Uvod v računalniško večpredstavnost in obdelavo multimedijskih podatkov

Authors

Štefan Kohek
University of Maribor, Faculty of Electrical Engineering and Computer Science, University of Maribor
https://orcid.org/0000-0002-6210-0889
Borut Žalik
University of Maribor, Faculty of Electrical Engineering and Computer Science, University of Maribor
https://orcid.org/0000-0003-4372-5020

Keywords:

multimedia, computer multimedia, file formats, audio, video, image, text

Synopsis

Introduction to Computer Multimedia and Multimedia Data Processing. This textbook is intended for BSc students of the Computer Science and Information Technologies program, and it serves as a core text for the Multimedia and Computer Multimedia courses. It provides a systematic overview of fundamental multimedia concepts, including data types, formats, and operations. It also offers a gradual and systematic overview of fundamental concepts in multimedia data processing. The book places special emphasis on the presentation of primary types of multimedia data, selected algorithms for processing them, and the most common multimedia formats. The textbook is structured by data type: text, images, digital audio, and video. Each chapter concludes with questions and practical tasks to help students solidify their understanding of the subject matter.

Downloads

Download data is not yet available.

Author Biographies

Štefan Kohek, University of Maribor, Faculty of Electrical Engineering and Computer Science, University of Maribor

Štefan Kohek is assistant professor of Computer Science at the Faculty of Electrical Engineering and Computer Science, University of Maribor. His teaching focuses on computer multimedia, computer graphics, algorithms and data structures, and algorithms for big data processing. His research interests include multimedia, remote sensing, and big data processing, computer graphics, optimization algorithms, and parallel computing. He has authored or co-authored more than 25 papers in scientific journals.

Maribor, Slovenia. E-mail: stefan.kohek@um.si

Borut Žalik, University of Maribor, Faculty of Electrical Engineering and Computer Science, University of Maribor

Dr. Borut Žalik is a full professor of Computer Science at the Faculty of Electrical Engineering and Computer Science, University of Maribor. His main research area is processing of geometric data, specifically, geometric modelling, computational geometry and data compression. On these areas he has been publishing intensively. He is author or co-author of more than 170 papers in scientific journals, among which more than one quarter is in the first quarter in regard to the impact factor. Beside this, he published more than 160 conference papers together with his co-workers. He authored one scientific monography and four university lecture books, all published in Slovene language. 

Maribor, Slovenia. E-mail: borut.zalik@um.si

References

[1] United States. Department of Defense, Military Standard: Common Long Haul and Tactical Communication System Technical Standards. Institute for Simulation and Training collection, Department of Defense, 1972.

[2] B. Žalik, M. Zadravec in D. Podgorelec, Računalniške periferne naprave in uporabniški vmesniki: učbenik. Fakulteta za elektrotehniko, računalništvo in informatiko, 2002.

[3] J. Jarvis, C. Judice in W. Ninke, A survey of techniques for the display of continuous tone pictures on bilevel displays, Computer graphics and image processing, 5(1), 13–40, 1976.

[4] Y.-H. Yu, C.-C. Changa in Y.-C. Hub, Hiding secret data in images via predictive coding, Pattern recognition, 38, 691–705, 2005.

[5] Lindosland, Equal-loudness contours created by lindosland using OpenOffice Draw by reference to ISO 226:2003 standard. https://upload.wikimedia.org/wikipedia/commons/4/47/Lindos1.svg in https://commons.wikimedia.org/wiki/File:Lindos1.svg, 2005, zadnji dostop feb. 2025.

[6] Lindosland, A, C and D weighting curves, created by lindosland using OpenOffice Draw. https://upload.wikimedia.org/wikipedia/commons/3/39/Acoustic_weighting_curves_%281%29.svg in https://commons.wikimedia. org/wiki/File:Acoustic_weighting_curves_(1).svg, 2005, zadnji dostop feb. 2025.

[7] D. Salomon in G. Motta, Handbook of data compression. Springer, 5. izd., 2010.

[8] S. Shlien, Guide to MPEG-1 audio standard, IEEE Transactions on Broad-casting, 40(4), 206–218, 1994.

[9] H.261 : Video codec for audiovisual services at p x 64 kbit/s, Recommendation

H. 261 (12/90). 1990. International Telecommunication Union (ITU).

[10] T. Ebrahimi in M. Kunt, Visual data compression for multimedia applications, Proceedings of the IEEE, 86(6), 1109–1125, 1998.

[11] A. C. Bovik, Handbook of image and video processing. Academic press, 2010.

[12] M. Kutz, Handbook of Measurement in Science and Engineering, Volume 1. Wiley, 2015.

[13] H.262 : Information technology – Generic coding of moving pictures and associated audio information: Video, Recommendation H.262 (07/95). 1995. International Telecommunication Union (ITU).

[14] C. A. Peláez, A. Solano, T. Granollers in C. Collazos, Methodologies and Trends in Multimedia Systems: A Systematic Literature Review, Social Computing and Social Media. Design, Human Behavior and Analytics (G. Me-iselwitz, ur.), (Cham), 109–127, Springer International Publishing, 2019.

[15] N. Chapman in J. Chapman, Digital multimedia. Wiley, Chichester, 2. izd., 2004.

[16] Information technology – 7-bit coded character set for information processing interchange, ISO 646. 1973. International Organization for Standardization.

[17] Obrada podataka – Skup znakova za razmenu podataka kodiranih sa 7 bitova za hrvatskosrpsko i slovenačko latinično pismo, JUS I.B1.002. 1982. Jugoslovanski zavod za standardizacijo.

[18] Serbocroatian and Slovenian Latin Alphabet, ISO-IR-141. 1988. International Organization for Standardization.

[19] Obrada podataka – Skup znakova za razmenu podataka kodiranih sa 7 bitova za srpskohrvatsko ćirilično pismo, JUS I.B1.003. 1982. Jugoslovanski zavod za standardizacijo.

[20] Serbocroatian Cyrillic Alphabet, ISO-IR-146. 1988. International Organiza-tion for Standardization.

[21] Obrada podataka – Skup znakova za razmenu podataka kodiranih sa 7 bitova za makedonsko ćirilično pismo, JUS I.B1.004. 1982. Jugoslovanski zavod za standardizacijo.

[22] Macedonian Cyrillic Alphabet, ISO-IR-147. 1988. International Organization for Standardization.

[23] Information technology – 8-bit single-byte coded graphic character sets, ISO/IEC 8859. 1999. International Organization for Standardization and International Electrotechnical Commission.

[24] Information technology – Universal Coded Character Set (UCS), ISO/IEC 10646. 2017. International Organization for Standardization and International Electrotechnical Commission.

[25] Unicode Consortium, About the Unicode Consortium. https://home.unicode. org/about-unicode/, zadnji dostop jul. 2024.

[26] B. Žalik, Aplikacije računalniških algoritmov. Univerza v Mariboru, Univer-zitetna založba; Fakulteta za elektrotehniko, računalništvo in informatiko, 1 izd., 2023.

[27] V. J. Hodge in J. Austin, A comparison of standard spell checking algorithms and a novel binary neural approach, IEEE transactions on knowledge and data engineering, 15(5), 1073–1081, 2003.

[28] M. Miłkowski, Developing an open-source, rule-based proofreading tool, Software: Practice and Experience, 40(7), 543–566, 2010.

[29] T. Poibeau, Machine translation. MIT Press, 2017.

[30] F. M. Liang, Word Hy-phen-a-tion by Com-put-er. Citeseer, 1983.

[31] V. A. Alfred, S. L. Monica in D. U. Jeffrey, Compilers - Principles, Techniques & Tools - Second Edition. Addison-Wesley, Reading, 2006.

[32] M. E. Palma, P. Salza in H. C. Gall, On-the-fly syntax highlighting using neural networks, Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 269–280, 2022.

[33] M. Bertaccini, Cryptography Algorithms: A guide to algorithms in block-chain, quantum cryptography, zero-knowledge protocols, and homomorphic encryption. Packt Publishing, 2022.

[34] J. Duda, Asymmetric numeral systems, 2009. arXiv, https://arxiv.org/abs/ 0902.0271.

[35] J. Duda, Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithmetic coding, 2014. arXiv, https://arxiv.org/abs/1311.2540.

[36] P. Skibiński, S. Grabowski in J. Swacha, Effective asymmetric XML com-pression, Software: Practice and Experience, 38(10), 1027–1047, 2008.

[37] S. Sakr, XML compression techniques: A survey and comparison, Journal of Computer and System Sciences, 75(5), 303–322, 2009.

[38] P. Skibiński, Improving HTML Compression, Informatica, 33, 363–373, 2009.

[39] M. Hutter, 500’000? Prize for Compressing Human Knowledge. http://prize. hutter1.net/, zadnji dostop jun. 2024.

