701203.

K. L. Alderson, A. Fitzgerald, and K. . Evans, “The strain dependent indentation resilience of auxetic microporous polyethylene,” J. Mater. Sci., vol. 35, no. 16, pp. 4039–4047, 2000, doi: 10.1023/A:1004830103411.

H. M. A. Kolken and A. A. Zadpoor, “Auxetic mechanical metamaterials,” RSC Adv., vol. 7, pp. 5111–5129, 2017, doi: 10.1039/C6RA27333E.

W. Yang, Z. M. Li, W. Shi, B. H. Xie, and M. B. Yang, “On auxetic materials,” J. Mater. Sci., vol. 39, no. 10, pp. 3269–3279, 2004, doi: 10.1023/B:JMSC.0000026928.93231.e0.

F. Scarpa, L. G. Ciffo, and J. R. Yates, “Dynamic properties of high structural integrity auxetic open cell foam,” Smart Mater. Struct., vol. 13, no. 1, pp. 49–56, 2004, doi: 10.1088/0964-1726/13/1/006.

S. Krödel, T. Delpero, A. Bergamini, P. Ermanni, and D. M. Kochmann, “3D auxetic microlattices with independently controllable acoustic band gaps and quasi-static elastic moduli,” Adv. Eng. Mater., vol. 16, no. 4, pp. 357–363, 2014, doi: 10.1002/adem.201300264.

S. Yang, C. Qi, D. Wang, R. Gao, H. Hu, and J. Shu, “A Comparative Study of Ballistic Resistance of Sandwich Panels with Aluminum Foam and Auxetic Honeycomb Cores,” Adv. Mech. Eng., vol. 5, pp. 1–15, Jan. 2013, doi: 10.1155/2013/589216.

R. La Magna and J. Knippers, “Tailoring the Bending Behaviour of Material Patterns for the Induction of Double Curvature,” in Humanizing Digital Reality - Design Modelling Symposium Paris 2017, 2018, no. September. doi: 10.1007/978-981-10-6611-5.

Y. C. Fung, Foundations of Solid Mechanics. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1965.

R. S. Lakes, “Advances in negative Poisson’s ratio materials,” Adv. Mater., vol. 5, no. 4, pp. 293–296, 1993, doi: 10.1002/adma.19930050416.

N. Benbattouche, G. A. Saunders, E. F. Lambson, and W. Honle, “The dependences of the elastic stiffness moduli and the Poisson ratio of natural iron pyrites FeS2 upon pressure and temperature,” J. Phys. D. Appl. Phys., vol. 22, no. 5, pp. 670–675, 1989, doi: 10.1088/0022-3727/22/5/015.

D. J. Gunton and G. a. Saunders, “The Young’s modulus and Poisson’s ratio of arsenic, antimony and bismuth,” J. Mater. Sci., vol. 7, pp. 1061–1068, 1972, doi: 10.1007/BF00550070.

K. E. Evans, M. A. Nkansah, I. J. Hutchinson, and S. C. Rogers, “Molecular Network Design,” Nature, vol. 353, p. 124, 1991, doi: 10.1038/353124a0.

K. Muto, R. W. Bailey, and K. J. Mitchell, “Special requirements for the design of nuclear power stations to withstand earthquakes,” Proc. Inst. Mech. Eng., vol. 177, pp. 155–203, 1963, doi: 10.1243/PIME_PROC_1963_177_018_02.

A. Yeganeh-Haeri, D. J. Weidner, and J. B. Parise, “Elasticity of a-Cristobalite: A Silicon Dioxide with a Negative Poisson’s Ratio,” Science (80-. )., vol. 257, no. July, pp. 30–32, 1992, doi: 10.1126/science.257.5070.650.

W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik). Leipzig; Berlin: B.G. Teubner, 1928.

C. Lees, J. F. Vincent, and J. E. Hillerton, “Poisson’s ratio in skin,” Biomed. Mater. Eng., vol. 1, no. 1, pp. 19–23, 1991, doi: 10.3233/BME-1991-1104.

R. F. Almgren, “An isotropic three-dimensional structure with Poisson’s ratio=-1,” J. Elast., vol. 15, pp. 427–430, 1985, doi: 10.1007/BF00042531.

