Data-Centric Approach to Short-Term Water Demand Prediction Using Big Data and Deep Learning Techniques

Avtorji

Alkiviadis Tsimpiris
Mednarodna grška univerza, informatika in telekomunikacijski inženiring
https://orcid.org/0000-0002-3756-0170
Georgios Myllis
Mednarodna grška univerza, informatika in telekomunikacijski inženiring
https://orcid.org/0009-0007-0708-6643
Vasiliki Vrana
Mednarodna grška univerza
https://orcid.org/0000-0002-5385-0944

Kratka vsebina

This study introduces a data-centric approach to short-term water demand forecasting, utilizing univariate time series data from water reservoir levels in Eastern Thessaloniki. The dataset, collected over 15 months via a SCADA system, includes water level recordings from 21 reservoirs, generating a substantial Big Data resource. Key components of the methodology include data preprocessing, anomaly detection using techniques like the Interquartile Range method and moving standard deviation, and the application of predictive models. Missing data is addressed with LSTM networks optimized via the Optuna framework, enhancing data quality and improving model accuracy. This approach is particularly valuable in regions where reservoirs are the primary water source, and flow meter readings alone cannot determine demand distribution. By integrating deep learning techniques, such as LSTM models, with traditional statistical methods, the study achieves improved accuracy and reliability in water demand predictions, offering a robust framework for efficient water resource management.

Biografije avtorja

Alkiviadis Tsimpiris, Mednarodna grška univerza, informatika in telekomunikacijski inženiring

Serres, Grčija. E-pošta: tsimpiris@ihu.gr

Georgios Myllis, Mednarodna grška univerza, informatika in telekomunikacijski inženiring

Serres, Grčija. E-pošta: georgmyll@ihu.gr

Vasiliki Vrana, Mednarodna grška univerza

Solun-N.Moudania, Grčija. E-pošta: vrana@ihu.gr

Prenosi

Izdano

19.03.2025

Kako citirati

(Ed.). (2025). Data-Centric Approach to Short-Term Water Demand Prediction Using Big Data and Deep Learning Techniques. In 44th International Conference on Organizational Science Development: Human Being, Artificial Intelligence and Organization, Conference Proceedings (Vols. 44, pp. 961-974). Univerzitetna založba Univerze v Mariboru. https://press.um.si/index.php/ump/catalog/book/962/chapter/337