[40] L. P. Deutsch, DEFLATE Compressed Data Format Specification version 1.3. http://www.ietf.org/rfc/rfc1951, zadnji dostop jul. 2024.

[41] Phillip W. Katz, String searcher, and compressor using same, US5051745A, 1990.

[42] G. Roelofs, J.-L. Gailly in M. Adler, zlib. http://www.zlib.net/, 2019, zadnji dostop jul. 2024.

[43] P. Deutsch in J.-L. Gailly, Zlib compressed data format specification version 3.3, teh. por., Network Working Group, https://www.rfc-editor.org/rfc/rfc1950, 1996, zadnji dostop dec. 2024.

[44] P. Deutsch, GZIP file format specification version 4.3, teh. por., Network Working Group, https://www.rfc-editor.org/rfc/rfc1952.html, 1996, zadnji dostop dec. 2024.

[45] J. Alakuijala, A. Farruggia, P. Ferragina, E. Kliuchnikov, R. Obryk, Z. Sza-badka in L. Vandevenne, Brotli: A general-purpose data compressor, ACM Transactions on Information Systems (TOIS), 37(1), 1–30, 2018.

[46] J. Alakuijala in Z. Szabadka, RFC 7932: Brotli Compressed Data Format. https://www.rfc-editor.org/info/rfc7932, 2016, zadnji dostop avg. 2024.

[47] Noto, Distribution site for Noto fonts. https://github.com/notofonts/notofonts.github.io/tree/main/fonts, zadnji dostop jun. 2024.

[48] Microsoft, Font redistribution FAQ (Frequently Asked Questions) for Win-dows. hhttps://learn.microsoft.com/en-us/typography/fonts/font-faq, 2024, zadnji dostop jul. 2024.

[49] Y. Haralambous, Fonts & encodings. O’Reilly Media, Inc., 2007.

[50] Information technology – Font information interchange, ISO/IEC 9541. 1991. International Organization for Standardization and International Electrote-chnical Commission.

[51] Apple, TrueType Reference Manual. https://developer.apple.com/fonts/TrueType-Reference-Manual/, 2019, zadnji dostop jul. 2024.

[52] Information technology – Coding of audio-visual objects – Part 22: Open Font Format, ISO/IEC 14496-22. 2015. International Organization for Standardization and International Electrotechnical Commission.

[53] W3C, WOFF File Format 2.0, W3C Recommendation, 08 August 2024. https://www.w3.org/TR/WOFF2/, 2024, zadnji dostop avg. 2024.

[54] O. Taylor, Pango, an open-source Unicode text layout engine, Proceedings of 25th Internationalization and Unicode Conference, 2004.

[55] C. Rapp, T. Heilmann in O. Kruse, Beyond MS Word: Alternatives and Developments, Digital Writing Technologies in Higher Education: Theory, Research, and Practice, 33–47, Springer, 2023.

[56] Information processing – Text and office systems – Standard Generalized Markup Language (SGML), ISO 8879. 1986. International Organization for Standardization.

[57] S. J. DeRose, The SGML FAQ book: understanding the foundation of HTML and XML, 7. Springer Science & Business Media, 1997.

[58] CommonMark, A strongly defined, highly compatible specification of Markdown. https://github.com/commonmark/commonmark-spec in https: //commonmark.org/, zadnji dostop jul. 2024.

[59] J. J. White, Using Markup Languages for Accessible Scientific, Technical, and Scholarly Document Creation., Journal of Science Education for Students with Disabilities, 25(1), 2022.

[60] D. Allen in S. White, AsciiDoc Language Documentation. https://docs. asciidoctor.org/asciidoc/latest/, zadnji dostop jul. 2024.

[61] Information processing – Text and office systems – Office Document Ar-chitecture (ODA) and interchange format, ISO 8613. 1989. International Organization for Standardization.

[62] Office Open XML File Formats, ECMA-376. 2016. Ecma International.

[63] Information technology – Document description and processing languages –Office Open XML File Formats, ISO/IEC 29500-1. 2008. International Orga-nization for Standardization and International Electrotechnical Commission.

[64] Information technology – Open Document Format for Office Applications (OpenDocument) v1.0, ISO/IEC 26300. 2006. International Organization for Standardization and International Electrotechnical Commission.

[65] SEIKO EPSON Corporation, EPSON ESC/P, Reference Manual. https: //files.support.epson.com/pdf/general/escp2ref.pdf, 1990, zadnji dostop jul. 2024.

[66] Hewlett-Packard, PCL 5, Printer Language, Technical, Quick Reference Guide. http://www.hp.com/ctg/Manual/bpl13205.pdf, zadnji dostop jul. 2024.

[67] Adobe Systems Inc, CORPORATE, PostScript language reference manual. Addison-Wesley Longman Publishing Co., Inc., 1990.

[68] R. I. Soare, Turing computability: Theory and applications. Springer Berlin, Heidelberg, 2016.

[69] Document management – Portable document format – Part 1: PDF 1.7, ISO 19005-1. 2008. International Organization for Standardization.

[70] Document management – Electronic document file format for long-term preservation – Part 1: Use of PDF 1.4 (PDF/A-1), ISO 19005-1. 2005. International Organization for Standardization.

[71] The TUG DVI Driver Standards Committee, The DVI Driver Standard, Level 0. http://mirrors.ctan.org/dviware/driv-standard/level-0/dvistd0.pdf, 2004, zadnji dostop jul. 2024.

[72] F. Sabry, Optical Character Recognition: Fundamentals and Applications. Artificial Intelligence, One Billion Knowledgeable, 2023.

[73] D. Yu in L. Deng, Automatic speech recognition. Springer, 2016.

[74] Y. Bassil, Steganography & the art of deception: a comprehensive survey, Int. Journal on Latest Trends Computing, 4(3), 128–138, 2013.

[75] M. Agarwal, Text Steganographic Approaches: A Comparison, International Journal of Network Security & Its Applications, 5(1), 91–106, 2013.

[76] M. A. Majeed, R. Sulaiman, Z. Shukur in M. K. Hasan, A review on text steganography techniques, Mathematics, 9(21), 2021.

[77] S. H. Low, N. F. Maxemchuk, J. T. Brassil in L. O. Gorman, Document marking and identification using both line and word shifting, Proceedings of the 14th Annual Joint Conf. of the IEEE Computer and Communication Societies, 853–860, 1995.

[78] W. Bender, D. Gruhl, N. Morimoto in A. Lu, Techniques for data hiding, IBM Systems Journal, 35, 313–336, 1996.

[79] A. Beechick, When Choosing a Sorting Algorithm, Do You Want Fast, Faster, or Fastest?. http://www.aislebyaisle.com/cb/access/sorting/beechicksort. htm, zadnji dostop jul. 2024.

[80] Allen Beechick, Apparatus and method for sorting a list, US5218700A, 1993.

[81] T. Peters, Timsort description. http://svn.python.org/projects/python/trunk/Objects/listsort.txt, zadnji dostop 2024.

[82] N. Auger, N. C in C. Pivoteau, Merge Strategies: from Merge Sort to TimSort, HAL, https://hal-upec-upem.archives-ouvertes.fr/hal-01212839v2, 2015.

[83] N. Auger, V. Jugé, C. Nicaud in C. Pivoteau, On the Worst-Case Complexity of TimSort, 26th Annual European Symposium on Algorithms (ESA 2018)(Y. Azar, H. Bast in G. Herman, ur.), 112 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), 4:1–4:13, Schloss Dagstuhl –Leibniz-Zentrum für Informatik, 2018.

[84] P. McIlroy, Optimistic sorting and information theoretic complexity, Procee-dings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, 467–474, 1993.

[85] D. Podgorelec in G. Klajnšek, Acceleration of sweep-line technique by emplo-ying smart quicksort, Information sciences, 169(3–4), 383–408, 2005.

[86] Center za jezikovne vire in tehnologije, Slovar sopomenk sodobne slovenščine. https://viri.cjvt.si/sopomenke/slv/, zadnji dostop dec. 2024.

[87] N. Guid, Računalniška grafika. Fakulteta za elektrotehniko, računalništvo in informatiko, 2001.

[88] D. J. Calkins, Mapping color perception to a physiological substrate. The MIT Press, 1993.

[89] B. D. Judd in G. Wyszecki, Color in Business, Science and Industry. Wiley Series in Pure and Applied Optics, 3. izd., 1975.

[90] C. A. Curcio, K. R. Sloan, R. E. Kalina in A. E. Hendrickson, Human photoreceptor topography, Journal of comparative neurology, 292(4), 497–523, 1990.

