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This work combines recurrent neural networks (RNNs) with the 
finite element (FE) method into a hybrid model to correct time-
dependent discrepancies in low-fidelity engineering simulations. 
The hybrid model is trained on sparse data from high- and low-
fidelity simulations, employing techniques to prevent overfitting 
and balance accuracy with neural network generalization. It is 
successfully applied to an eddy-current simulation of a quadrupole 
magnet, demonstrating its accuracy in adjusting low-fidelity 
models. The results confirm the potential of this hybrid modeling 
approach for model-based predictions in dynamic multi-fidelity 
modeling contexts. 
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I Introduction 
 
In the context of multi-fidelity modeling, low-fidelity models inevitably exhibit 
discrepancies with respect to high-fidelity models, due to systematic errors that arise 
from modeling assumptions, low mesh resolution, or imperfect physical knowledge. 
Quantifying these discrepancies is important to assess whether a low-fidelity model 
is sufficiently accurate, especially, when simulating dynamical systems. 
 
The relationship between a high- and low-fidelity system state at time 𝑡𝑡 ∈ [0, 𝑇𝑇], 𝒂𝒂𝑡𝑡

hi�i 
and 𝒂𝒂𝑡𝑡

lo�i, respectively, is given as 
 

𝒂𝒂𝑡𝑡
hi�i = 𝒂𝒂𝑡𝑡

lo�i + 𝛿𝛿𝑡𝑡,               (1) 
 
where 𝛿𝛿𝑡𝑡 ∶  ℝ𝑑𝑑 → ℝ𝑑𝑑 is a discrepancy function capturing systematic errors [1]. In 
practical scenarios however, the trajectory data 𝑨𝑨hi�i ∶= �𝒂𝒂𝑡𝑡𝑘𝑘

hi�i�
𝑡𝑡𝑘𝑘∈𝑇𝑇hi�i

 is only known at 
specific, finite, time instances 𝑇𝑇hi�i ∶= �𝑡𝑡0, … , 𝑡𝑡𝑁𝑁𝑇𝑇�, where 𝑁𝑁𝑇𝑇 ∈ ℕ denotes the number of 
time instances. Thus, to account for missing time steps, a parametric model, 𝛿𝛿𝜃𝜃, is 
necessary to approximate the discrepancy function for systemic error approximation 
[2]. 
 

 
 

Fig. 1. Left: Schematic of the quadrupole magnet, where 𝛀𝛀𝐅𝐅𝐅𝐅 denotes the domain of the iron 
yoke, 𝛀𝛀𝐬𝐬 the domain of current excitation and 𝛀𝛀𝐩𝐩 the aperture domain. Right: Current 

excitation 𝐈𝐈𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 for the high-fidelity model and 𝐈𝐈𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 for the low-fidelity model. 
 
In this work, we propose a framework based on recurrent neural networks (RNNs) 
and finite element (FE) basis functions, to approximate the model discrepancy 𝛿𝛿𝜃𝜃∗ ≈
𝛿𝛿𝑡𝑡 in a multi-fidelity, transient, eddy-current simulation of a quadrupole magnet [3]. 
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We employ an upsampling scheme to account for the sparsity of 𝑨𝑨hi�i and train the 
model using an upsampled data set. Finally, we use the trained model to derive a 
correction operator (bias correction), 𝒂𝒂corr, and improve the performance of the low-
fidelity model i.e. 
 

𝒂𝒂corr = 𝒂𝒂𝑡𝑡
lo�i + 𝛿𝛿𝜃𝜃∗,              (2) 

 
where 𝜃𝜃∗ is the RNN's trained parameter set. 
 
II FE Model 
 
Choosing the vector potential ansatz 𝒃𝒃 = ∇ × 𝒂𝒂, with 𝒂𝒂 the magnetic vector potential 
and 𝒃𝒃 the magnetic flux density, the eddy-current problem can be given as the time-
dependent boundary value problem (BVP) 
 

∇ × (ν∇ × 𝒂𝒂) + 𝜎𝜎 𝜕𝜕𝒂𝒂
𝜕𝜕𝜕𝜕

= 𝒋𝒋s ,             (3a) 
𝒂𝒂|𝜕𝜕Ω = 0 ,              (3b) 

 
where ν is the reluctivity, 𝜎𝜎 the conductivity and 𝒋𝒋s the source 
current density. 
 
The geometry of the quadrupole (Fig. 1) is defined on a circular domain Ω, consisting 
of an iron yoke ΩFe, coils Ωs, and an aperture Ωp. The domain boundary 𝜕𝜕Ω consists 
of the outer boundary of the iron domain ∂ΩFe. Due to geometrical considerations, 
it is sufficient to consider the axial component of the magnetic vector potential, i.e. 
𝒘𝒘𝑖𝑖 = 𝑤𝑤𝑖𝑖𝒆𝒆𝑧𝑧, with 𝑤𝑤𝑖𝑖 ∈ 𝐻𝐻0(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔; 𝛺𝛺). The magnetic vector potential is approximated via the 
ansatz function 𝒂𝒂 = ∑ 𝑎𝑎�𝑗𝑗𝒘𝒘𝑗𝑗

