
APPROACHES TO COMPREHENSIVE

PERFORMANCE EVALUATION OF

SOFTWARE APPLICATIONS: A

SYSTEMATIC LITERATURE REVIEW

DOI
https://doi.org/

10.18690/um.fov.2.2025.75

ISBN
978-961-286-963-2

YAUHEN UNUCHAK, TATYANA UNUCHAK

University of Maribor, Faculty of Organizational Sciences, Kranj, Slovenia
yauhen.unuchak@student.um.si, tatyana.unuchak@student.um.si

Performance evaluation of modern software applications is
necessary to optimize resources and improve the reliability of
software applications, whose main problems are related to low
throughput, long response times, and high support costs.
Software Performance Engineering methodology provides early
prediction and optimization using simulation, benchmarks and
profiling. Analysis of publications revealed problems with data
processing, lack of standardization of metrics and lack of
effective application of analytical models, which complicate the
process of evaluating the performance of information systems.
Addressing these issues and standardizing approaches will help
improve the processes for evaluating the performance and
reliability of information systems that meet user and customer
requirements.

Keywords:
software performance,

performance evaluation,
application monitoring,
performance modeling,

performance metrics,
performance testing,

performance prediction,
benchmarks

990 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION

1 Introduction

Choosing the optimal configuration of computing resources for an application
becomes a non-trivial task even for experienced developers (Cunha et al., 2013). To
resolve these issues, software performance analysis and management techniques are
actively used to identify bottlenecks, optimize resource utilization and reduce costs
(Hsu & Devetsikiotis, 2007; Litoiu & Barna, 2013).

The performance of software applications depends on many factors, including
component implementation, third-party services used, deployment platform, usage
profile, and competition for resources(Danciu et al., 2015). An important aspect is
to consider performance metrics not only at the infrastructure level, but also at the
level of algorithms, applications, third-party components and services. This allows
to comply with service level agreements (SLAs) and optimize the parameters of
software applications (Streitz et al., 2018). Since the early 2000s, Software
Performance Engineering (SPE) methodology has become an important tool for
early prediction and management of software application performance throughout
the entire development life cycle (Evangelin Geetha et al., 2011). However, the
results of such modeling often do not correlate with real-world performance in the
long term, making regular performance evaluation and testing an important part of
the development process (Tsuji et al., 2017).

2 Methodology

We have performed a systematic literature review to explore the main directions and
findings of previous research in the area of software application performance. The
literature review procedure followed the basic steps of the Prisma 2020
methodology(Page et al., 2021).

To select appropriate keywords, we first defined a research question by clarifying the
boundaries of our survey. The question was defined as follows: RQ: What metrics
and monitoring techniques are used to evaluate the performance of software
applications? The constraints were specified as:

− publication Years: 1990–2025,
− language: English,

Y. Unuchak, T. Unuchak: Approaches to Comprehensive Performance Evaluation of Software Applications:
a Systematic Literature Review 991.

− document Types/Source type: article, proceedings paper, review, early
access, book chapter, editorial material, book review, book, discussion,

− categories/subject area: computer science theory methods, computer
science information systems, computer science software engineering,
computer science artificial intelligence, computer science interdisciplinary
applications.

The search was performed using 34 combinations of search queries. Examples of
search query combinations are as follows: "performance evaluation" AND
“software”, "performance evaluation" AND “application”, "software performance"
AND “evaluation”, "performance assessment" AND "software systems".
The results of the initial search without cleaning are shown in Table 1.

Table 1: Literature search results

Web of Science Scopus ProQuest Dissertations & Theses Total
works works works works
9667 34619 1688 45974

The obtained results were merged into one data source, where duplicates were
removed for records having the same DOI and title. In the next step, publications
were selected where at least one of the key phrase combinations among the title or
abstract was found: "performance assessment", "performance model",
"performance evaluation", "performance testing", "performance measurement",
"performance metrics". The final data source was reduced to 339 records. The
primary manual analysis of the abstracts resulted in the removal of an additional 176
records (e.g., addressing hardware and network equipment performance issues). The
text of 23 publications could not be accessed. The text of the remaining 134
publications was downloaded and analyzed.