[91] A. Fiorentini, Mach Band Phenomena, Visual Psychophysics (D. Jameson in

L. M. Hurvich, ur.), 188–201, Berlin, Heidelberg: Springer Berlin Heidelberg, 1972.

[92] W3C, PNG (Portable Network Graphics) Specification Version 1.0: 13. Appendix: Gamma Tutorial. https://www.w3.org/TR/PNG-GammaAppendix.html, zadnji dostop jul. 2025.

[93] M. Stokes, M. Anderson, S. Chandrasekar in R. Motta, A Standard Default Color Space for the Internet - sRGB. https://www.w3.org/Graphics/Color/sRGB.html, zadnji dostop jul. 2025.

[94] P. Shirley, M. Ashikhmin in S. Marschner, Fundamentals of computer graphics. AK Peters/CRC Press, 2009.

[95] Image technology colour management – Architecture, profile format and data structure – Part 1: Based on ICC.1:2010, ISO 15076-1. 2010. International Organization for Standardization.

[96] R. Lorencon, Elektronski elementi in vezja. Studio Maya, 1996.

[97] D. Durini, High performance silicon imaging: fundamentals and applications of CMOS and CCD sensors. Woodhead Publishing, 2019.

[98] T. Porter in T. Duff, Compositing Digital Images, Computer Graphics, 18(3), 253–259, 1984.

[99] A. R. Smith, Alpha and the history of Digital Compositing – Microsoft Technical Memo 7, 1995.

[100] GSMArena, Flashback: the Nokia 808 PureView was from the future. https://www.gsmarena.com/flashback_nokia_808_pureview-news-40064.php, 2019, zadnji dostop nov. 2024.

[101] T. Acharya in P. Tsai, JPEG2000 Standard for Image Compression: Concepts, Algorithms and VLSI Architectures. Wiley, 2005.

[102] K. Plataniotis in A. Venetsanopoulos, Color Image Processing and Applicati-ons. Digital Signal Processing, Springer Berlin Heidelberg, 2013.

[103] V. Britanak, P. C. Yip in K. R. Rao, Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations. Elsevier, 2010.

[104] Microsoft Corporation, BITMAPV5HEADER structure (wingdi.h). https://learn.microsoft.com/en-us/windows/win32/api/wingdi/

ns-wingdi-bitmapv5header, 2024, zadnji dostop jul. 2024.

[105] Microsoft Corporation, [MS-WMF] - v20240423, Windows Metafile For-mat. https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-wmf/4813e7fd-52d0-4f42-965f-228c8b7488d2?redirectedfrom=MSDN, 2024, zadnji dostop jul. 2024.

[106] The BMP file format. https://www.prepressure.com/library/file-formats/bmp, zadnji dostop 2019.

[107] The GIF file format. https://www.prepressure.com/library/file-formats/gif, zadnji dostop jun. 2024.

[108] GIF File Format Summary. https://www.fileformat.info/format/gif/egff.htm, zadnji dostop jun. 2024.

[109] CompuServe Incorporated, Columbus, Ohio, GRAPHICS INTER-CHANGE FORMAT(sm) - Version 89a. https://www.w3.org/Graphics/GIF/spec-gif89a.txt, 1990, zadnji dostop jul. 2024.

[110] Terry A. Welch, High speed data compression and decompression apparatus and method , US4558302A, 1985.

[111] TIFF File Format Summary. https://www.fileformat.info/format/tiff/egff. htm, zadnji dostop jul. 2024.

[112] The TIFF file format. https://www.prepressure.com/library/file-formats/tiff, zadnji dostop jul. 2024.

[113] Sustainability of Digital Formats: Planning for Library of Congress Collecti-ons, TIFF, Revision 6.0. https://www.loc.gov/preservation/digital/formats/fdd/fdd000022.shtml, zadnji dostop jul. 2024.

[114] Adobe Photoshop® TIFF Technical Notes. https://web.archive.org/web/20180810205806/https://www.adobe.io/content/udp/en/open/standards/TIFF/_jcr_content/contentbody/download_1370394226/file. res/TIFFphotoshop.pdf, 2002, zadnji dostop jul. 2024.

[115] Sustainability of Digital Formats: Planning for Library of Congress Col-lections, GeoTIFF, Revision 1.0. https://www.loc.gov/preservation/digital/formats/fdd/fdd000279.shtml, zadnji dostop jul. 2024.

[116] Electronic still picture imaging – Removable memory – Part 2: TIFF/EP image data format, ISO 12234-2:2001. 2001. International Organization for Standardization.

[117] Graphic technology – Prepress digital data exchange – Tag image file format for image technology (TIFF/IT), ISO 12639:2004. 2004. International Organization for Standardization.

[118] Sustainability of Digital Formats: Planning for Library of Congress Col-lections, BigTIFF. https://www.loc.gov/preservation/digital/formats/fdd/fdd000328.shtml, zadnji dostop jul. 2024.

[119] Camera & Imaging Products Association, Exchangeable image file format for digital still cameras: Exif Version 3.0. https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2023-E, 2023, zadnji dostop jul. 2024.

[120] Graphic technology – Extensible metadata platform (XMP) – Part 1: Data model, serialization and core properties, ISO 16684-1:2019. 2019. Internatio-nal Organization for Standardization.

[121] Graphic technology – Extensible metadata platform (XMP) – Part 2: De-scription of XMP schemas using RELAX NG, ISO 16684-2:2014. 2019. International Organization for Standardization.

[122] The PNG file format. https://www.prepressure.com/library/file-formats/png, zadnji dostop 2024.

[123] PNG File Format Summary. https://www.fileformat.info/format/png/egff. htm, zadnji dostop 2019.

[124] W3C, Portable Network Graphics (PNG) Specification (Third Edition). https://www.w3.org/TR/png/, 2025, zadnji dostop jul. 2025.

[125] Information technology – Computer graphics and image processing – Portable Network Graphics (PNG): Functional specification, ISO/IEC 15948. 2004. International Organization for Standardization and International Electrote-chnical Commission.

[126] LibPNG, Chapter 10. Gamma Correction and Precision Color. http://www. libpng.org/pub/png/book/chapter10.html, zadnji dostop jul. 2024.

[127] Information technology – 8-bit single-byte coded graphic character sets – Part 1: Latin alphabet No. 1, ISO/IEC 8859-1. 1998. International Organization for Standardization and International Electrotechnical Commission.

[128] B. Žalik, D. Podgorelec, I. Kolingerová, D. Strnad in Š. Kohek, A case study on entropy-aware block-based linear transforms for lossless image compression, Scientific Reports, 14(1), 2024.

[129] MNG (Multiple-image Network Graphics) Format Version 1.0. http://www. libpng.org/pub/mng/spec/, zadnji dostop jul. 2024.

[130] Information technology – Digital compression and coding of continuous-tone still images: Requirements and guidelines, ISO/IEC 10918-1. 1994. Interna-tional Organization for Standardization and International Electrotechnical Commission.

[131] Information technology – Digital compression and coding of continuous-tone still images – Requirements and guidelines, CCITT Rec. T.81. 1992. International Telecommunication Union (ITU).

[132] Information technology – Digital compression and coding of continuous-tone still images: JPEG File Interchange Format (JFIF), ISO/IEC 10918-5. 2013. International Organization for Standardization and International Electrotechnical Commission.

[133] Overview of JPEG 1. https://jpeg.org/jpeg/index.html, zadnji dostop 2019.

[134] Information technology – Coded representation of picture and audio infor-mation – Progressive bi-level image compression, ISO/IEC 11544. 1993. International Organization for Standardization and International Electrote-chnical Commission.

[135] Information technology – Coded representation of picture and audio in-formation – Progressive bi-level image compression, ITU-T T.82. 1993. International Telecommunication Union (ITU).

[136] Overview of JBIG. https://jpeg.org/jbig/, zadnji dostop avg. 2024.

[137] M. Kuhn, JBIG-KIT. https://www.cl.cam.ac.uk/~mgk25/jbigkit/, zadnji dostop avg. 2024.

[138] Information technology – Lossy/lossless coding of bi-level images, ISO/IEC 14492. 2001. International Organization for Standardization and International Electrotechnical Commission.

[139] Information technology – Lossy/lossless coding of bi-level images, ITU-T

T. 88. 2000. International Telecommunication Union (ITU).

[140] R. Miyamoto, Arithmetic coding/decoding apparatus of MQ-Coder system and renormalization method, US6765515B2, 2004.

[141] N. Saraswat in H. Ghosh, A study on size optimization of scanned textual do-cuments, Image and Video Technology: 7th Pacific-Rim Symposium, PSIVT 2015, Auckland, New Zealand, November 25-27, 2015, Revised Selected Papers 7, 75–86, Springer, 2016.

[142] A. Mikheev, L. Vincent, M. Hawrylycz in L. Bottou, Electronic document publishing using DjVu, Document Analysis Systems V: 5th International Workshop, DAS 2002 Princeton, NJ, USA, August 19–21, 2002 Proceedings 5, 480–490, Springer, 2002.

