Sodobni inženirski materiali

Authors

Ivan Anžel
University of Maribor, Faculty of Mechanical Engineering
https://orcid.org/0000-0001-9659-4197
Franc Zupanič
University of Maribor, Faculty of Mec
https://orcid.org/0000-0002-9402-2854
Mihael Brunčko
University of Maribor, Faculty of Mechanical Engineering
https://orcid.org/0000-0002-8706-313X

Keywords:

advanced engineering materials, structure, microstructure, properties, material selection

Synopsis

Advanced Engineering Materials. The script, Advanced Engineering Materials serves as a fundamental literature, primarily intended for students in master's study programs in Mechanical Engineering, Industrial Engineering, Mechatronics, and Product Design. The script is composed of three chapters: (i) Structure and Selection of Engineering Materials; (ii) Properties of Engineering Materials; (iii) Examples of Modern Engineering Materials. In the first chapter, the structure of metallic, ceramic, polymeric and composite materials is discussed, and criteria are presented that enable engineers to select appropriate materials for a specific application based on the desired combination of material properties. The second chapter addresses the properties of modern engineering materials with an emphasis on an in-depth study of the correlations between structure, microstructure, and properties. In the final and most extensive chapter, selected examples of modern engineering materials, whose application is currently very relevant in industrial practice, are presented. To name just the most interesting: dispersion-strengthened materials, shape memory alloys, engineering ceramics, hydrogen storage materials, rapidly solidified metallic materials, modern aluminium alloys, biopolymers, and many others.

Downloads

Download data is not yet available.

Author Biographies

Ivan Anžel, University of Maribor, Faculty of Mechanical Engineering

Prof. dr. Ivan Anžel is Head of the Chair for materials and forming and Head of the University Centre for Electron Microscopy. Scientific interest of Professor Anžel is related to correlation between the microstructure and mechanical as well as functional properties, thermodynamically metastable states in solids, phase transformations in metals and ceramics and Electron microscopy and microanalysis. Professor Anžel has published with co-authors more than 170 papers in the scientific journals and has been giving a lot of lectures at international conferences.

Maribor, Slovenia. E-mail: ivan.anzel@um.si

Franc Zupanič, University of Maribor, Faculty of Mec

Prof. Dr. Franc Zupanič lectures at FS, UM in the field of Materials. His research focuses on the study of synthesis, processing, treatment, and joining of various alloys. Specifically, he investigates precipitation-hardened high­strength and temperature-resistant aluminium alloys. His work delves into the relationship between manufacturing parameters, resulting microstructure, and final material properties. Additionally, he is deeply involved in metallography and mechanical testing. Prof. Zupanič collaborates with several research institutions in Germany, Austria, and ltaly, as well as with Slovenian companies, institutes, and universities. 

Maribor, Slovenia. E-mail: franc.zupanic@um.si

Mihael Brunčko, University of Maribor, Faculty of Mechanical Engineering

Dr. Mihael Brunčko is an Associate Professor at University of Maribor, Faculty of mechanical engineering and a member of Chair of Materials and Form ing. His research, expert and pedagogical work is in the field of materials, characterization of materials structure and properties. His bibliography comprises over 271 various publicised works, among them 45 original scientific articles published in various international journals.

Maribor, Slovenia. E-mail: mihael.bruncko@um.si 

References

M. F. Ashby, D. R. Jones: Engineering Materials – An Introduction to their Properties and Applications, Pergamon Press, Oxford, 1980.

M. F. Ashby: Materials Selection in Mechanical Design, Third Edition, Butterworth-Heinemann, Oxford, 2004.

Askaland D. R. Askaland, The Science and Engineering of Materials, Springer US, New York, 1996.

P. W. Atkins, M. J. Frazer, M. J. Clugston, R. A. Y. Jones, Kemija: zakonitosti in uporaba, Tehnična založba Slovenije, Ljubljana, 1997.

M. W. Barsoum: Fundaments of Ceramics, McGraw-Hill, Singapore, 1997.

R. J. Borg, G. D. Dienes: The Physical Chemistry of solid, Academic Press, New York, 1992.

W. D. Callister: Materials Science and Engineering – an Introduction, 5th editon, John Wiley & Sons, Inc., 2000.

W. F. Smith: Principles of Materials Science and Engineering, McGraw-Hill, New York, 1986.

R. J. Young, P. A. Lovell: Introduction to Polymers, 3rd edition, CRC Press, Boca Raton, 2011.

J. M. G. Cowie, V. Arrighi: Polymers: Chemistry and Physics of Modern Materials, 3rd edition, CRC Press, Boca Raton, 2007.

K. K. Chawla: Ceramic matrix composites, 2nd edition, Springer US, New York, 2003.

M. Flemming G., Ziegmann, S. Roth: Faserverbundbauweisen, Springer-Verlag, Berlin, Heidelberg, 1995.

N. J. Mills: Plastics – Microstructure and Engineering Applications, Butterworh-Heinemann, third edition, London, 2005.

W. Krenkel: Ceramic matrix composites, Wiley-VCH, 7th edition, Weinheim, 2008.

O. Schwarz: Kunststoffkunde, Vogel Buchverlag, 2. Auflage, Wurzburg, 1988.

Ullmann's Encyclopedia, Ullmann's Polymers and Plastics, Wiley-VCH, 7th edition, Weinheim, 2016.

E. Arzt, D. S. Wilkinson: Threshold stresses for dislocation climb over hard particles: The effect of an attractive interaction; Acta metall., vol. 34, No. 10, 1893‒1898, 1986;

E. Arzt, J. Rösler: The kinetics of dislocation climb over hard particles: Effects of an attractive particle ‒ dislocation interaction; Acta metall., vol. 36, No. 4, 1053‒1060, 1988.