3 Results

In the early 2000s, the process of evaluating the performance of software
applications was conducted in three steps. First, components were described using
Unified Modeling Language (UML) or Architecture Description Language (ADL)
diagrams, then the project was transformed into an analytical model such as
queueing networks (QN) or Stochastic Rendezvous Network (SRN) model. In the

992 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION

final stage, the experimental results were used to refine the design (Yuan et al., 2006).
Further development of techniques such as benchmark-based testing, profiling and
prototyping have greatly simplified and accelerated the performance evaluation
process (Hsu & Devetsikiotis, 2007).

3.1 Benchmarks

Benchmarks are a key tool for evaluating the performance of software applications
and configurations. Testing is performed in isolated environments to accurately
analyze resources including CPU, memory, and networking (Chhetri et al., 2014;
Peng et al., 2004; Podzimek & Chen, 2013). For example, the IBM Trade
Performance Benchmark tool is designed to analyze all layers of enterprise
application architecture, including client, server, and storage layers (Dube et al.,
2007). In high performance computing (HPC), NASA uses specialized HPC
benchmarks that enable deep analysis of systems (Mehrotra et al., 2012).
Microbenchmark approaches evaluate individual components such as CPU and
memory, while Macrobenchmarks measure system performance in real-world
scenarios (Scheuner, 2022).

3.2 Performance monitoring of software applications

Real application monitoring is an approach to performance evaluation based on
analyzing system behavior through real or simplified versions of applications (Tsuji
et al., 2021). Applications are instrumented to collect data on parameters such as
resource utilization, task execution time, and access to shared resources, allowing
workloads to be modeled for the target platform (Ittershagen et al., 2015). Basic
monitoring techniques include tracing, logging, and the use of specialized tools that
help collect data on function calls and other aspects of system behavior (Becker et
al., 2008; Guo et al., 2015; Meyer et al., 2020; Saastamoinen & Kreku, 2011; Yao et
al., 2018). Certain solutions use user agents to collect data, followed by processing
and visualization of the results (Willnecker et al., 2015).

3.3 Key performance indicators

Approaches to software application performance evaluation cover a wide range of
metrics and techniques. Taking into account the interests of various stakeholders,
including end users, testers, and developers, requires the selection of appropriate

Y. Unuchak, T. Unuchak: Approaches to Comprehensive Performance Evaluation of Software Applications:
a Systematic Literature Review 993.

techniques and metrics for performance evaluation. Users emphasize response time,
while testers focus on throughput, reliability, maximum number of users, and fault
tolerance (Devaraj et al., 2008; Guan et al., 2019; Li et al., 2019). Key metrics such
as average response time and throughput are complemented by specific metrics such
as Equivalent Instruction Count (EIC) and Normalized Equivalent Instruction
Count (NEIC), which take into account “wait time”, CPU, memory and network
usage (Meyer et al., 2020; Rupnow et al., 2010; Wang & Ying, 2018; Weyuker &
Vokolos, 2001). Metrics of successful/failed requests and task timing characteristics
are important for analyzing systems under load to improve scaling algorithms
(Cholomskis et al., 2018).

3.4 Server hardware data collection tools

Software application monitoring technologies have evolved from simple profiling
tools to sophisticated solutions. The first tools, such as prof and gprof, captured
function timestamps and became a standard for UNIX systems (Malony, 1990).
Application performance management (APM) tools such as Dynatrace and
AppDynamics monitor response times, resource usage and failure rates, with
centralized data storage for analysis (Rabl et al., 2012). Cloud providers, including
Amazon CloudWatch, provide CPU and memory utilization data (Podzimek &
Chen, 2013), while the Ganglia and Nagios tools provide online access to server
performance information (Yao et al., 2018).

3.5 Building performance models

Building performance models is a key analysis step that allows us to predict and
evaluate the behavior of systems early in the design process. Architectural models
are used to plan capacity and automate resource management by considering metrics
such as resource utilization, response time, and throughput (Eismann et al., 2018).
Advanced approaches include analytical modeling, measurement, and simulation,
where analytical models use mathematical expressions, measurements are applied to
existing systems, and simulations create models for preliminary evaluation
(Evangelin Geetha et al., 2011; Huang, 2004; Rupnow et al., 2010).

994 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION

Automatic performance model generation from UML diagrams enables the use of
Layered Queueing Networks (LQNs) and Petri nets for quantitative analysis
(Campos & Merseguer, 2006; D’Ambrogio & Iazeolla, 2005; Gómez-Martínez &
Merseguer, 2006; Pham & Nguyen, 2013; Tang et al., 2018). Markov models, which
describe probabilistic transitions between system states, integrate with UML and
stochastic process algebra, simplifying the prediction and analysis of complex
systems (Sbeity & Dbouk, 2014; Tribastone & Gilmore, 2008).