[143] Information technology – Lossless and near-lossless compression of continuous-tone still images – Part 1: Baseline, ISO/IEC 14495-1:1999. 1999. Interna-tional Organization for Standardization and International Electrotechnical Commission.

[144] JPEG, Overview of JPEG LS. https://jpeg.org/jpegls/, zadnji dostop avg. 2024.

[145] M. Weinberger, G. Seroussi in G. Sapiro, The LOCO-I Lossless Image Compression Algorithm: principles and Standardization into JPEG-LS, teh. por., HP Computer Systems laboratory, 1998.

[146] M. J. Weinberger, G. Seroussi in G. Sapiro, The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization Into JPEG-LS, IEEE Transactions on image processing, 9(8), 1309–1324, 2000.

[147] D. Špelič, Postopek brezizgubnega stiskanja razčlenjenih vokselskih podatkov: doktorska disertacija. Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, 2011.

[148] Information technology – Lossless and near-lossless compression of continuous-tone still images – Baseline, ITU-T T.87. 1998. International Telecommuni-cation Union (ITU).

[149] Information technology – Lossless and near-lossless compression of continuous-tone still images – Extensions, ISO/IEC 14495-2:2003. 2003. International Organization for Standardization and International Electrotechnical Com-mission.

[150] Information technology – Lossless and near-lossless compression of continuous-tone still images – Extensions, ITU-T T.870. 2003. International Telecom-munication Union (ITU).

[151] Information technology – JPEG 2000 image coding system – Core coding sy-stem, ISO/IEC 15444-1. 2000. International Organization for Standardization and International Electrotechnical Commission.

[152] Information technology – JPEG 2000 image coding system – Extensions, ISO/IEC 15444-2. 2004. International Organization for Standardization and International Electrotechnical Commission.

[153] D. S. Taubman in M. W. Marcellin, JPEG2000 Image Compression Funda-mentals, Standards and Practice. Springer Science+Business Media, 2013.

[154] C. K. Chui, An introduction to wavelets. Academic press, 1992.

[155] T. Acharya in P.-S. Tsai, JPEG2000 standard for image compression: con-cepts, algorithms and VLSI architectures. John Wiley & Sons, 2004.

[156] G. Impoco, JPEG2000 - A Short Tutorial. http://www.impoco.it/files/impoco_2004_tutorial_JPEG2000.pdf, zadnji dostop 2019.

[157] An image format for the Web. https://developers.google.com/speed/webp/, zadnji dostop 2019.

[158] J. Bankoski, P. Wilkins in Y. Xu, Technical overview of VP8, an open source video codec for the web, 2011 IEEE International Conference on Multimedia and Expo, 1–6, IEEE, 2011.

[159] G. Ginesun, M. Pintus in D. D. Giusto, Objective assessment of the WebP image coding algorithm, Signal Processing:Image Communication, 27, 867–874, 2012.

[160] Adobe, Digital Negative (DNG) Specification, Version 1.7.1.0, september 2023. https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/DNG_ Spec_1_7_1_0.pdf, 2023, zadnji dostop avg. 2024.

[161] Information technology – Scalable compression and coding of continuous-tone still images – Part 1: Core coding system specification, ISO/IEC 18477-

1. 2015. International Organization for Standardization and International Electrotechnical Commission.

[162] A. Artusi, R. K. Mantiuk, T. Richter, P. Korshunov, P. Hanhart, T. Ebrahimi in M. Agostinelli, JPEG XT: A compression standard for HDR and WCG images [standards in a nutshell], IEEE Signal Processing Magazine, 33(2), 118–124, 2016.

[163] H. S. Malvar, Fast Progressive Image Coding Without Wavelets, Data Com-pression Conference, Institute of Electrical and Electronics Engineers, Inc., 2000.

[164] Information technology – JPEG XR image coding system – Part 2: Image coding specification, ISO/IEC 29199-2. 2012. International Organization for Standardization and International Electrotechnical Commission.

[165] T.832 : Information technology – JPEG XR image coding system – Image coding specification, ITU-T T.832. 2009. International Telecommunication Union (ITU).

[166] Information technology – JPEG XS low-latency lightweight image coding system – Part 1: Core coding system, ISO/IEC 21122-1. 2019. Internati-onal Organization for Standardization and International Electrotechnical Commission.

[167] Information technology – Advanced image coding and evaluation – Part 2: Evaluation procedure for nearly lossless coding, ISO/IEC 29170-2. 2015. Inter-national Organization for Standardization and International Electrotechnical Commission.

[168] A. Descampe, T. Richter, T. Ebrahimi, S. Foessel, J. Keinert, T. Bruylants,

P. Pellegrin, C. Buysschaert in G. Rouvroy, JPEG XS–A new standard for visually lossless low-latency lightweight image coding, Proceedings of the IEEE, 109(9), 1559–1577, 2021.

[169] Information technology – JPEG XL image coding system – Part 1: Core coding system, ISO/IEC 18181-1. 2022. International Organization for Standardization and International Electrotechnical Commission.

[170] J. Alakuijala, J. Sneyers, L. Versari in J. Wassenberg, JPEG White Paper: JPEG XL Image Coding System, ISO/IEC JTC 1/SC 29/WG1 N100400, 2023.

[171] ISO/IEC 21794-1:2020 Information technology – Plenoptic image coding system (JPEG Pleno) – Part 1: Framework, ISO/IEC 21794-1. 2020. Inter-national Organization for Standardization and International Electrotechnical Commission.

[172] Information technology – Plenoptic image coding system (JPEG Pleno) – Part 2: Light field coding, ISO/IEC 21794-2. 2021. International Organization for Standardization and International Electrotechnical Commission.

[173] ISO/IEC 21794-3:2021 Information technology – Plenoptic image coding system (JPEG Pleno) – Part 3: Conformance testing, ISO/IEC 21794-3. 2021. International Organization for Standardization and International Electrotechnical Commission.

[174] Information technology – Plenoptic image coding system (JPEG Pleno) –Part 5: Holography, ISO/IEC 21794-5. 2024. International Organization for Standardization and International Electrotechnical Commission.

[175] Information technology – Plenoptic image coding system (JPEG Pleno) – Part 6: Learning-based point cloud coding, ISO/IEC DIS 21794-6. 2024. Interna-tional Organization for Standardization and International Electrotechnical Commission.

[176] J. Ascenso in E. Upenik, White Paper on JPEG AI Scope and Framework v1. 0, ISO/IEC JTC 1/SC 29/WG1 N90049, 2021.

[177] Information technology – JPEG AI learning-based image coding system – Part 1: Core coding system, ISO/IEC DIS 6048-1. 2024. International Organization for Standardization and International Electrotechnical Commission.

[178] Information technologies – JPEG systems – Part 6: JPEG 360, ISO/IEC 19566-6. 2019. International Organization for Standardization and Internati-onal Electrotechnical Commission.

[179] Information technology – High efficiency coding and media delivery in hete-rogeneous environments – Part 12: Image File Format, ISO/IEC 23008-12. 2017. International Organization for Standardization and International Elec-trotechnical Commission.

[180] J. Han, B. Li, D. Mukherjee, C.-H. Chiang, A. Grange, C. Chen, H. Su,

S. Parker, S. Deng, U. Joshi et al., A technical overview of AV1, Proceedings of the IEEE, 109(9), 1435–1462, 2021.

[181] Q. Huynh-Thu in M. Ghanbari, Scope of validity of PSNR in image/video quality assessment, Electronics Letters, 44(13), 800–801, 2019.

[182] W. Zhou, A. C. Bovik, H. R. Sheikh in E. P. Simoncelli, Image Qualifty As-sessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, 13(4), 600–612, 2004.

[183] Z. Wang, E. P. Simoncelli in A. C. Bovik, Multiscale structural similarity for image quality assessment, The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2, 1398–1402, IEEE, 2003.

[184] H. R. Sheikh in A. C. Bovik, Image Information and Visual Quality, IEEE Transactions on Image Processing, 15(2), 430–444, 2006.

[185] A. Mittal, R. Soundararajan in A. C. Bovik, Making a Completely Blind Image Quality Analyzer, IEEE Signal Processing Letters, 22(3), 209–212, 2013.

[186] Y. Niu, Y. Zhong, W. Guo, Y. Shi in P. Chen, 2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges, IEEE Access, 7, 782–801, 2019.

[187] A. C. Bovik in Z. Wang, Modern Image Quality Assessment. Morgan and Claypool, 2006.

[188] M. E. Celebi, Improving the performance of k-means for color quantization, Image and Vision Computing, 29(4), 260–271, 2011.

