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This paper proposes a computationally light adaptive-filtering 
approach, normalized least mean squares (NLMS), to model the 
nonlinearity caused by the current transformer (CT) iron core 
saturation. A simplified CT model was used to generate a dataset 
considering four different nonlinear iron core magnetic 
characteristics. The preliminary results show satisfactory results 
in the cases where the CT iron core nonlinearity is within certain 
limits. 
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I Introduction 
 
A well-known challenge in electrical power engineering is related to the saturation 
of the current transformer (CT) iron core. This phenomenon lowers measurement 
accuracy and may lead to the misoperation of protection relays. Several strategies 
have been suggested to mitigate the effects of CT iron core saturation, categorized 
into model-based, signal-processing and data-driven methods. A literature review on 
this topic can be found in [1–3]. 
 
This paper presents a solution based on the normalized least-mean-square (NLMS) 
adaptive method, commonly known as the Wiener filter. Adaptive filters, such as 
the NLMS method, have been utilized for decades for system identification tasks in 
control engineering, acoustics, and other signal-processing domains [4–5]. Despite 
the highly nonlinear nature of CT iron core saturation, we have explored how a 
computationally efficient linearized approach can still provide satisfactory 
predictions. In this approach, the model assumes that the system is semi-linear and 
adequately time-invariant within certain constraints. The objective is to identify the 
system by finding the finite impulse response of a linear model capable of closely 
approximating the input-output relationship. 
 
II Method Description 
 
A Dataset generation 
 
Measured secondary currents IS were obtained using a simplified CT model, 
neglecting windings resistance and leakage inductance. Thus, a first-order system 
with nonlinear feedback was used, with the nonlinearity capturing the magnetic 
characteristic of the iron core (flux versus mmf). Four different CT types were 
considered: CT1 with an over-sized iron core, CT2 with a standard-sized iron core, 
and CT3 and CT4 featuring an iron core with one or more air gaps. 
 
Power system faults were simulated, where the magnitude of the pre-fault IS was set 
as 1 A, whereas the steady-state magnitude of IS during the fault was varied from 
2 A to 15 A. Furthermore, different fault inception angles were used, including 0°, 
45°, 90°. The time constant of the primary aperiodic component has also been varied 
in the range of 20 ms to 200 ms. In total, 798 cases were simulated, with a sampling 
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time of 0.5 ms used to generate the measured IS. The desired IS were generated 
similarly but using a CT model with linear magnetic characteristics.  
 
Fig. 1 shows illustrative time responses for CT3, where steady-state of IS was 10 A, 
with a fault inception angle of 90° and a 100 ms primary current time constant. The 
aperiodic component in the current causes an increase in the magnetic flux. The 
saturation effect is evident in the time responses of the nonlinear model, reflecting 
a distortion of the measured IS.  
 

 
 

Figure 1: Time responses of linear and nonlinear models for CT3 
 
B The NLMS adaptive algorithm 
 
The dataset is divided into two parts. Half of the dataset (399 odd cases) is designed 
for training, and the remaining half (399 even cases) is reserved for the final 
evaluation of the method. The algorithm consists of two Wiener filters arranged in 
series. The first filter is 30 samples long (15 ms), whereas the second filter contains 
40 samples (20 ms). For CT3 and CT4 datasets, however, both filters contain 40 
samples. An initial impulse response ℎ�[𝑛𝑛] is applied on the input signal 𝑥𝑥[𝑛𝑛], i.e., 
measured IS, to generate an initial prediction 𝑦𝑦�[𝑛𝑛] according to (1), where * denotes 
convolution. 
 

𝑦𝑦�[𝑛𝑛] = 𝑥𝑥[𝑛𝑛] ∗  ℎ�[𝑛𝑛]              (1) 
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The error signal 𝑒𝑒[𝑛𝑛] is defined as the difference between the desired response 𝑦𝑦[𝑛𝑛], 
and the model's prediction 𝑦𝑦�[𝑛𝑛]. The adaptation process occurs by estimating a new 
ℎ�[𝑛𝑛] for each sample of 𝑦𝑦[𝑛𝑛] through a small adjustment by ∆ℎ�[𝑛𝑛] in each iteration, 
as expressed in (2) where 𝜇𝜇[𝑛𝑛] is 'step size'. 
 