J. Rösler, E. Arzt: A new model ‒ based creep equation for dispersion strengthened materials; Acta metall., vol. 38, No. 4, 671‒683, 1990.

M. S. Nagorka, C. G. Levi, G. E. Lucas, S. D. Ridder: The potential of rapid solidification in oxide - dispersion ‒ strengthened copper alloy development; Mat. Sci. & Eng., A 142, 277‒289, 1991.

G. P. Ivantsov: Temperaturnuye Pole Vokrug Sharoobraznogo Tsilindricheskogo i Igloobrazno go Kristalla Rastushchego v Pereokhlazhdennom Rasplave; Dokl. Akad. Nauk, SSSR, vol 58, No 4, 1947; 567‒569.

M. Rühle: Dispersionshärtung metallischer Werkstoffe - Teil I; Z. Metallkde, B 1980.

M. Rühle: Zum technischen Stand der Dispersionshärtung - Teil I; Metall, 36, H 12, 1982.

H. Unckel: Entwicklung und Stand der Dispersionshärtung; Metall, 35, H 7, 1981.

E. Hornbogen, H. Warlimont: Metallkunde, Aufbau und Eigenschaften von Metallen und Legierungen, 4th edition, Springer-Verlag Berlin, Heidelberg 2001.

W. Kurz, D. J. Fisher:Fundamentals of Solidification, Trans Tech Publications, 4th edition, Michigan, 1998.

W. Kurz, R. Trivedi: Rapid solidification processing and microstructure formation; Mat. Sci. & Eng., A 179/A 180, 46‒51, 1994.

P.W. Atkins: Physical Chemistry, 4th edition, Oxford University Press, New York, 1990.

W. D. Callister: Materials Science and Engineering – An Introduction, 5th edition, John Wiley & Sons, Inc., 2000.

D. Kolar: Tehnična keramika, I. in II. Knjiga, Zavod Republike Slovenije za šolstvo in šport, 1993.

A. Kelly, N. H. Macmillan: Strong Solids, 3d edition, Clarendon Press, Oxford, England, 1986.

H. Oettel, H. Schumann, Metallografie, 15. Auflage, Wiley-VCH Verlag, Wienheim, 2011.

R. J. Borg, G.D. Dienes: The Physical Chemistry of Solids, Academic Press, New York, 1992.

M. Barsoum: Fundamentals of ceramics, McGraw-Hill, 1997.

W. E. Worrall: Clays and ceramic raw materials, 2nd edition, Elsevier 1986.

P. W. Atkins: Physical Chemistry, 4th edition, Oxford University Press, New York, 1990.

I. Polmear, D. StJohn, J.-F. Nie, M. Qian, Light Alloys, Butterworth-Heinemann, 2017.

F. Zupanič, M. Steinacher, S. Žist, T. Bončina, Microstructure and Properties of a Novel Al-Mg-Si Alloy AA 6086, Metals, 11 (2021) 368.

J. Klemenc, S. Glodež, M. Steinacher, F. Zupanič, LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086, International Journal of Fatigue, 177 (2023) 107971.

C. Leyens, M.Peters: Titanium and Titanium Alloys, Wiley-VCH, Weinheim, 2003.

A. Zuettel, Materials for hydrogen storage, Materials Today, september 2003, str. 24‒33.

J. Ren, at all, Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review, International journal of hydrogen energy 42, 2017, str. 289–311.

Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, International journal of hydrogen energy 44, 2019, str. 18179–18192.

K. Otsuka, C. M. Wayman. in: Shape Memory Materials, Cambridge University Press, Cambridge (1998) 9.

M. Y. Kao, S. Fariabi,; P. E. Thoma, H. Ozkan, L. Cartz,: Shape Memory Materials and Phenomena – Fundamental Aspects and Applications, MRS vol. 246, Pittsburgh, (1992) 225.

P. Tautzenberger: Ingenieur-Werkstoffe 1 (1989) 61.

J. Perkins: Mat.Sci.Eng. 51 (1981) 181.

H. Scherngell: Stability and Optimization of the Two-Way Effect in NiTi and CuAlNi Shape Memory Alloys, doktorska disertacija, Montanistična univerza v Leobnu, Leoben, 2000.

D. Kyriacos, High-Temperature Engineering Thermoplastics, Brydson's Plastics Materials, 21, Elsevier, 2017, str. 545‒615.

V. R. Sastri, Fillers (Including Fibers Reinforcements), Plastics in Medical Devices, 8, Elsevier, 2014, 173‒213.

M. Žigon, Uvod v polimere, Ljubljana, 2009, 108‒119.

W. D, Callister, Fundamentals of materials science and engineering, Ney York, John Wiley & Sons, 15, 2001, str. S162‒S203.

V. R. Sastri, High-Temperature Engineering Thermoplastics, Plastics in Medical Devices, 8, Elsevier, 2014, 173‒213.

F. R. Jones, Handbook of Polymer-Fibre Composites, 1994.

L. Kosec: Kompoziti, KZT, letnik 28, št. 1–2, str. 19–24, 1994.

R. E. Cameron, A. Kamvari-Moghaddam: Synthetic bioresorbable polymers, Cambrige, Woodhead Publishing Limited, 2012, str 96‒118.

F. Sarasini: Biocomposites for High-Performance Applications, Rome, Elsevier, 2017, str. 82‒123.

S. Pilla: Handbook of Bioplastics and Biocomposites Engineering Applications, New Jersey, John Wiley & Sons, 2011.

Downloads

Published

February 27, 2025

License

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Details about this monograph

ISBN-13 (15)

978-961-286-955-7

COBISS.SI ID (00)

THEMA Subject Codes (93)

TG

Date of first publication (11)

2025-02-25

How to Cite