[189] D. Clark, The popularity algorithm, DR. Dobb’s Journal, 20(7), 121, 1995.

[190] P. Heckbert, Color Image Quantization for Frame Buffer Display, Computer Graphics, 16(3), 297–303, 1982.

[191] M. Gervautz in W. Purgathofer, A simple method for color quantization: Octree quantization, New Trends in Computer Graphics: Proceedings of CG International’88, 219–231, Springer, 1988.

[192] C. Ozturk, E. Hancer in D. Karaboga, Color Image Quantization: A Short Review and an Application with Artificial Bee Colony Algorithm, Informatica, 25(3), 485–503, 2014.

[193] R. W. Floyd in L. Steinberg, An Adaptive Algorithm for Spatial Grey Scale, International Symposium Digest of Technical Papers, Society for Information Displays, 36–37, 1975.

[194] L. Akarun, Y. Yardimci in A. E. Cetin, Adaptive Methods for Dithering Color Images, IEEE Transactions on image processing, 6(7), 950–955, 1997.

[195] P. Stucki, Image Processing for Document Reproduction, Advances in Digital Image Processing: Theory, Application, Implementation (P. Stucki, ur.), 177–218, Springer, 1979.

[196] X. Luo in F. Lin, Method and system for image dithering, US9251732B2, 2016.

[197] Y.-P. Chang, K. Dai in J.-J. Huang, LCD device with image dithering function and related method of image dithering, US9697780B2, 2017.

[198] S. P. Aramendia, A. M. Barambio, L. Garcia in M. I. B. Bayona, Image processing using content–based weighted dithering, US9906686B2, 2018.

[199] M. Hussain, A. W. A. Wahab, Y. I. B. Idris, A. T. S. Ho in K.-H. Jung, Image steganography in spatial domain: A survey, Signal Processing: Image Communication, 65, 46–66, 2018.

[200] C.-K. Chan in L.-M. Cheng, Hiding data in images by simple LSB substitution, Pattern recognition, 37, 469–474, 2004.

[201] D.-C. Wu in W.-H. Tsai, A steganographic method for images by pixel-value differencing, Pattern Recognition Letters, 24, 1613–1626, 2003.

[202] V. M. Potdar in E. Chang, Grey Level Modification Steganography for Secret Communication, 2nd IEEE International Conference on Industrial Informatics INDIN2004, 223–228, 2004.

[203] K. Muhammad, J. Ahmad, H. Farman, Z. Jan, M. Sajjad in S. Baik, A secure method for color image steganography using gray-level modification and multi-level encryption, KSII Transactions on Internet and Information Systems, 9, 1938–1962, 2015.

[204] Vector Image Files. https://fileinfo.com/filetypes/vector_image, zadnji do-stop jun. 2024.

[205] Industrial automation systems and integration – Product data representation and exchange – Part 1: Overview and fundamental principles, ISO 10303-1. 1994. International Organization for Standardization.

[206] A. Quint, Scalable vector graphics, IEEE Multimedia, 10(3), 99–102, 2003.

[207] J. D. Eisenberg in A. Bellamy-Royds, SVG Essentials. O’Reilly Media, 2. izd., 2015.

[208] M. A. Abam, M. de Berg, P. Hachenberger in A. Zarie, Streaming algorithms for line simplification, Discrete & Computational Geometry, 43(3), 497–515, 2009.

[209] D. Douglas in T. Peuker, Algorithms for the reduction of the number of points required to represent a digitised line or its caricature, The Canadian Cartographer, 10, 112–122, 1973.

[210] J. E. Bresenham, Algorithm for computer control of a digital plotter, IBM System Journal, 4(1), 25–30, 1965.

[211] J. E. Bresenham, A linear algorithm for incremental digital display of digital arcs, Communications of ACM, 20(2), 100–106, 1977.

[212] Bresenham’s Circle Drawing Algorithm. https://getsetcg.blogspot.com/2018/ 10/bresenhams-circle-drawing-algorithm.html, zadnji dostop 2019.

[213] G. Bao in J. G. Rokne, Quadruple-Step Line Generation, Computers & Graphics, 13(4), 461–469, 1989.

[214] G. W. Gill, N-step incremental Straight-line algorithms, IEEE Computer Graphics and Applications, 14(3), 66–72, 1994.

[215] B. K. P. Horn, Circle generation for display devices, Computer Graphics and image processing, 5, 280–288, 1976.

[216] J. R. van Aken, An Efficient Ellipse Drawing Algorithm, IEEE Computer graphics & Applications, 4(9), 24–35, 2019.

[217] M. L. V. Pitteway, Algorithm for Drawing Ellipses or Hyperbolae with a Digital Plotte, Computer Journal, 10(3), 282–289, 1967.

[218] H. D. Hobby, Rasterization of Nonparametric Curves, ACM Transactions on Graphics, 9(3), 262–277, 1990.

[219] Y. K. Liu, P. J. Wang, D. D. Zhao, D. Špelič, D. Mongus in B. Žalik, Pixel-level algorithms for drawing curves, Theory and practice of computer graphics 2011 : Eurographics UK chapter proceedings (I. Grimstead, ur.), 33–40, 2011.

[220] F. Hussain in M. L. V. Pitteway, Rasterizing the outlines of fonts, Electronic publishing, 6(3), 171–181, 1993.

[221] H. P. Moreton in F. C. Crow, Line rasterization techniques, US-8482567B1, 2013.

[222] M. H. Anderson, 2D/3D line rendering using 3D rasterization algorithms. US 7,362,325 B2, 2008.

[223] Y. P. Kuzmin, Ray Traversing of Spatial Structures, Computer Graphics Forum, 13(4), 223–227, 1994.

[224] J. C. Cleary in G. Wyvill, Analysis of an Algorithm for Fast Ray Tracing using Uniform Space Subdivision, The Visual Computer, 4(2), 65–83, 1988.

[225] B. Žalik, G. Clapworthy in Č. Oblonšek, An Efficient Code-Based Voxel Traversing Algorithm, Computer Graphics Forum, 16(2), 119–128, 1997.

[226] Y. K. Liu, B. Žalik in H. Yang, An Integer One-Pass Algorithm for Voxel Traversal, Computer Graphics Forum, 23(2), 167–172, 2004.

[227] X. Wu, An efficient antialiasing technique, ACM Siggraph Computer Graphics, 25(4), 143–152, 1991.

[228] X. Wu, Fast anti-aliased circle generation, Graphics Gems II, 446–450, Else-vier, 1991.

[229] L. Yang, S. Liu in M. Salvi, A survey of temporal antialiasing techniques, Computer graphics forum, 39(2), 607–621, 2020.

[230] C. Stephanidis in G. Salvendy, Human-Computer Interaction: Foundations and Advances. CRC Press, 2024.

[231] T. A. Edison, Improvement in phonograph or speaking machines, US200521A, 1877.

[232] E. Berliner, Gramophone, US372786A, 1887.

[233] Z. Li, M. Drew in J. Liu, Fundamentals of Multimedia. Texts in Computer Science, Springer International Publishing, 2021.

[234] D. A. Bies in C. H. Hansen, Engineering noise control: theory and practice. CRC press, 2003.

[235] H. Fletcher in W. A. Munson, Loudness, its definition, measurement and calculation, Bell System Technical Journal, 12(4), 377–430, 1933.

[236] Acoustics – Normal equal-loudness-level contours, ISO 226. 2003. Internatio-nal Organization for Standardization.

[237] Procedure for the Computation of Loudness of Steady Sounds (includes loudness program), ANSI/ASA S3.4-2007 (R2017). 2017. American National Standards Institute, Acoustical Society of America.

[238] Acoustical Terminology, ANSI/ASA S1.1-2013. 2013. American National Standards Institute, Acoustical Society of America.

[239] Specification for Audiometers, ANSI/ASA S3.6-2018. 2018. American Natio-nal Standards Institute, Acoustical Society of America.

[240] Electroacoustics – Sound level meters – Part 1: Specifications, IEC 61672-1:2013. 2013. International Electrotechnical Commission.

[241] P. Buser in M. Imbert, Audition. MIT Press, 1992.

[242] H. Fletcher, Auditory patterns, Reviews of modern physics, 12(1), 47, 1940.

[243] D. Howard in J. Angus, Acoustics and psychoacoustics. Routledge, 2013.

[244] L. Elliott, Backward and forward masking, Audiology, 10(2), 65–76, 1971.

[245] S. Tomažič in S. Leonardis, Diskretni signali in sistemi. Založba FE, 1. izd., 2017.

[246] Pulse code modulation (PCM) of voice frequencies, G.711. 1988. International Telecommunication Union.

[247] IBM Corporation, Microsoft Corporation, Multimedia Programming Interface and Data Specifications 1.0. https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf, 1991, zadnji dostop feb. 2025.