R. S. Lakes, “Foam Structures with a Negative Poisson’s Ratio,” Science (80-. )., vol. 235, pp. 1038–1040, 1987, doi: 10.1126/science.235.4792.1038.

K. E. Evans and B. D. Caddock, “Microporous materials with negative Poisson’s ratios. II. Mechanisms and interpretation,” J. Phys. D. Appl. Phys., vol. 22, pp. 1883–1887, 1989, doi: 10.1088/0022-3727/22/12/013.

B. D. Caddock and K. E. Evans, “Microporous materials with negative Poisson’s ratios. I. Microstructure and mechanical properties,” J. Phys. D. Appl. Phys., vol. 22, no. 12, pp. 1877–1882, 1989, doi: 10.1088/0022-3727/22/12/012.

G. W. Milton, “Composite materials with poisson’s ratios close to — 1,” J. Mech. Phys. Solids, vol. 40, no. 5, pp. 1105–1137, 1992, doi: 10.1016/0022-5096(92)90063-8.

J. B. Choi and R. S. Lakes, “Nonlinear analysis of the Poisson’s Ratio in negative Poisson’s Ratio Foams,” J. Compos. Mater., vol. 29, no. 1, pp. 113–128, 1995.

J. N. Grima and K. E. Evans, “Auxetic behavior from rotating squares,” J. Mater. Sci. Lett., vol. 19, no. 17, pp. 1563–1565, 2000, doi: 10.1023/A:1006781224002.

J. N. Grima, A. Alderson, and K. E. Evans, “Auxetic behaviour from rotating rigid units,” Phys. Status Solidi Basic Res., vol. 242, no. 3, pp. 561–575, 2005, doi: 10.1002/pssb.200572706.

A. Alderson and K. E. Evans, “Microstructural modelling of auxetic microporous polymers,” J. Mater. Sci., vol. 30, no. 13, pp. 3319–3332, 1995, doi: 10.1007/BF00349875.

J. N. Grima, V. Zammit, R. Gatt, A. Alderson, and K. E. Evans, “Auxetic behaviour from rotating semi-rigid units,” Phys. Status Solidi Basic Res., vol. 244, no. 3, pp. 866–882, 2007, doi: 10.1002/pssb.200572706.

M. Taylor, L. Francesconi, M. Gerendás, A. Shanian, C. Carson, and K. Bertoldi, “Low Porosity Metallic Periodic Structures with Negative Poisson’s Ratio,” Adv. Mater., vol. 26, no. 15, pp. 2365–2370, 2013, doi: 10.1002/adma.201304464.

C. W. Smith, J. N. Grima, and K. E. Evans, “A novel mechanism for generating auxetic behaviour in reticulated foams: Missing rib foam model,” Acta Mater., vol. 48, no. 17, pp. 4349–4356, 2000, doi: 10.1016/S1359-6454(00)00269-X.

C. Körner and Y. Liebold-Ribeiro, “A systematic approach to identify cellular auxetic materials,” Smart Mater. Struct., vol. 24, p. 025013, 2014, doi: 10.1088/0964-1726/24/2/025013.

X. Ren, R. Das, P. Tran, T. D. Ngo, and Y. M. Xie, “Auxetic metamaterials and structures: A review,” Smart Mater. Struct., 2018.

R. S. Lakes, “Deformation mechanisms in negative Poisson’s ratio materials: structural aspects,” J. Mater. Sci., vol. 26, no. 9, pp. 2287–2292, 1991, doi: 10.1007/BF01130170.

D. Prall and R. S. Lakes, “Properties of a chiral honeycomb with a poisson’s ratio of — 1,” Int. J. Mech. Sci., vol. 39, no. 3, pp. 305–314, Mar. 1997, doi: 10.1016/S0020-7403(96)00025-2.

H. Abramovitch et al., “Smart tetrachiral and hexachiral honeycomb: Sensing and impact detection,” Compos. Sci. Technol., vol. 70, no. 7, pp. 1072–1079, 2010, doi: 10.1016/j.compscitech.2009.07.017.

A. Alderson et al., “Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,” Compos. Sci. Technol., vol. 70, no. 7, pp. 1042–1048, 2010, doi: 10.1016/j.compscitech.2009.07.009.