Alternative approaches to software performance analysis and optimization cover
UML diagram annotation, probabilistic methods, and specialized optimization tools.
For example, the Software Performance MDA Framework methodology automates
the transformation of UML diagrams into LQN models by extending the analysis of
non-functional attributes (Di Marco & Mirandola, 2006). Other approaches, such as
the AOP-based Performance Evaluation Framework, simplify the verification of
performance requirements through aspects, and Response Surface Methodology
optimizes the parameters of simulated applications in a cost-aware manner (Hsu &
Devetsikiotis, 2007). Using Software Performance Curves and integrating workflows
with UML through Directed Acyclic Graphs strengthens the connection between
the design and analysis of software applications (Westermann & Momm, 2010;
Zhang et al., 2011). Using UML-MARTE with LQN transformation and Genetic
Search Algorithm allows to find optimal configurations of modeled applications
(Amoozegar & Nezamabadi-pour, 2012). Polynomial Chaos Expansion
methodology emphasize uncertainty accounting and self-adaptive performance
(Aleti et al., 2018; Incerto et al., 2017). Another area is represented by analyzing
dependencies between input parameters and performance characteristics using
statistical models and machine learning (Aleti et al., 2018; Buneci, 2008; Happe et
al., 2009; Moghadam, 2022; Yao et al., 2018).

3.6 Comprehensive application performance evaluation

Integrated performance evaluation of software applications combines application,
infrastructure, and user interaction data to provide a comprehensive analysis. This
approach, which began by describing systems as vector characteristics of basic
operations such as I/O and processor commands (Xiaolong, 2001), has evolved with
the introduction of the Apdex index, which converts response time data into a
measure of user satisfaction (Chhetri et al., 2014). Methods such as Statistical

Y. Unuchak, T. Unuchak: Approaches to Comprehensive Performance Evaluation of Software Applications:
a Systematic Literature Review 995.

Learning Theory evaluate the average response time and its deviations to identify
problems (Wang & Ying, 2018), while analyzing the optimal and maximum number
of users determines the stability and reliability of the system (Li et al., 2019). Data
integration, including response time, throughput, CPU and memory usage, not only
allows you to optimize resources, but also to predict system behavior under changing
loads (Tsuji et al., 2021).

Discussion

The results of this research emphasize the importance of comprehensive
methodologies for evaluating the performance of software applications operating in
complex ecosystems. A review of existing literature reveals persistent challenges in
standardizing performance metrics, optimizing resource utilization, and developing
effective modeling techniques. Addressing these challenges is critical to ensure the
reliability and efficiency of software applications that play a key role in modern
organizational processes and user satisfaction. The use of SPE methodology has
proven to be effective in the early stages of performance prediction and
optimization.

Benchmarking continues to play a key role in evaluating infrastructure
configurations, providing valuable data on the capabilities of systems under different
load conditions. However, there is a need to improve benchmarking practices by
integrating micro- and macro-level analyses for more detailed and comprehensive
assessments.

Modern software application monitoring tools provide accurate data collection, but
challenges remain in aggregating and interpreting data from various system
components to derive actionable insights. The use of user-friendly visualization and
analytics platforms based on artificial intelligence can greatly enhance the utility of
monitoring solutions.

The research emphasizes the importance of selecting appropriate performance
metrics in line with stakeholder goals. To bring these perspectives together,
composite performance indicators that integrate user experience metrics with
infrastructure metrics need to be developed.

996 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION

The use of statistical and machine learning techniques shows potential in improving
prediction accuracy while reducing reliance on big data.

Integrated performance measurement systems that combine application,
infrastructure, and user interaction data open the door to comprehensive systems
analysis.

Conclusion

This research confirms the key role of performance evaluation in modern software
development. Analysis of literature and practices demonstrates the need to
standardize metrics, integrate monitoring data, and use modern models for
performance analysis.
The future of software performance evaluation research involves the development
of automation of monitoring processes, data collection and analysis, standardization
of metrics and methodologies to unify approaches, and the use of hybrid modeling
approaches that combine analytical and simulation techniques. These directions will
ensure the creation of more reliable, scalable and efficient software solutions that
meet user expectations and business requirements.