[248] Apple Computer, Inc, Audio Interchange File Format: AIFF, A Standard for Sampled Sound Files, Version 1.3, 1991.

[249] Apple Computer, Inc, Audio Interchange File Format: AIFF-C, 1991.

[250] T. Robinson, SHORTEN: Simple lossless and near-lossless waveform com-pression, Teh. Por. CUED/F-INFENG/TR.156, Cambridge University, Engi-neering Department, 1994.

[251] S. W. Golomb, Run-length encodings, IEEE Transactions on Information Theory, IT–12(3), 399–401, 1966.

[252] M. van Beurden in A. Weaver, RFC 9639, Free Lossless Audio Codec (FLAC). https://www.rfc-editor.org/rfc/rfc9639.html, 2024, zadnji dostop feb. 2025.

[253] WavPack – Hybrid Lossless Audio Compression. http://www.wavpack.com/, zadnji dostop 2019.

[254] Y. F. Dehery, M. Lever in P. Urcun, A MUSICAM source codec for digital audio broadcasting and storage, Acoustics, Speech, and Signal Processing, IEEE International Conference on, 3605–3606, IEEE Computer Society, 1991.

[255] Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 3: Audio, ISO/IEC 11172-3:1993. 1993. International Organization for Standardization.

[256] Information technology – Generic coding of moving pictures and associated audio information – Part 7: Advanced Audio Coding (AAC), ISO/IEC 13818-7. 1997. International Organization for Standardization.

[257] P. Noll, MPEG Digital Audio Coding Standards, The Digital Signal Proces-sing Handbook (V. Madisetti in D. B. Williams, ur.), IEEE Press/CRC Press, 1997.

[258] D. Pan, A tutorial on MPEG/audio compression, IEEE Multimedia, 2(2), 60–74, 1995.

[259] Information technology – Generic coding of moving pictures and associated audio information – Part 3: Audio, ISO/IEC 13818-3:1995. 1995. Internatio-nal Organization for Standardization.

[260] M. Nilsson, ID3 tag version 2.4.0 – Main Structure. https://id3.org/id3v2.4.0-structure, 2000, zadnji dostop feb. 2025.

[261] G.722 : 7 kHz audio-coding within 64 kbit/s, G.722. 1988. International Telecommunication Union.

[262] Z. Mezgec, Indirektne segmentacijske metode za adaptivno robustno kontrolo prenosa podatkov po govornem kanalu sistema GSM: doktorska disertacija. Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informa-tiko, 2009.

[263] G.722.1 : Low-complexity coding at 24 and 32 kbit/s for hands-free operation in systems with low frame loss, G.722.1. 1999. International Telecommunica-tion Union.

[264] Digital cellular telecommunications system (Phase 2+); Full rate speech; Transcoding (GSM 06.10 version 5.1.1), ETS 300 961. 1998. European Telecommunications Standards Institute.

[265] Digital cellular telecommunications system (Phase 2+); Half rate speech; Half rate speech transcoding (GSM 06.20 version 5.1.1), ETS 300 969. 1998. European Telecommunications Standards Institute.

[266] G.722.2 : Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB), G.722.2. 2002. International Telecommu-nication Union.

[267] A. McCree, A scalable phonetic vocoder framework using joint predictive vector quantization of melp parameters, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, IEEE, 2006.

[268] Information technology – Coding of audio-visual objects – Part 3: Audio, ISO/IEC 14496-3. 1999. International Organization for Standardization.

[269] S. Han in T. Fingscheidt, Robust MPEG-4 high-efficiency AAC with fixed-and variable-length soft-decision decoding, Audio Engineering Society Convention 139, Audio Engineering Society, 2015.

[270] M. Schnell, M. Schmidt, M. Jander, T. Albert, R. Geiger, V. Ruoppila, P. Ek-strand in G. Bernhard, MPEG-4 Enhanced Low Delay AAC-a new standard for high quality communication, Audio Engineering Society Convention 125, Audio Engineering Society, 2008.

[271] Xiph.Org Foundation, Vorbis I specification. https://xiph.org/vorbis/doc/Vorbis_I_spec.html, 2020, zadnji dostop feb. 2025.

[272] I. Siegert, A. F. Lotz, L. L. Duong in A. Wendemuth, Measuring the impact of audio compression on the spectral quality of speech data, Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2016, 229–236, 2016.

[273] Xiph.Org Foundation, Ogg Documentation. https://xiph.org/vorbis/doc/Vorbis_I_spec.html, 2010, zadnji dostop feb. 2025.

[274] Microsoft, About the Windows Media Codecs. https://learn.microsoft.com/en-us/windows/win32/medfound/about-the-windows-media-codecs, 2021, zadnji dostop feb. 2025.

[261] G.722 : 7 kHz audio-coding within 64 kbit/s, G.722. 1988. International Telecommunication Union.

[262] Z. Mezgec, Indirektne segmentacijske metode za adaptivno robustno kontrolo prenosa podatkov po govornem kanalu sistema GSM: doktorska disertacija. Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informa-tiko, 2009.

[263] G.722.1 : Low-complexity coding at 24 and 32 kbit/s for hands-free operation in systems with low frame loss, G.722.1. 1999. International Telecommunica-tion Union.

[264] Digital cellular telecommunications system (Phase 2+); Full rate speech; Transcoding (GSM 06.10 version 5.1.1), ETS 300 961. 1998. European Telecommunications Standards Institute.

[265] Digital cellular telecommunications system (Phase 2+); Half rate speech; Half rate speech transcoding (GSM 06.20 version 5.1.1), ETS 300 969. 1998. European Telecommunications Standards Institute.

[266] G.722.2 : Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB), G.722.2. 2002. International Telecommu-nication Union.

[267] A. McCree, A scalable phonetic vocoder framework using joint predictive vector quantization of melp parameters, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, IEEE, 2006.

[268] Information technology – Coding of audio-visual objects – Part 3: Audio, ISO/IEC 14496-3. 1999. International Organization for Standardization.

[269] S. Han in T. Fingscheidt, Robust MPEG-4 high-efficiency AAC with fixed-and variable-length soft-decision decoding, Audio Engineering Society Convention 139, Audio Engineering Society, 2015.

[270] M. Schnell, M. Schmidt, M. Jander, T. Albert, R. Geiger, V. Ruoppila, P. Ek-strand in G. Bernhard, MPEG-4 Enhanced Low Delay AAC-a new standard for high quality communication, Audio Engineering Society Convention 125, Audio Engineering Society, 2008.

[271] Xiph.Org Foundation, Vorbis I specification. https://xiph.org/vorbis/doc/Vorbis_I_spec.html, 2020, zadnji dostop feb. 2025.

[272] I. Siegert, A. F. Lotz, L. L. Duong in A. Wendemuth, Measuring the impact of audio compression on the spectral quality of speech data, Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2016, 229–236, 2016.

[273] Xiph.Org Foundation, Ogg Documentation. https://xiph.org/vorbis/doc/Vorbis_I_spec.html, 2010, zadnji dostop feb. 2025.

[274] Microsoft, About the Windows Media Codecs. https://learn.microsoft.com/en-us/windows/win32/medfound/about-the-windows-media-codecs, 2021, zadnji dostop feb. 2025.

[276] C. C. Todd, G. A. Davidson, M. F. Davis, L. D. Fielder, B. Link in S. Vernon, AC-3: Flexible perceptual coding for audio transmission and storage, Audio Eng. Soc. 96th Convention, 1994, 1994.

[277] ATSC Standard: Digital Audio Compression (AC-3, E-AC-3), A/52:2012. 2012. Advanced Television Systems Committee.

[278] M. A. Gerzon, P. G. Craven, J. R. Stuart, M. J. Law in R. J. Wilson, The MLP lossless compression system, Audio Engineering Society Conference: 17th International Conference: High-Quality Audio Coding, Audio Engineering Society, 1999.

[279] J. R. Stuart, P. G. Craven, M. A. Gerzon, M. J. Law in R. J. Wilson, MLP lossless compression, AES 9th Regional Convention (Tokyo, Japan), 1999.

[280] Digital Audio Compression (AC-4) Standard; Part 1: Channel based coding, ETSI TS 103 190-1 V1.3.1 (2018-02). 2018. European Telecommunications Standards Institute.

[281] Dolby, Dolby AC-4: Audio Delivery for Next-Generation Entertainment Ser-vices. https://web.archive.org/web/20151204095813/http://www.dolby.com/in/en/technologies/ac-4/Next-Generation-Entertainment-Services.pdf, 2015, zadnji dostop feb. 2025.

[282] J. M. Valin, K. Vos in T. B. Terriberry, Definition of the Opus Audio Codec. RFC 6716, https://www.rfc-editor.org/info/rfc6716, 2012.

