A Data-Driven Approach for the Analysis of Ridership Fluctuations in Transit Systems

Avtorji

Jovan Pavlović
Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
Miklós Krész
InnoRenew CoE, Izola, Slovenija
https://orcid.org/0000-0002-7547-1128
László Hajdu
Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
https://orcid.org/0000-0002-1832-6944
András Bóta
Luleå University of Technology, Luleå, Sweden
https://orcid.org/0000-0002-0322-8698

Kratka vsebina

This study focuses on identifying critical components within urban public transportation networks, particularly in the context of fluc-tuating demand and potential pandemic scenarios. By employing advanced agent-based simulations, we analyzed passenger interac-tions and ridership patterns across the San Francisco Bay Area’s transit system. Key findings reveal specific transit stops and routes that are highly sensitive to changes in demand, often serving as bottlenecks or high-risk areas for the spread of infectious diseases.

Prenosi

Izdano

30.10.2024

Kako citirati

A Data-Driven Approach for the Analysis of Ridership Fluctuations in Transit Systems. (2024). In Proceedings of the10th Student Computing Research Symposium (SCORES’24) (pp. 61-64). Univerzitetna založba Univerze v Mariboru. https://press.um.si/index.php/ump/catalog/book/886/chapter/154