Towards Accurate Size Predictions of Magnetic Nanoparticles Using Support Vector Regression

Avtorji

Lukas Glänzer
RWTH Aachen University, Medicinska fakulteta
https://orcid.org/0000-0001-7260-1452
Lennart Göpfert
RWTH Aachen University, Medicinska fakulteta
https://orcid.org/0000-0003-4266-7324
Thomas Schmitz-Rode
RWTH Aachen University, Medicinska fakulteta
https://orcid.org/0000-0002-1181-2165
Ioana Slabu
RWTH Aachen University, Medicinska fakulteta
https://orcid.org/0000-0002-8945-4310

Kratka vsebina

This study explores the size of magnetic nanoparticles (MNP) for applications in Magnetic Resonance Imaging (MRI) and Magnetic Particle Imaging (MPI). Emphasizing the critical role of MNP size on their response to alternating magnetic fields, the study unveils a regression model to optimize MNP synthesis towards tailored sizes of MNP. With a limited and broadly distributed data set at hand, the feasibility of building an accurate predictive model based on Support Vector Machines is shown. Integrating such a model into a continuous synthesis setup establishes a feedback loop, enabling real-time control and adaptation of synthesis parameters.

Biografije avtorja

Lukas Glänzer, RWTH Aachen University, Medicinska fakulteta

Aachen, Nemčija. E-pošta: glaenzer@ame.rwth-aachen.de

Lennart Göpfert, RWTH Aachen University, Medicinska fakulteta

Aachen, Nemčija. E-pošta: goepfert@ame.rwth-aachen.de,

Thomas Schmitz-Rode, RWTH Aachen University, Medicinska fakulteta

Aachen, Nemčija. E-pošta: smiro@ame.rwth-aachen.de

Ioana Slabu, RWTH Aachen University, Medicinska fakulteta

Aachen, Nemčija. E-pošta: slabu@ame.rwth-aachen.de

Prenosi

Izdano

14.05.2025

Kako citirati

Towards Accurate Size Predictions of Magnetic Nanoparticles Using Support Vector Regression. (2025). In XXVIII. Symposium Electromagnetic Phenomena in Nonlinear Circuits (EPNC 2024): Conference Proceedings (pp. 271-276). Univerzitetna založba Univerze v Mariboru. https://press.um.si/index.php/ump/catalog/book/963/chapter/492