[283] J. M. Valin, G. Maxwell, T. B. Terriberry in K. Vos, The opus codec, 135th AES International Convention. New York, USA, 2013.

[284] Alliance for Open Media, Immersive Audio Model and Formats. https://aomediacodec.github.io/iamf/v1.1.0.html, 2024, zadnji dostop feb. 2025.

[285] Information technology – High efficiency coding and media delivery in he-terogeneous environments – Part 3: 3D audio, ISO/IEC 23008-3. 2015. International Organization for Standardization.

[286] BS.1387 : Method for objective measurements of perceived audio quality, Recommendation BS.1387. 2001. International Telecommunication Union.

[287] D. Mumtaz, V. Jakhetiya, K. Nathwani, B. N. Subudhi in S. C. Guntuku, Nonintrusive perceptual audio quality assessment for user-generated content using deep learning, IEEE Transactions on Industrial Informatics, 18(11), 7780–7789, 2021.

[288] R. Hanson, Mass Communication: Living in a Media World. SAGE Publica-tions, 2018.

[289] J. Arnold, M. Frater in M. Pickering, Digital television: technology and standards. John Wiley & Sons, 2007.

[244] L. Elliott, Backward and forward masking, Audiology, 10(2), 65–76, 1971.

[245] S. Tomažič in S. Leonardis, Diskretni signali in sistemi. Založba FE, 1. izd., 2017.

[246] Pulse code modulation (PCM) of voice frequencies, G.711. 1988. International Telecommunication Union.

[247] IBM Corporation, Microsoft Corporation, Multimedia Programming Interface and Data Specifications 1.0. https://www.mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf, 1991, zadnji dostop feb. 2025.

[248] Apple Computer, Inc, Audio Interchange File Format: AIFF, A Standard for Sampled Sound Files, Version 1.3, 1991.

[249] Apple Computer, Inc, Audio Interchange File Format: AIFF-C, 1991.

[250] T. Robinson, SHORTEN: Simple lossless and near-lossless waveform com-pression, Teh. Por. CUED/F-INFENG/TR.156, Cambridge University, Engi-neering Department, 1994.

[251] S. W. Golomb, Run-length encodings, IEEE Transactions on Information Theory, IT–12(3), 399–401, 1966.

[252] M. van Beurden in A. Weaver, RFC 9639, Free Lossless Audio Codec (FLAC). https://www.rfc-editor.org/rfc/rfc9639.html, 2024, zadnji dostop feb. 2025.

[253] WavPack – Hybrid Lossless Audio Compression. http://www.wavpack.com/, zadnji dostop 2019.

[254] Y. F. Dehery, M. Lever in P. Urcun, A MUSICAM source codec for digital audio broadcasting and storage, Acoustics, Speech, and Signal Processing, IEEE International Conference on, 3605–3606, IEEE Computer Society, 1991.

[255] Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 3: Audio, ISO/IEC 11172-3:1993. 1993. International Organization for Standardization.

[256] Information technology – Generic coding of moving pictures and associated audio information – Part 7: Advanced Audio Coding (AAC), ISO/IEC 13818-7. 1997. International Organization for Standardization.

[257] P. Noll, MPEG Digital Audio Coding Standards, The Digital Signal Proces-sing Handbook (V. Madisetti in D. B. Williams, ur.), IEEE Press/CRC Press, 1997.

[258] D. Pan, A tutorial on MPEG/audio compression, IEEE Multimedia, 2(2), 60–74, 1995.

[259] Information technology – Generic coding of moving pictures and associated audio information – Part 3: Audio, ISO/IEC 13818-3:1995. 1995. Internatio-nal Organization for Standardization.

[260] M. Nilsson, ID3 tag version 2.4.0 – Main Structure. https://id3.org/id3v2.4.0-structure, 2000, zadnji dostop feb. 2025.

[261] G.722 : 7 kHz audio-coding within 64 kbit/s, G.722. 1988. International Telecommunication Union.

[262] Z. Mezgec, Indirektne segmentacijske metode za adaptivno robustno kontrolo prenosa podatkov po govornem kanalu sistema GSM: doktorska disertacija. Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informa-tiko, 2009.

[263] G.722.1 : Low-complexity coding at 24 and 32 kbit/s for hands-free operation in systems with low frame loss, G.722.1. 1999. International Telecommunica-tion Union.

[264] Digital cellular telecommunications system (Phase 2+); Full rate speech; Transcoding (GSM 06.10 version 5.1.1), ETS 300 961. 1998. European Telecommunications Standards Institute.

[265] Digital cellular telecommunications system (Phase 2+); Half rate speech; Half rate speech transcoding (GSM 06.20 version 5.1.1), ETS 300 969. 1998. European Telecommunications Standards Institute.

[266] G.722.2 : Wideband coding of speech at around 16 kbit/s using Adaptive Multi-Rate Wideband (AMR-WB), G.722.2. 2002. International Telecommu-nication Union.

[267] A. McCree, A scalable phonetic vocoder framework using joint predictive vector quantization of melp parameters, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, IEEE, 2006.

[268] Information technology – Coding of audio-visual objects – Part 3: Audio, ISO/IEC 14496-3. 1999. International Organization for Standardization.

[269] S. Han in T. Fingscheidt, Robust MPEG-4 high-efficiency AAC with fixed-and variable-length soft-decision decoding, Audio Engineering Society Convention 139, Audio Engineering Society, 2015.

[270] M. Schnell, M. Schmidt, M. Jander, T. Albert, R. Geiger, V. Ruoppila, P. Ek-strand in G. Bernhard, MPEG-4 Enhanced Low Delay AAC-a new standard for high quality communication, Audio Engineering Society Convention 125, Audio Engineering Society, 2008.

[271] Xiph.Org Foundation, Vorbis I specification. https://xiph.org/vorbis/doc/Vorbis_I_spec.html, 2020, zadnji dostop feb. 2025.

[272] I. Siegert, A. F. Lotz, L. L. Duong in A. Wendemuth, Measuring the impact of audio compression on the spectral quality of speech data, Studientexte zur Sprachkommunikation: Elektronische Sprachsignalverarbeitung 2016, 229–236, 2016.

[273] Xiph.Org Foundation, Ogg Documentation. https://xiph.org/vorbis/doc/Vorbis_I_spec.html, 2010, zadnji dostop feb. 2025.

[274] Microsoft, About the Windows Media Codecs. https://learn.microsoft.com/en-us/windows/win32/medfound/about-the-windows-media-codecs, 2021, zadnji dostop feb. 2025.

[275] FFmpeg, libavcodec/wma.c. https://ffmpeg.org/doxygen/0.6/wma_8c-source.html, 2007, zadnji dostop feb. 2025.

[276] C. C. Todd, G. A. Davidson, M. F. Davis, L. D. Fielder, B. Link in S. Vernon, AC-3: Flexible perceptual coding for audio transmission and storage, Audio Eng. Soc. 96th Convention, 1994, 1994.

[277] ATSC Standard: Digital Audio Compression (AC-3, E-AC-3), A/52:2012. 2012. Advanced Television Systems Committee.

[278] M. A. Gerzon, P. G. Craven, J. R. Stuart, M. J. Law in R. J. Wilson, The MLP lossless compression system, Audio Engineering Society Conference: 17th International Conference: High-Quality Audio Coding, Audio Engineering Society, 1999.

[279] J. R. Stuart, P. G. Craven, M. A. Gerzon, M. J. Law in R. J. Wilson, MLP lossless compression, AES 9th Regional Convention (Tokyo, Japan), 1999.

[280] Digital Audio Compression (AC-4) Standard; Part 1: Channel based coding, ETSI TS 103 190-1 V1.3.1 (2018-02). 2018. European Telecommunications Standards Institute.

[281] Dolby, Dolby AC-4: Audio Delivery for Next-Generation Entertainment Ser-vices. https://web.archive.org/web/20151204095813/http://www.dolby.com/in/en/technologies/ac-4/Next-Generation-Entertainment-Services.pdf, 2015, zadnji dostop feb. 2025.

[282] J. M. Valin, K. Vos in T. B. Terriberry, Definition of the Opus Audio Codec. RFC 6716, https://www.rfc-editor.org/info/rfc6716, 2012.

[283] J. M. Valin, G. Maxwell, T. B. Terriberry in K. Vos, The opus codec, 135th AES International Convention. New York, USA, 2013.

[284] Alliance for Open Media, Immersive Audio Model and Formats. https://aomediacodec.github.io/iamf/v1.1.0.html, 2024, zadnji dostop feb. 2025.

[285] Information technology – High efficiency coding and media delivery in he-terogeneous environments – Part 3: 3D audio, ISO/IEC 23008-3. 2015. International Organization for Standardization.