𝑁𝑁dof
lo�i

𝑗𝑗=1 , where the degrees of freedom (dof) �𝑎𝑎�𝑗𝑗�
𝑗𝑗≤𝑁𝑁dof

lo�i lie on the 

mesh nodes. In matrix-vector notation, the FE formulation reads 
 

(Δ𝑡𝑡 𝑨𝑨 + 𝑴𝑴)𝒂𝒂�𝑡𝑡𝑘𝑘+1 = Δ𝑡𝑡 𝒃𝒃(𝑡𝑡𝑘𝑘+1) + 𝑴𝑴𝒂𝒂�𝑡𝑡𝑘𝑘 ,            (4) 
 
where 𝑨𝑨 𝑎𝑎𝑎𝑎𝑎𝑎 𝑴𝑴 are the stiffness and mass matrix, respectively, and 𝒃𝒃 is the load vector. 
For the simulation, we apply the conductivity 𝜎𝜎𝐹𝐹𝐹𝐹 = 1.04 ∙ 107 𝑆𝑆/𝑚𝑚 and the reluctivity 
𝜈𝜈𝐹𝐹𝐹𝐹 = 2 ∙ 10−3 𝜈𝜈0 in the iron yoke 𝛺𝛺𝐹𝐹𝐹𝐹, as well as the conductivity σ = 1 S/m and the 
reluctivity νFe = ν0 in the aperture Ωp and the current-excitation domain Ωs. 
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Furthermore, we select a constant time step of Δ𝑡𝑡 = 1 ∙ 10−2 s  and apply 𝑁𝑁𝑇𝑇 = 327 time 
steps. The low-fidelity model 𝒂𝒂�𝑡𝑡𝑘𝑘+1

lo�i  is parametrized with the current 𝐼𝐼lo�i and mesh 
resolution 𝑁𝑁dof

lo�i = 895, while the high-fidelity model 𝒂𝒂�𝑡𝑡𝑘𝑘+1
hi�i  with current 𝐼𝐼hi�i and 𝑁𝑁dof

lo�i =

277 594. 
 
III Hybrid Model Architecture 
 
To approximate the discrepancy function on a low-fidelity mesh, we assume the 
functional form 
 

𝛿𝛿𝑡𝑡𝑘𝑘(𝒓𝒓) = ∑ 𝛿̂𝛿𝑖𝑖,𝑡𝑡𝑘𝑘𝜙𝜙𝑖𝑖(𝒓𝒓)𝑁𝑁dof
lo�i

𝑖𝑖=1 ,              (5) 
 
where 𝛿̂𝛿𝑖𝑖,𝑡𝑡𝑘𝑘 is the coefficient corresponding to the i-th dof in the low-fidelity mesh 
and 𝜙𝜙𝑖𝑖(𝒓𝒓) the associated shape function. We employ an RNN to learn the coefficients 
of (5) using discrepancy data calculated by 
 

𝐷𝐷d ∶= �𝑇𝑇�𝒂𝒂𝑡𝑡𝑘𝑘
hi�i� − 𝒂𝒂𝑡𝑡𝑘𝑘

lo�i�
𝑡𝑡𝑘𝑘∈𝑇𝑇hi�i

,             (6) 

 
where 𝑇𝑇 is a linear projection operator, 𝑡𝑡𝑘𝑘 ∈ 𝑇𝑇hi�i and the FE shape functions resolve 
the approximation spatially. 
 
By separating the time-dependent aspects from the spatial elements of the 
discrepancy function, the RNN focuses solely on temporal coefficient variations, 
while the FE method handles the spatial discretization of the model domain. This 
separation allows each method to operate within its area of strength, improving the 
efficiency of the training process. 
 
IV Localized Data Upsampling 
 
To account for sparsity in the training data, we employ upsampling using localized 
linear interpolation, i.e., 
 

𝛿𝛿𝑗̅𝑗𝑡𝑡+𝑙𝑙 = 𝛿𝛿𝑗𝑗𝑘𝑘 + 𝑙𝑙 �
𝛿𝛿𝑗𝑗𝑘𝑘+1−𝛿𝛿𝑗𝑗𝑘𝑘

𝑗𝑗𝑘𝑘+1−𝑗𝑗𝑘𝑘
�,              (7) 
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for 𝑙𝑙 = 1, … , 𝑗𝑗𝑘𝑘+1 − 𝑗𝑗𝑘𝑘 − 1, where 𝑗𝑗𝑘𝑘 denotes the time steps for which the high-fidelity data 
is known. The intermediate artificial system states are coupled with a Gaussian prior 
to mitigate overfitting in the neural network. This approach, favored for its simplicity 
and versatility, not only guides NN behavior in sparse data conditions but also uses 
the Gaussian prior’s variance to produce new, artificially bounded states during each 
training epoch, thus enhancing the model’s numerical stability. 
 
V Results 
 
The low-fidelity model uses a much coarse mesh than the high-fidelity model and 
considers a simplified triangular function for current excitation instead of the true 
decaying exponential one. The potential distributions obtained with the low-fidelity 
and bias-corrected models are depicted in Fig. 2a. The integrated discrepancy 
function over time is shown in Fig. 2b. Relative to the high-fidelity model, the error 
of the low-fidelity model is Δ𝐿𝐿2𝒂𝒂lo�i = 39.847%, whilst the relative error of the bias-
corrected model is Δ𝐿𝐿2𝒂𝒂corr = 0.613%, which constitutes a major improvement to the 
low-fidelity model. 
 

 
 

Figure 2: Top: Potential distribution of the low-fidelity and bias-corrected model. Bottom: 
Integrated discrepancy function over time. 
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VI Conclusion & Outlook 
 
The hybrid modeling approach yields highly accurate bias-corrected dynamic FE 
simulations, maintaining error rates below 2% even with irregular behavior and 
limited data. Future enhancements could come from advanced RNNs, localized 
Gaussian processes, and tailored, problem-specific loss functions. 
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