ℎ�[𝑛𝑛 + 1] = ℎ�[𝑛𝑛]+ ∆ℎ�[𝑛𝑛]              (2) 
∆ℎ�[𝑛𝑛] =  𝜇𝜇[𝑛𝑛] (𝑥𝑥[𝑛𝑛] 𝑒𝑒[𝑛𝑛])   
𝜇𝜇[𝑛𝑛] = 𝛼𝛼

𝛽𝛽+𝜎𝜎𝑥𝑥[𝑛𝑛]
2  ,     𝜎𝜎𝑥𝑥[𝑛𝑛]

2 =  𝑥𝑥T[𝑛𝑛] 𝑥𝑥[𝑛𝑛]  

 
Choosing an optimal step size is important for the system's accuracy and has been 
studied extensively [6]. In this study, we set 𝛽𝛽 = 0.01, whereas 𝛼𝛼 was assigned to 0.1 
and 0.05 for the first and second filters, respectively.  
 
The algorithm initially compares the input signal 𝑥𝑥[𝑛𝑛] with the entire training dataset 
to identify the closest case, yielding the maximum normalized correlation coefficient 
(NCC). Subsequently, it applies the filter coefficients obtained from the 
corresponding training case to the evaluation data. A representation of the described 
algorithm is shown in Fig. 3. 
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Figure 2: Blok diagram of the discussed adaptive algorithm 

 
III Results 
 
The predictions of the model 𝑦𝑦�[𝑛𝑛] were compared with the desired output 𝑦𝑦[𝑛𝑛]. 
Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Total Vector 
Error (TVE) were calculated as follows: 
 

− MAE =  1
𝑁𝑁

∑ (abs (𝑦𝑦�[𝑖𝑖] −  𝑦𝑦[𝑖𝑖]))𝑁𝑁
𝑖𝑖=1 , where 𝑁𝑁 is the number of samples in 

the signal for 10 cycles after the fault inception; 
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− RMSE[𝑖𝑖] =  �1
𝑁𝑁

∑ ( 𝑦𝑦�[𝑖𝑖] −  𝑦𝑦[𝑖𝑖])2𝑖𝑖−𝑁𝑁
𝑖𝑖  computed for a one-cycle sliding 

window; 

− TVE[𝑖𝑖] =  ��𝑅𝑅𝑅𝑅�𝑌𝑌�[𝑖𝑖]� − 𝑅𝑅𝑅𝑅�𝑌𝑌[𝑖𝑖]��
2

+ �𝐼𝐼𝐼𝐼�𝑌𝑌�[𝑖𝑖]� − 𝐼𝐼𝐼𝐼�𝑌𝑌[𝑖𝑖]��
2
where 𝑌𝑌�[𝑖𝑖] and 

𝑌𝑌[𝑖𝑖] are fundamental harmonic phasors computed for a one-cycle sliding 
window. 

 
Furthermore, MAE, RMSE and TVE were calculated also for the measured IS, i.e., 
by comparing the input 𝑥𝑥[𝑛𝑛] with the desired output 𝑦𝑦[𝑛𝑛]. Metrics based on measured 
IS are denoted as 'data', whereas metrics based on predicted IS are denoted as 'model.' 
Fig. 4 shows an illustrative example for CT1, where steady-state of IS was 9 A, the 
fault inception angle was 90°, and an 80 ms primary current time constant. 
 

 
 

Figure 3: Results for CT1, where MAEdata = 0.94 A, MAEmodel = 3.13 A 
 
Fig. 5 shows MAE values for all evaluation cases related to CT1 as a function of the 
fault current magnitudes. The results show that the model is successful in the case 
of smaller fault current magnitudes (blue and red dots), generating more accurate 
results (smaller MAEs) than the data. However, the MAEs of the model are bigger 
than the MAEs of the data for higher fault current magnitudes (purple dots), which 
indicates the model's failure in those cases. Additionally, the time constant of the 
current's aperiodic component has a similar effect on MAE. 
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Figure 4. Comparison of MAE computed for the CT1 measurements (data) and predictions 
(model) for different values of the fault current magnitudes 

 
IV Discussion and conclusions 
 
Our objective was to explore the potential of adaptive filters, typically utilized for 
identifying semi-linear systems, in providing insights into iron core saturation in 
CTs. We deployed two Wiener filters to find the impulse response of the nearest 
linear system capable of producing comparable outputs. The code execution for all 
the 798 cases took less than 5 seconds on an Intel iCore 7 computer using MATLAB 
2023b. 
 
Preliminary results show that this approach could be effective for cases where CT 
nonlinearity falls within certain limits; however, it may fail for instances exceeding 
these limits. Although the discussed method is only partially successful, its 
computational simplicity and ease of implementation on real-time Digital Signal 
Processor (DSP) platforms warrant further investigation. Our next step involves 
quantifying the validity limits of our approach and applying it thoughtfully, ensuring 
successful prediction of the desired secondary currents. 
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