[286] BS.1387 : Method for objective measurements of perceived audio quality, Recommendation BS.1387. 2001. International Telecommunication Union.

[287] D. Mumtaz, V. Jakhetiya, K. Nathwani, B. N. Subudhi in S. C. Guntuku, Nonintrusive perceptual audio quality assessment for user-generated content using deep learning, IEEE Transactions on Industrial Informatics, 18(11), 7780–7789, 2021.

[288] R. Hanson, Mass Communication: Living in a Media World. SAGE Publica-tions, 2018.

[289] J. Arnold, M. Frater in M. Pickering, Digital television: technology and standards. John Wiley & Sons, 2007.

[290] L. Li, Z. Yang, Y. Zhai, J. Yang in R. Wang, Improving multi-generation robustness of learned image compression, 2023 IEEE International Conference on Multimedia and Expo (ICME), 2525–2530, IEEE, 2023.

[291] M. El-Hajjar in L. Hanzo, A survey of digital television broadcast transmission techniques, IEEE Communications surveys & tutorials, 15(4), 1924–1949, 2013.

[292] H.222 : H.222.0 : Information technology – Generic coding of moving pictures and associated audio information: Systems, Recommendation H.222 (07/95). 1995. International Telecommunication Union (ITU).

[293] B. G. Haskell, A. Puri in A. N. Netravali, Digital video: An introduction to MPEG–2. Kluwer academic publishers, 2002.

[294] I. E. G. Richardson, H.264 and MPEG-4 video compression. John Wiley & Sons, 2003.

[295] BT.601 : Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios, ITU-R BT.601. 2011. International Telecommunication Union (ITU).

[296] BT.709 : Parameter values for the HDTV standards for production and international programme exchange, ITU-R BT.709-6. 2015. International Telecommunication Union (ITU).

[297] H.265 : High efficiency video coding, Recommendation H.265 (04/13). 2013. International Telecommunication Union (ITU).

[298] B. Li, J. Han, Y. Xu in K. Rose, Optical flow based co-located reference frame for video compression, IEEE Transactions on Image Processing, 29, 8303–8315, 2020.

[299] C. Je in H.-M. Park, Optimized hierarchical block matching for fast and accurate image registration, Signal Processing: Image Communication, 28(7), 779–791, 2013.

[300] A. K. Mishra in N. Kohli, Analysis of block matching algorithms for motion estimation in video data, Machine Learning and Information Processing: Proceedings of ICMLIP 2020, 331–341, Springer, 2021.

[301] Microsoft Corporation, AVI File Format. https://learn.microsoft.com/en-us/windows/win32/directshow/avi-riff-file-reference, 2023, zadnji dostop mar. 2025.

[302] T. Gloe, A. Fischer in M. Kirchner, Forensic analysis of video file formats, Digital Investigation, 11, 68–76, 2014.

[303] M. Jacobs in J. Probell, A Brief History of Video Coding. https://pdfs. semanticscholar.org/6aa0/2f12913215e76cd7e830e371109b24a3daa6.pdf, za-dnji dostop 2019.

[304] A. Davis, An Overview of Video Compression Algorithms. https://www.edn.com/design/communications-design/4018012/

An-Overview-of-Video-Compression-Algorithms, zadnji dostop 2019.

[305] I. E. Richardson, Coding video: A practical guide to HEVC and beyond. John Wiley & Sons, 2024.

[306] H.120 : Codecs for videoconferencing using primary digital group transmis-sion, Recommendation H.120 (03/93). 1993. International Telecommunication Union (ITU).

[307] P. Stewart, S. McCanne, B. Fenner, L. Berc in R. Frederick, RTP Payload Format for JPEG-compressed Video. RFC 2435, 1998.

[308] Information technology – JPEG 2000 image coding system: Motion JPEG 2000, ISO/IEC 15444-3. 2007. International Organization for Standardization and International Electrotechnical Commission.

[309] H.261 : Video codec for audiovisual services at p x 384 kbit/s, Recom-mendation H.261 (11/88). 1988. International Telecommunication Union (ITU).

[310] Recording – Helical-scan digital video cassette recording system using 6,35 mm magnetic tape for consumer use (525-60, 625-50, 1125-60 and 1250-50 systems) – Part 1: General specifications, IEC 61834-1. 1998. International Electrotechnical Commission.

[311] H. Kato, Y. Takishima in Y. Nakajima, A fast DV to MPEG-4 transcoder integrated with resolution conversion and quantization, IEEE transactions on circuits and systems for video technology, 17(1), 111–119, 2006.

[312] Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 2: Video, ISO/IEC 11172-2:1993. 1993. International Organization for Standardization.

[313] C. W. Brown in B. J. Shepherd, Graphics File Formats: reference and guide. Manning Publications Co., 1995.

[314] Information technology – Coding of moving pictures and associated audio for digital storage media at up to about 1,5 Mbit/s – Part 1: Systems, ISO/IEC 11172-1:1993. 1993. International Organization for Standardization.

[315] Information technology – Generic coding of moving pictures and associated audio information – Part 2: Video, ISO/IEC 13818-2:1996. 1996. International Organization for Standardization.

[316] Information technology – Generic coding of moving pictures and associa-ted audio information – Part 1: Systems, ISO/IEC 13818-1:1996. 1996. International Organization for Standardization.

[317] H.263 : Video coding for low bit rate communication, Recommendation H. 263 (03/96). 1996. International Telecommunication Union (ITU).

[318] H.263 : Video coding for low bit rate communication, Recommendation

H. 263 (02/98). 1998. International Telecommunication Union (ITU).

[319] Information technology – Coding of audio-visual objects – Part 2: Visual, ISO/IEC 14496-2. 1999. International Organization for Standardization and International Electrotechnical Commission.

[320] C. Wootton, A Practical Guide to Video and Audio Compression: From Sprockets and Rasters to Macro Blocks. Taylor & Francis, 2005.

[321] Information technology – Coding of audio-visual objects – Part 10: Advanced video coding, ISO/IEC 14496-10. 2003. International Organization for Standardization and International Electrotechnical Commission.

[322] H.264 : Advanced video coding for generic audiovisual services, Recom-mendation H.264 (05/03). 2003. International Telecommunication Union (ITU).

[323] N. Özbek in T. Tunali, A Survey on the H.264/AVC Standard, Turk Journal of Electrical Engineering, 13(3), 287–302, 2005.

[324] I. Richardson, The H.264 Advanced Video Compression Standard: Second edition. Wiley, 2010.

[325] Information technology – High efficiency coding and media delivery in he-terogeneous environments – Part 2: High efficiency video coding, ISO/IEC 23008-2. 2013. International Organization for Standardization and Internati-onal Electrotechnical Commission.

[326] H.266: Versatile video coding, Recommendation H.266 (09/20). 2020. Inter-national Telecommunication Union (ITU).

[327] Information technology – Coded representation of immersive media – Part 3: Versatile video coding, ISO/IEC 23090-3. 2021. International Organization for Standardization.

[328] M. Lee, H. Song, J. Park, B. Jeon, J. Kang, J.-G. Kim, Y.-L. Lee, J.-W. Kang in D. Sim, Overview of versatile video coding (H. 266/VVC) and its coding performance analysis, IEIE Transactions on Smart Processing & Computing, 12(2), 122–154, 2023.

[329] H. S. Spilker in S. Hoier, Technologies of piracy? Exploring the interplay between commercialism and idealism in the development of MP3 and DivX, International Journal of Communication, 7, 20, 2013.

[330] X. Foundation, Theora Specification. http://www.theora.org/doc/Theora. pdf, 2017, zadnji dostop apr. 2025.

[331] Standard for Television: VC-1 Compressed Video Bitstream Format and Decoding Process, SMPTE 421M-2006. 2006. Society of Motion Picture and Television Engineers (SMPTE).

[332] S. Ma, T. Huang in W. Gao, The second generation IEEE 1857 video coding standard, 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), 171–175, IEEE, 2015.

[333] S. Ma, L. Zhang, S. Wang, C. Jia, S. Wang, T. Huang, F. Wu in W. Gao, Evolution of AVS video coding standards: twenty years of innovation and development, Science China Information Sciences, 65(9), 192101, 2022.

[334] Information technology – General video coding – Part 1: Essential video coding, ISO/IEC 23094-1. 2020. International Organization for Standardiza-tion.

Downloads

Published

September 1, 2025

Details about this monograph

ISBN-13 (15)

978-961-299-041-1

COBISS.SI ID (00)

THEMA Subject Codes (93)

U, UY, UYU, UYT, UG

Date of first publication (11)

2025-09-01

How to Cite

Kohek, Štefan, & Žalik, B. (2025). Uvod v računalniško večpredstavnost in obdelavo multimedijskih podatkov. University of Maribor Press. https://doi.org/10.18690/um.feri.8.2025