References

Aleti, A., Trubiani, C., Van Hoorn, A., & Jamshidi, P. (2018). An efficient method for uncertainty

propagation in robust software performance estimation. Journal of Systems and Software,
138, 222–235. https://doi.org/10.1016/j.jss.2018.01.010

Amoozegar, M., & Nezamabadi-pour, H. (2012). Software performance optimization based on
constrained GSA. In AISP 2012—16th CSI International Symposium on Artificial
Intelligence and Signal Processing (p. 139). https://doi.org/10.1109/AISP.2012.6313732

Becker, D., Frings, W., & Wolf, F. (2008). Performance Evaluation and Optimization of Parallel Grid
Computing Applications. 16th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008), 193–199. https://doi.org/10.1109/PDP.2008.27

Buneci, E. (2008). QUALITATIVE PERFORMANCE ANALYSIS FOR LARGE-SCALE
SCIENTIFIC WORKFLOWS.

Campos, J., & Merseguer, J. (2006). On the Integration of UML and Petri Nets in Software
Development (p. 36). https://doi.org/10.1007/11767589_2

Chhetri, M. B., Chichin, S., Vo, Q. B., & Kowalczyk, R. (2014). Smart CloudMonitor—Providing
Visibility into Performance of Black-Box Clouds. 2014 IEEE 7th International Conference
on Cloud Computing, 777–784. https://doi.org/10.1109/CLOUD.2014.108

Cholomskis, A., Pozdniakova, O., & Mažeika, D. (2018). Cloud Software Performance Metrics
Collection and Aggregation for Auto-Scaling Module. In R. Damaševičius & G. Vasiljevienė
(Eds.), Information and Software Technologies (Vol. 920, pp. 130–138). Springer
International Publishing. https://doi.org/10.1007/978-3-319-99972-2_10

Y. Unuchak, T. Unuchak: Approaches to Comprehensive Performance Evaluation of Software Applications:
a Systematic Literature Review 997.

Cunha, M., Mendonça, N., & Sampaio, A. (2013). A Declarative Environment for Automatic
Performance Evaluation in IaaS Clouds. https://doi.org/10.1109/CLOUD.2013.12

D’Ambrogio, A., & Iazeolla, G. (2005). Metadata-driven design of integrated environments for
software performance validation. Journal of Systems and Software, 76(2), 127–146.
https://doi.org/10.1016/j.jss.2004.04.014

Danciu, A., Chrusciel, A., Brunnert, A., & Krcmar, H. (2015). Performance Awareness in Java EE
Development Environments. In M. Beltrán, W. Knottenbelt, & J. Bradley (Eds.), Computer
Performance Engineering (Vol. 9272, pp. 146–160). Springer International Publishing.
https://doi.org/10.1007/978-3-319-23267-6_10

Devaraj, E. G., Skumar, tv, & Kanth, K. (2008). Predicting performance of software systems during
feasibility study of software project management (p. 5).
https://doi.org/10.1109/ICICS.2007.4449845

Di Marco, A., & Mirandola, R. (2006). Model Transformation in Software Performance Engineering.
In C. Hofmeister, I. Crnkovic, & R. Reussner (Eds.), Quality of Software Architectures (Vol.
4214, pp. 95–110). Springer Berlin Heidelberg. https://doi.org/10.1007/11921998_11

Dube, P., Yu, H., Zhang, L., & Moreira, J. E. (2007). Performance Evaluation of a Commercial
Application, Trade, in Scale-out Environments. 2007 15th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, 252–259.
https://doi.org/10.1109/MASCOTS.2007.51

Eismann, S., Walter, J., von Kistowski, J., & Kounev, S. (2018). Modeling of Parametric
Dependencies for Performance Prediction of Component-Based Software Systems at Run-
Time. https://doi.org/10.1109/ICSA.2018.00023

Evangelin Geetha, D., Suresh Kumar, T. V., & Rajani Kanth, K. (2011). Predicting the software
performance during feasibility study. IET Software, 5(2), 201–215.
https://doi.org/10.1049/iet-sen.2010.0075

Gómez-Martínez, E., & Merseguer, J. (2006). ArgoSPE: Model-Based Software Performance
Engineering (p. 410). https://doi.org/10.1007/11767589_23

Guan, X., Ma, Y., Shao, Z., & Cao, W. (2019). Design and Implementation of Mobile Application
Performance Test Scheme Based on LoadRunner. 2019 IEEE 9th International Conference
on Electronics Information and Emergency Communication (ICEIEC), 90–93.
https://doi.org/10.1109/ICEIEC.2019.8784620

