Priročnik za delo s programom za optimiranje sovprežnega stropnega sistema s plastično odpornostjo nosilca z jeklenimi IPE profili: COMBOPT-PIPE, verzija 1,0
Keywords:
program, optimization model, optimization, mixed-integer non-linear programming, composite floor systemSynopsis
Manual for Working With the Program for Optimizing the Composite Floor System With the Plastic Resistance of the Beam With Steel Profiles IPE: COMBOPT-PIPE, version 1,0. The manual presents the work with the program for optimization of the composite floor system, which can be used in the structure of multi-storey buildings. The structure consists of a reinforced concrete slab and IPE steel profiles. Mixed integer nonlinear programming (MINLP) is used for optimization. A COMBOPT-PIPE optimization model was developed with a detailed objective function of the self-manufacturing costs. In addition to the objective function, the optimization model also includes input data, variables, (in)equality constraints known from the dimensioning of composite structures and logical constraints. Dimensioning constraints are defined according to Eurocod
Downloads
References
Adeli, H., Kim, H., Cost optimization of welded of composite floors using neural dynamics model, Commun Numer. Methods Eng., 17(11), 771–787, 2001.
Brooke A., Kendrick D. and Meeraus A., GAMS - A User's Guide, Scientific Press, Redwood City, CA, 1988.
CPLEX User Notes, ILOG inc, 2016.
Drudd, A.S., CONOPT – A Large-Scale GRG Code, ORSA J. Comput., 6(2), 207-216, 1994.
Evrokod 1, Vplivi na konstrukcije, European Committee for Standardization, Brussels, 2002.
Evrokod 2, Projektiranje betonskih konstrukcij, European Committee for Standardization, Brussels, 2004a.
Evrokod 3, Projektiranje jeklenih konstrukcij, European Committee for Standardization, Brussels, 2005.
Evrokod 4, Projektiranje sovprežnih konstrukcij iz jekla in betona – 1-1. del: Splošna pravila in pravila za stavbe, European Committee for Standardization, Brussels, 2004b.
Kaveh A., Ahangaran M., Discrete Cost Optimization of Composite Floor System Using Social Harmony Search Model, Applied Soft Computing, No. 1, 12, 372–381, 2012.
Klanšek, U., Kravanja, S., Cost estimation, optimization and competitiveness of different composite floor systems—Part 1: Self-manufacturing cost estimation of composite and steel structures, J Construct Steel Res., 62(5), 434-448, 2006a.
Klanšek, U., Kravanja, S., Cost estimation, optimization and competitiveness of different composite floor systems—Part 2: Optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses, J Construct Steel Res., 62(5), 449-462, 2006b.
Kravanja, S., Šilih, S., Optimization based comparison between composite I beams and composite trusses, J Construct Steel Res., 59(5), 609–625, 2003.
Kravanja, S., Žula, T., Klanšek, U., Multi-parametric MINLP optimization study of a composite I beam floor system, Engineering structures, 130, 316-335, 2017.
Kravanja, Z., Grossmann, I.E., New Developments and Capabilities in PROSYN - An Automated Topology and Parameter Process Synthesizer, Computers & Chemical Engineering, 18(11-12), 1097-1114, 1994.
Kravanja, Z., Challenges in sustainable integrated process synthesis and the capabilities of an MINLP process synthesizer MipSyn, Comput. chem. eng., 34(11), 1831-1848, 2010.
Poitras, G., Lefrançois, G., Cormier, G., Optimization of steel floor systems using particle swarm optimization, J Construct Steel Res., 67(8), 1225-1231, 2011.
Senouci A.B., Al-Ansari M.S., Cost optimization of composite beams using genetic algorithms, Advances in Engineering Software, 40, 1112-1118, 2009.
Žula, T., Kravanja, S., Klanšek, U., MINLP optimization of a composite I beam floor system, Steel and composite structures, 22(5), 1163-1192, 2016.
Žula, T., Kravanja, S., MINLP optimiranje sovprežnega stropnega sistema z I-nosilci, Gradbeni vestnik, 66, 194-203, 2017.