C. He, P. Liu, and A. C. Griffin, “Toward Negative Poisson Ratio Polymers through Molecular Design,” Macromolecules, vol. 31, no. Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved., pp. 3145–3147, 1998, doi: 10.1021/ma970787m.

Y. T. Yao, M. Uzun, and I. Patel, “Workings of auxetic nano-materials,” J. Achiev. Mater. Manuf. Eng., vol. 49, no. 2, pp. 585–593, 2011.

N. Ravirala, A. Alderson, and K. L. Alderson, “Interlocking hexagons model for auxetic behaviour,” J. Mater. Sci., vol. 42, no. 17, pp. 7433–7445, 2007, doi: 10.1007/s10853-007-1583-0.

A. Alderson and K. E. Evans, “Rotation and dilation deformation mechanisms for auxetic behaviour in the ??-cristobalite tetrahedral framework structure,” Phys. Chem. Miner., vol. 28, no. 10, pp. 711–718, 2001, doi: 10.1007/s002690100209.

N. Gaspar, C. W. Smith, a. Alderson, J. N. Grima, and K. E. Evans, “A generalised three-dimensional tethered-nodule model for auxetic materials,” J. Mater. Sci., vol. 46, no. 2, pp. 372–384, 2011, doi: 10.1007/s10853-010-4846-0.

J. Schwerdtfeger, P. Heinl, R. F. Singer, and C. Körner, “Auxetic cellular structures through selective electron beam melting,” Phys. Status Solidi B, vol. 247, no. 2, pp. 269–272, 2010, doi: 10.1002/pssb.200945513.

R. Critchley, I. Corni, J. a. Wharton, F. C. Walsh, R. J. K. Wood, and K. R. Stokes, “The preparation of auxetic foams by three-dimensional printing and their characteristics,” Adv. Eng. Mater., vol. 15, no. 10, pp. 980–985, 2013, doi: 10.1002/adem.201300030.

T. Fíla et al., “Impact Testing of Polymer-filled Auxetics Using Split Hopkinson Pressure Bar,” Adv. Eng. Mater., p. n/a--n/a, 2017, doi: 10.1002/adem.201700076.

Josephine V. Carstensen and James K. Guest, “Topology Optimization of Cellular Materials,” in 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference AIAA, 2016, no. June, pp. 1–10. doi: 10.1115/DETC2015-47757.

A. Rafsanjani and D. Pasini, “Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs,” Extrem. Mech. Lett., vol. 9, no. December, pp. 291–296, 2016, doi: 10.1016/j.eml.2016.09.001.

W. H. Meeks and J. Pérez, “The classical theory of minimal surfaces,” Bull. Am. Math. Soc., vol. 48, no. 3, pp. 325–407, 2011, doi: 10.1090/S0273-0979-2011-01334-9.

J. W. Neuberger, Minimal Surfaces, vol. 1670. 2010. doi: 10.1007/978-3-642-04041-2_16.

W. H. Meeks and G. Tinaglia, “Triply periodic constant mean curvature surfaces,” Adv. Math. (N. Y)., vol. 335, pp. 809–837, Sep. 2018, doi: 10.1016/j.aim.2018.07.018.

M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. . G. Wadley, Metal foams: a design guide. Burlington, MA, Massachusetts: Elsevier Science, 2000. doi: 10.1016/S0261-3069(01)00049-8.

T. Fiedler et al., “Determination of the thermal conductivity of periodic APM foam models,” Int. J. Heat Mass Transf., vol. 73, no. 0, pp. 826–833, 2014, doi: 10.1016/j.ijheatmasstransfer.2014.02.056.

K. . Alderson and K. . Evans, “The fabrication of microporous polyethylene having a negative Poisson’s ratio,” Polymer (Guildf)., vol. 33, no. 20, pp. 4435–4438, 1992, doi: 10.1016/0032-3861(92)90294-7.

A. P. Pickles, R. S. Webber, K. L. Alderson, P. Neale, and K. E. Evans, “The effect of the processing parameters on the fabrication of auxetic polyethylene - Part I The effect of compaction conditions,” J. Mater. Sci., vol. 30, no. 16, pp. 4059–4068, 1995, doi: 10.1007/BF00360709.

N. Chan and K. E. Evans, “Fabrication methods for auxetic foams,” J. Mater. Sci., vol. 32, pp. 5945–5953, 1997, doi: 10.1023/A:1018606926094.

J. N. Grima, D. Attard, R. Gatt, and R. N. Cassar, “A Novel Process for the Manufacture of Auxetic Foams and for Their re-Conversion to Conventional Form,” Adv. Eng. Mater., vol. 11, no. 7, pp. 533–535, 2009, doi: 10.1002/adem.200800388.

J. N. Grima, J. J. Williams, and K. E. Evans, “Networked calix[4]arene polymers with unusual mechanical properties.,” Chem. Commun., vol. 1, pp. 4065–4067, 2005, doi: 10.1039/b505839b.

N. Novak, M. Vesenjak, L. Krstulović-Opara, and Z. Ren, “Mechanical characterisation of auxetic cellular structures built from inverted tetrapods,” Compos. Struct., vol. 196, no. January, pp. 96–107, 2018, doi: 10.1016/j.compstruct.2018.05.024.

Y. Hou, R. Neville, F. Scarpa, C. Remillat, B. Gu, and M. Ruzzene, “Graded conventional-auxetic Kirigami sandwich structures: Flatwise compression and edgewise loading,” Compos. Part B Eng., vol. 59, pp. 33–42, 2014, doi: 10.1016/j.compositesb.2013.10.084.

B. Nečemer, “Malociklično utrujanje avksetičnih celičnih struktur,” University of Maribor, 2021.

O. Al‐Ketan and R. K. Abu Al‐Rub, “MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces,” Mater. Des. Process. Commun., vol. 3, no. 6, pp. 1–10, Dec. 2021, doi: 10.1002/mdp2.205.

X. Z. Zhang, H. P. Tang, M. Leary, T. Song, L. Jia, and M. Qian, “Toward Manufacturing Quality Ti-6Al-4V Lattice Struts by Selective Electron Beam Melting (SEBM) for Lattice Design,” JOMThe J. Miner. Met. Mater. Soc., vol. 70, no. 9, pp. 1870–1876, 2018, doi: 10.1007/s11837-018-3030-x.

J. Schwerdtfeger, P. Heinl, R. F. Singer, and C. Körner, “Selective Electron Beam Melting : A New Way to Auxetic Cellular Structures,” Mater. Sci. Technol., pp. 724–729, 2009.

T. Hipke, G. Lange, and R. Poss, Taschenbuch für Aluminiumschäume. Düsseldorf: Alu Media, 2007.

ISO 13314:2011 - Mechanical testing of metals - ductility testing - compression test for porous and cellular metals. Geneva, Switzerland: International Organization for Standardization, 2011. [Online]. Available: www.iso.org

L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and properties. Cambridge, U.K.: Cambridge University Press, 1997.

S. Glodež, J. Flašker, D. Jelaska, and M. Opalić, Dimenzioniranje na življenjsko dobo. Maribor: Fakulteta za strojništvo, 2006.

J. M. Hyzak and I. M. Bernstein, “The effect of defects on the fatigue crack initiation process in two p/m superalloys: part i. fatigue origins,” Metall. Trans. A, vol. 13, no. 1, pp. 33–43, Jan. 1982, doi: 10.1007/BF02642413.

P. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” J. Basic Eng., vol. 85, no. 4, p. 528, 1963, doi: 10.1115/1.3656900.

P. C. Paris, M. P. Gomez, and W. E. Anderson, “A rational analytic theory of fatigue,” Trend Eng., no. 13, pp. 9–14, 1961.

L. Krstulović-Opara, M. Surjak, M. Vesenjak, Z. Tonković, J. Kodvanj, and Ž. Domazet, “Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials,” Infrared Phys. Technol., vol. 73, pp. 166–174, 2015, doi: 10.1016/j.infrared.2015.09.014.

I. Duarte, M. Vesenjak, L. Krstulović-Opara, and Z. Ren, “Static and dynamic axial crush performance of in-situ foam-filled tubes,” Compos. Struct., vol. 124, pp. 128–139, 2015, doi: 10.1016/j.compstruct.2015.01.014.

L. Krstulović-Opara, M. Vesenjak, I. Duarte, and Z. Ren, “Infrared thermography as a method for energy absorption evaluation of metal foams,” Mater. Today Proc., vol. 3, no. 4, pp. 1025–1030, 2016, doi: 10.1016/j.matpr.2016.03.041.

N. Novak et al., “Quasi-static and impact behaviour of foam-filled graded auxetic panel,” Int. J. Impact Eng., vol. 178, no. October 2022, p. 104606, Aug. 2023, doi: 10.1016/j.ijimpeng.2023.104606.

F. Warmuth, F. Osmanlic, and L. Adler, “Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting,” Smart Mater. Struct., vol. 26, p. 8, 2017, doi: 10.1088/1361-665X/26/2/025013.

O. Duncan et al., “Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection,” Appl. Sci., vol. 8, no. 6, pp. 941–974, Jun. 2018, doi: 10.3390/app8060941.

N. Novak et al., “Quasi-static and dynamic compressive behaviour of sheet TPMS cellular,” Compos. Struct., vol. 266, no. February, p. 113801, 2021, doi: 10.1016/j.compstruct.2021.113801.

P. J. Tan, S. R. Reid, J. J. Harrigan, Z. Zou, and S. Li, “Dynamic compressive strength properties of aluminium foams. Part I - Experimental data and observations,” J. Mech. Phys. Solids, vol. 53, no. 10, pp. 2174–2205, 2005, doi: 10.1016/j.jmps.2005.05.007.

N. Novak, M. Vesenjak, S. Tanaka, K. Hokamoto, and Z. Ren, “Compressive behaviour of chiral auxetic cellular structures at different strain rates,” Int. J. Impact Eng., vol. 141, no. February, p. 103566, Jul. 2020, doi: 10.1016/j.ijimpeng.2020.103566.

X. Cao et al., “Dynamic compressive behavior of a modified additively manufactured rhombic dodecahedron 316L stainless steel lattice structure,” Thin-Walled Struct., vol. 148, no. December 2019, p. 106586, 2020, doi: 10.1016/j.tws.2019.106586.

Z. Zheng, J. Yu, and J. Li, “Dynamic crushing of 2D cellular structures: A finite element study,” Int. J. Impact Eng., vol. 32, no. 1–4, pp. 650–664, 2005, doi: 10.1016/j.ijimpeng.2005.05.007.

Y. Sun and Q. M. Li, “Dynamic compressive behaviour of cellular materials: A review of phenomenon, mechanism and modelling,” Int. J. Impact Eng., vol. 112, no. October 2017, pp. 74–115, 2018, doi: 10.1016/j.ijimpeng.2017.10.006.

N. Novak, K. Hokamoto, M. Vesenjak, and Z. Ren, “Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates,” Int. J. Impact Eng., vol. 122, no. August, pp. 83–90, 2018, doi: https://doi.org/10.1016/j.ijimpeng.2018.08.001.

D. Šeruga, M. Nagode, and J. Klemenc, “Eliminating friction between flat specimens and an antibuckling support during cyclic tests using a simple sensor,” Meas. Sci. Technol., vol. 30, no. 9, 2019, doi: 10.1088/1361-6501/ab1e35.

B. Nečemer, T. Vuherer, S. Glodež, and J. Kramberger, “Fatigue behaviour of re-entrant auxetic structures made of the aluminium alloy AA7075-T651,” Thin-Walled Struct., vol. 180, no. August, p. 109917, 2022, doi: 10.1016/j.tws.2022.109917.

N. Novak, L. Starčevič, M. Vesenjak, and Z. Ren, “Blast response study of the sandwich composite panels with 3D chiral auxetic core,” Compos. Struct., vol. 210, no. November 2018, pp. 167–178, 2019, doi: https://doi.org/10.1016/j.compstruct.2018.11.050.

M. Vesenjak, K. Hokamoto, M. Sakamoto, T. Nishi, L. Krstulović-Opara, and Z. Ren, “Mechanical and microstructural analysis of unidirectional porous (UniPore) copper,” Mater. Des., vol. 90, pp. 867–880, 2016, doi: 10.1016/j.matdes.2015.11.038.

N. Novak et al., “Compressive Behaviour of Closed-Cell Aluminium Foam at Different Strain Rates,” Materials (Basel)., vol. 12, no. 24, p. 4108, 2019, doi: 10.3390/ma12244108.

M. Vesenjak, C. Veyhl, and T. Fiedler, “Analysis of anisotropy and strain rate sensitivity of open-cell metal foam,” Mater. Sci. Eng. A, vol. 541, pp. 105–109, 2012, doi: 10.1016/j.msea.2012.02.010.

N. Novak, M. Vesenjak, M. Nishi, S. Tanaka, K. Hokamoto, and Z. Ren, “Mechanical behavior of cellular materials—from quasistatic to high strain rate impact response,” in Explosion, Shock-Wave and high-strain rate phenomena of advanced materials, K. Hokamoto, Ed. Elsevier, 2021.

N. Novak, M. Vesenjak, and Z. Ren, “High Strain Rate Hardening of Metallic Cellular Metamaterials,” J. Dyn. Behav. Mater., May 2024, doi: 10.1007/s40870-024-00425-x.

M. Borovinšek, M. Vesenjak, M. Jože, and Z. Ren, “Computational Reconstruction of Scanned Aluminum Foams for Virtual Testing,” J. Serbian Soc. Comput. Mech., vol. 2, no. 2, pp. 16–28, 2008.

M. Borovinšek, “PrePoMax.” https://prepomax.fs.um.si/

J. Hallquist, LS-DYNA keyword user’s manual. Livermore, California: Livermore Software Technology Corporation, 2007.

S. Marzi, O. Hesebeck, M. Brede, and F. Kleiner, “A Rate-Dependent , Elasto-Plastic Cohesive Zone Mixed-Mode Model for Crash Analysis of Adhesively Bonded Joints,” 2009.

N. Novak, M. Borovinšek, O. Al-ketan, Z. Ren, and M. Vesenjak, “Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures,” Compos. Struct., vol. 300, no. April, 2022, doi: 10.1016/j.compstruct.2022.116174.

N. Novak, M. Vesenjak, G. Kennedy, N. Thadhani, and Z. Ren, “Response of Chiral Auxetic Composite Sandwich Panel to Fragment Simulating Projectile Impact,” Phys. Status Solidi B, vol. 1900099, no. 10, pp. 1–6, 2019, doi: 10.1002/pssb.201900099.

B. Nečemer, J. Klemenc, F. Zupanič, and S. Glodež, “Modelling and predicting of the LCF-behaviour of aluminium auxetic structures,” Int. J. Fatigue, vol. 156, no. November 2021, p. 106673, 2022, doi: 10.1016/j.ijfatigue.2021.106673.

B. Nečemer, F. Zupanič, D. Gabriel, E. A. Tarquino, M. Šraml, and S. Glodež, “Low cycle fatigue behaviour of ductile aluminium alloys using the inelastic energy approach,” Mater. Sci. Eng. A, vol. 800, no. October 2020, 2021, doi: 10.1016/j.msea.2020.140385.

B. Nečemer, F. Zupanič, T. Vuherer, and S. Glodež, “High-Cycle Fatigue Behaviour of the Aluminium Alloy 5083-H111,” Materials (Basel)., vol. 16, no. 7, 2023, doi: 10.3390/ma16072674.

“Ansys Mechanical Finite Element Analysis (FEA) Software for Structural Engineering 2023.”

H. M. A. Kolken, S. Janbaz, S. M. A. Leeflang, K. Lietaert, H. H. Weinans, and A. A. Zadpoor, “Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials,” Mater. Horiz., 2017, doi: 10.1039/C7MH00699C.

Downloads

Published

May 13, 2025

Details about this monograph

COBISS.SI ID (00)

ISBN-13 (15)

978-961-286-990-8

THEMA Subject Codes (93)

TGM

Date of first publication (11)

2025-05-13

How to Cite

Geometrijske in mehanske lastnosti celičnih metamaterialov. (2025). University of Maribor Press. https://doi.org/10.18690/um.fs.4.2025