Guo, J., Zhou, Z., & Zhang, H. (2015). Cocktail: A New Tool for Audit by Performance Evaluation
on Local Machine. 2015 IEEE Symposium on Service-Oriented System Engineering, 241–
246. https://doi.org/10.1109/SOSE.2015.40

Happe, J., Li, H., & Theilmann, W. (2009). Black-box performance models: Prediction based on
observation. Proceedings of the 1st International Workshop on Quality of Service-Oriented
Software Systems, 19–24. https://doi.org/10.1145/1596473.1596479

Hsu, C.-C., & Devetsikiotis, M. (2007). An Automatic Framework for Efficient Software
Performance Evaluation and Optimization. 40th Annual Simulation Symposium (ANSS’07),
99–105. https://doi.org/10.1109/ANSS.2007.12

Huang, T. (2004). Performance analysis of Web services-based systems with sensitivity analysis.
Incerto, E., Tribastone, M., & Trubiani, C. (2017). Software performance self-adaptation through

efficient model predictive control. 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), 485–496.
https://doi.org/10.1109/ASE.2017.8115660

Ittershagen, P., Hartmann, P. A., Grüttner, K., & Nebel, W. (2015). A workload extraction
framework for software performance model generation. Proceedings of the 2015 Workshop
on Rapid Simulation and Performance Evaluation: Methods and Tools, 1–6.
https://doi.org/10.1145/2693433.2693436

Li, H., Li, X., Wang, H., Zhang, J., & Jiang, Z. (2019). Research on Cloud Performance Testing
Model (p. 183). https://doi.org/10.1109/HASE.2019.00035

Litoiu, M., & Barna, C. (2013). A performance evaluation framework for Web applications. Journal of
Software: Evolution and Process, 25(8), 871–890. https://doi.org/10.1002/smr.1563

998 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION

Malony, A. D. (1990). Performance observability.
Mehrotra, P., Djomehri, J., Heistand, S., Hood, R., Jin, H., Lazanoff, A., Saini, S., & Biswas, R.

(2012). Performance evaluation of amazon EC2 for NASA HPC applications. ScienceCloud
’12 - 3rd Workshop on Scientific Cloud Computing.
https://doi.org/10.1145/2287036.2287045

Meyer, H., Odyurt, U., Pimentel, A. D., Paradas, E., & Alonso, I. G. (2020). An analytics-based
method for performance anomaly classification in cyber-physical systems. Proceedings of the
35th Annual ACM Symposium on Applied Computing, 210–217.
https://doi.org/10.1145/3341105.3373851

Moghadam, M. H. (2022). Intelligence-Driven Software Performance Assurance.
Page, M., Moher, D., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., Shamseer, L., Tetzlaff, J.,

Akl, E., Brennan, S., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M., Li, T.,
Loder, E., Mayo-Wilson, E., Mcdonald, S., & Mckenzie, J. (2021). PRISMA 2020 explanation
and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ,
372, n160. https://doi.org/10.1136/bmj.n160

Peng, L., See, S., Jiang, Y., Song, J., Stoelwinder, A., & Neo, H. (2004). Performance evaluation in
computational grid environments (p. 62). https://doi.org/10.1109/HPCASIA.2004.1324016

Pham, H. V., & Nguyen, B. N. (2013). Class diagram based evaluation of software performance (Z.
Zhu, Ed.; p. 876870). https://doi.org/10.1117/12.2008322

Podzimek, A., & Chen, L. Y. (2013). Transforming System Load to Throughput for Consolidated
Applications. 2013 IEEE 21st International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems, 288–292.
https://doi.org/10.1109/MASCOTS.2013.37

Rabl, T., Sadoghi, M., Jacobsen, H., Gómez-Villamor, S., Muntés-Mulero, V., & Mankowskii, S.
(2012). Solving Big Data Challenges for Enterprise Application Performance Management.
Proc VLDB Endowment, 5. https://doi.org/10.14778/2367502.2367512

Rupnow, K., Adriaens, J., Fu, W., & Compton, K. (2010). Accurately evaluating application
performance in simulated hybrid multi-tasking systems (p. 144).
https://doi.org/10.1145/1723112.1723136

