Sodobni inženirski materiali
Ključne besede:
sodobni inženirski materiali, zgradba, izbira materialov, mikrostruktura, lastnostiKratka vsebina
Skripta, Sodobni inženirski materiali je kot temeljno študijsko gradivo namenjeno pervenstveno študentom 2. stopnje študijskih programov Strojništva, Gospodarskega inženirstva, Mehatronike in študentom Inženirsko oblikovanja izdelkov. Skripta je sestavljena iz treh poglavij: (i) Zgradba in izbira inženirskih materialov; (ii) Lastnosti inženirskih materialov; (iii) Primeri sodobnih inženirskih materialov. V prvem poglavju je obravnavana zgradba kovinskih, keramičnih, polimernih in kompozitnih materialov ter predstavljeni so kriteriji, ki omogočajo inženirjem glede na želeno kombinacijo lastnosti materialov, njihovo ustrezno izbiro za določeno aplikacijo. Drugo poglavje obravnava lastnosti sodobnih inženirskih materialov s poudarkom na poglobljenem študiju razlage korelacij med zgradbo, mikrostrukturo in lastnostmi. V zadnjem najobsežnejšem poglavju so predstavljeni izbrani primeri sodobnih inženirskih materialov, katerih uporaba e v industrijski praksi dandanes zelo aktualna. Če naštejemo samo najbolj zanimive: disperzijsko utrjeni materiali, spominske zlitine, konstrukcijska keramika, materiali za shranjevanje vodika, hitrostrjeni kovinski materiali, sodobne aluminijeve zlitine, biopolimeri in še mnogi drugi.
Prenosi
Literatura
M. F. Ashby, D. R. Jones: Engineering Materials – An Introduction to their Properties and Applications, Pergamon Press, Oxford, 1980.
M. F. Ashby: Materials Selection in Mechanical Design, Third Edition, Butterworth-Heinemann, Oxford, 2004.
Askaland D. R. Askaland, The Science and Engineering of Materials, Springer US, New York, 1996.
P. W. Atkins, M. J. Frazer, M. J. Clugston, R. A. Y. Jones, Kemija: zakonitosti in uporaba, Tehnična založba Slovenije, Ljubljana, 1997.
M. W. Barsoum: Fundaments of Ceramics, McGraw-Hill, Singapore, 1997.
R. J. Borg, G. D. Dienes: The Physical Chemistry of solid, Academic Press, New York, 1992.
W. D. Callister: Materials Science and Engineering – an Introduction, 5th editon, John Wiley & Sons, Inc., 2000.
W. F. Smith: Principles of Materials Science and Engineering, McGraw-Hill, New York, 1986.
R. J. Young, P. A. Lovell: Introduction to Polymers, 3rd edition, CRC Press, Boca Raton, 2011.
J. M. G. Cowie, V. Arrighi: Polymers: Chemistry and Physics of Modern Materials, 3rd edition, CRC Press, Boca Raton, 2007.
K. K. Chawla: Ceramic matrix composites, 2nd edition, Springer US, New York, 2003.
M. Flemming G., Ziegmann, S. Roth: Faserverbundbauweisen, Springer-Verlag, Berlin, Heidelberg, 1995.
N. J. Mills: Plastics – Microstructure and Engineering Applications, Butterworh-Heinemann, third edition, London, 2005.
W. Krenkel: Ceramic matrix composites, Wiley-VCH, 7th edition, Weinheim, 2008.
O. Schwarz: Kunststoffkunde, Vogel Buchverlag, 2. Auflage, Wurzburg, 1988.
Ullmann's Encyclopedia, Ullmann's Polymers and Plastics, Wiley-VCH, 7th edition, Weinheim, 2016.
E. Arzt, D. S. Wilkinson: Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction; Acta metall., vol. 34, No. 10, 1893‒1898, 1986;
E. Arzt, J. Rösler: The kinetics of dislocation climb over hard particles: Effects of an attractive particle ‒ dislocation interaction; Acta metall., vol. 36, No. 4, 1053‒1060, 1988.
J. Rösler, E. Arzt: A new model ‒ based creep equation for dispersion strengthened materials; Acta metall., vol. 38, No. 4, 671‒683, 1990.
M. S. Nagorka, C. G. Levi, G. E. Lucas, S. D. Ridder: The potential of rapid solidification in oxide - dispersion ‒ strengthened copper alloy development; Mat. Sci. & Eng., A 142, 277‒289, 1991.
G. P. Ivantsov: Temperaturnuye Pole Vokrug Sharoobraznogo Tsilindricheskogo i Igloobrazno go Kristalla Rastushchego v Pereokhlazhdennom Rasplave; Dokl. Akad. Nauk, SSSR, vol 58, No 4, 1947; 567‒569.
M. Rühle: Dispersionshärtung metallischer Werkstoffe - Teil I; Z. Metallkde, B 1980.
M. Rühle: Zum technischen Stand der Dispersionshärtung - Teil I; Metall, 36, H 12, 1982.
H. Unckel: Entwicklung und Stand der Dispersionshärtung; Metall, 35, H 7, 1981.
E. Hornbogen, H. Warlimont: Metallkunde, Aufbau und Eigenschaften von Metallen und Legierungen, 4th edition, Springer-Verlag Berlin, Heidelberg 2001.
W. Kurz, D. J. Fisher:Fundamentals of Solidification, Trans Tech Publications, 4th edition, Michigan, 1998.
W. Kurz, R. Trivedi: Rapid solidification processing and microstructure formation; Mat. Sci. & Eng., A 179/A 180, 46‒51, 1994.
P.W. Atkins: Physical Chemistry, 4th edition, Oxford University Press, New York, 1990.
W. D. Callister: Materials Science and Engineering – An Introduction, 5th edition, John Wiley & Sons, Inc., 2000.
D. Kolar: Tehnična keramika, I. in II. Knjiga, Zavod Republike Slovenije za šolstvo in šport, 1993.
A. Kelly, N. H. Macmillan: Strong Solids, 3d edition, Clarendon Press, Oxford, England, 1986.
H. Oettel, H. Schumann, Metallografie, 15. Auflage, Wiley-VCH Verlag, Wienheim, 2011.
R. J. Borg, G.D. Dienes: The Physical Chemistry of Solids, Academic Press, New York, 1992.
M. Barsoum: Fundamentals of ceramics, McGraw-Hill, 1997.
W. E. Worrall: Clays and ceramic raw materials, 2nd edition, Elsevier 1986.
P. W. Atkins: Physical Chemistry, 4th edition, Oxford University Press, New York, 1990.
I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloys, Butterworth-Heinemann, 2017.
F. Zupanič, M. Steinacher, S. Žist, T. Bončina, Microstructure and Properties of a Novel Al-Mg-Si Alloy AA 6086, Metals, 11 (2021) 368.
J. Klemenc, S. Glodež, M. Steinacher, F. Zupanič, LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086, International Journal of Fatigue, 177 (2023) 107971.
C. Leyens, M.Peters: Titanium and Titanium Alloys, Wiley-VCH, Weinheim, 2003.
A. Zuettel, Materials for hydrogen storage, Materials Today, september 2003, str. 24‒33.
J. Ren, at all, Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, International journal of hydrogen energy 42, 2017, str. 289–311.
Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, International journal of hydrogen energy 44, 2019, str. 18179–18192.
K. Otsuka, C. M. Wayman. in: Shape Memory Materials, Cambridge University Press, Cambridge (1998) 9.
M. Y. Kao, S. Fariabi,; P. E. Thoma, H. Ozkan, L. Cartz,: Shape Memory Materials and Phenomena – Fundamental Aspects and Applications, MRS vol. 246, Pittsburgh, (1992) 225.
P. Tautzenberger: Ingenieur-Werkstoffe 1 (1989) 61.
J. Perkins: Mat.Sci.Eng. 51 (1981) 181.
H. Scherngell: Stability and Optimization of the Two-Way Effect in NiTi and CuAlNi Shape Memory Alloys, doktorska disertacija, Montanistična univerza v Leobnu, Leoben, 2000.
D. Kyriacos, High-Temperature Engineering Thermoplastics, Brydson's Plastics Materials, 21, Elsevier, 2017, str. 545‒615.
V. R. Sastri, Fillers (Including Fibers Reinforcements), Plastics in Medical Devices, 8, Elsevier, 2014, 173‒213.
M. Žigon, Uvod v polimere, Ljubljana, 2009, 108‒119.
W. D, Callister, Fundamentals of materials science and engineering, Ney York, John Wiley & Sons, 15, 2001, str. S162‒S203.
V. R. Sastri, High-Temperature Engineering Thermoplastics, Plastics in Medical Devices, 8, Elsevier, 2014, 173‒213.
F. R. Jones, Handbook of Polymer-Fibre Composites, 1994.
L. Kosec: Kompoziti, KZT, letnik 28, št. 1–2, str. 19–24, 1994.
R. E. Cameron, A. Kamvari-Moghaddam: Synthetic bioresorbable polymers, Cambrige, Woodhead Publishing Limited, 2012, str 96‒118.
F. Sarasini: Biocomposites for High-Performance Applications, Rome, Elsevier, 2017, str. 82‒123.
S. Pilla: Handbook of Bioplastics and Biocomposites Engineering Applications, New Jersey, John Wiley & Sons, 2011.