Saastamoinen, J., & Kreku, J. (2011). Application workload model generation methodologies for
system-level design exploration. Proceedings of the 2011 Conference on Design &
Architectures for Signal & Image Processing (DASIP), 1–7.
https://doi.org/10.1109/DASIP.2011.6136888

Sbeity, I., & Dbouk, M. (2014). Software performance engineering using UML2SAN: Deadlock
prediction of funds transfer. 2014 9th International Conference on Computer Engineering &
Systems (ICCES), 318–323. https://doi.org/10.1109/ICCES.2014.7030978

Scheuner, J. (2022). Performance Evaluation of Serverless Applications and Infrastructures.
Streitz, A., Barnert, M., Kienegger, H., & Krcmar, H. (2018). Performance Improvement Barriers for

SAP Enterprise Applications: An Analysis of Expert Interviews (p. 228).
https://doi.org/10.1145/3184407.3184434

Tang, X., Wang, Z., Li, X., Han, Z., He, Z., & Fu, Y. (2018). Performance analysis for multimedia
communication systems with a multilayer queuing network model. China Communications,
15(8), 67–76. https://doi.org/10.1109/CC.2018.8438274

Tribastone, M., & Gilmore, S. (2008). Automatic Extraction of PEPA Performance Models from
UML Activity Diagrams Annotated with the MARTE Profile. In WOSP’08: Proceedings of
the 7th International Workshop on Software and Performance 2008 (p. 78).
https://doi.org/10.1145/1383559.1383569

Tsuji, M., Kramer, W. T. C., & Sato, M. (2017). A Performance Projection of Mini-Applications onto
Benchmarks Toward the Performance Projection of Real-Applications. 2017 IEEE
International Conference on Cluster Computing (CLUSTER), 826–833.
https://doi.org/10.1109/CLUSTER.2017.123

Y. Unuchak, T. Unuchak: Approaches to Comprehensive Performance Evaluation of Software Applications:
a Systematic Literature Review 999.

Tsuji, M., Kramer, W., Weill, J.-C., Nominé, J.-P., & Sato, M. (2021). A new sustained system
performance metric for scientific performance evaluation. The Journal of Supercomputing,
77, 1–29. https://doi.org/10.1007/s11227-020-03545-y

Wang, R., & Ying, S. (2018). SaaS software performance issue identification using HMRF‐MAP
framework. Software: Practice and Experience, 48. https://doi.org/10.1002/spe.2607

Westermann, D., & Momm, C. (2010). Using software performance curves for dependable and cost-
efficient service hosting. Proceedings of the 2nd International Workshop on the Quality of
Service-Oriented Software Systems, 1–6. https://doi.org/10.1145/1858263.1858267

Weyuker, E., & Vokolos, F. (2001). Experience with performance testing of software systems: Issues,
an approach, and case study. Software Engineering, IEEE Transactions On, 26, 1147–1156.
https://doi.org/10.1109/32.888628

Willnecker, F., Brunnert, A., Gottesheim, W., & Krcmar, H. (2015). Using dynaTrace Monitoring
Data for Generating Performance Models of Java EE Applications. In ICPE 2015—
Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering.
https://doi.org/10.1145/2668930.2688061

Xiaolong, Z. (2001). Application-specific_benchmark.
Yao, K., B. de Pádua, G., Shang, W., Sporea, S., Toma, A., & Sajedi, S. (2018). Log4Perf: Suggesting

Logging Locations for Web-based Systems’ Performance Monitoring (p. 138).
https://doi.org/10.1145/3184407.3184416

Yuan, X., Duan, S., & Liu, Z. (2006). Exploring robust component-based software. Proceedings of
the 2006 International Workshop on Software Quality, 75–80.
https://doi.org/10.1145/1137702.1137717

Zhang, Z. H., Fei, T., & Chai, X. D. (2011). A framework for parallel simulation application
performance evaluation and optimization. 2011 International Conference on Multimedia
Technology, 5692–5695. https://doi.org/10.1109/ICMT.2011.6001687

About the authors

Yauhen Unuchak is a Master of Science in IT organisation and an expert in automated testing, software
performance testing and machine learning. His research interests include automated testing, quality
management systems, corporate information systems, big data and predictive analytics. He is one of
the authors of the book "IT-Startup: 10 Tips for Beginners".

Tatyana Unuchak is a Master of Science in IT organisation and an expert in the field of web and mobile
applications development. Her research interests are related to machine learning and project
management process improvement.

1000 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION

