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Performance evaluation of modern software applications is 
necessary to optimize resources and improve the reliability of 
software applications, whose main problems are related to low 
throughput, long response times, and high support costs. 
Software Performance Engineering methodology provides early 
prediction and optimization using simulation, benchmarks and 
profiling. Analysis of publications revealed problems with data 
processing, lack of standardization of metrics and lack of 
effective application of analytical models, which complicate the 
process of evaluating the performance of information systems. 
Addressing these issues and standardizing approaches will help 
improve the processes for evaluating the performance and 
reliability of information systems that meet user and customer 
requirements. 
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1 Introduction 
 
Choosing the optimal configuration of computing resources for an application 
becomes a non-trivial task even for experienced developers (Cunha et al., 2013). To 
resolve these issues, software performance analysis and management techniques are 
actively used to identify bottlenecks, optimize resource utilization and reduce costs 
(Hsu & Devetsikiotis, 2007; Litoiu & Barna, 2013). 
 
The performance of software applications depends on many factors, including 
component implementation, third-party services used, deployment platform, usage 
profile, and competition for resources(Danciu et al., 2015). An important aspect is 
to consider performance metrics not only at the infrastructure level, but also at the 
level of algorithms, applications, third-party components and services. This allows 
to comply with service level agreements (SLAs) and optimize the parameters of 
software applications (Streitz et al., 2018). Since the early 2000s, Software 
Performance Engineering (SPE) methodology has become an important tool for 
early prediction and management of software application performance throughout 
the entire development life cycle (Evangelin Geetha et al., 2011). However, the 
results of such modeling often do not correlate with real-world performance in the 
long term, making regular performance evaluation and testing an important part of 
the development process (Tsuji et al., 2017). 
 
2 Methodology 
 
We have performed a systematic literature review to explore the main directions and 
findings of previous research in the area of software application performance. The 
literature review procedure followed the basic steps of the Prisma 2020 
methodology(Page et al., 2021). 
 
To select appropriate keywords, we first defined a research question by clarifying the 
boundaries of our survey. The question was defined as follows: RQ: What metrics 
and monitoring techniques are used to evaluate the performance of software 
applications? The constraints were specified as:  
 

− publication Years: 1990–2025, 
− language: English, 
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− document Types/Source type: article, proceedings paper, review, early 
access, book chapter, editorial material, book review, book, discussion, 

− categories/subject area: computer science theory methods, computer 
science information systems, computer science software engineering, 
computer science artificial intelligence, computer science interdisciplinary 
applications. 
 

The search was performed using 34 combinations of search queries. Examples of 
search query combinations are as follows: "performance evaluation" AND 
“software”, "performance evaluation" AND “application”, "software performance" 
AND “evaluation”, "performance assessment" AND "software systems". 
The results of the initial search without cleaning are shown in Table 1. 
 

Table 1: Literature search results 
 

Web of Science Scopus ProQuest Dissertations & Theses Total 
works works works works 
9667  34619  1688  45974  

 
The obtained results were merged into one data source, where duplicates were 
removed for records having the same DOI and title.  In the next step, publications 
were selected where at least one of the key phrase combinations among the title or 
abstract was found: "performance assessment", "performance model", 
"performance evaluation", "performance testing", "performance measurement", 
"performance metrics". The final data source was reduced to 339 records. The 
primary manual analysis of the abstracts resulted in the removal of an additional 176 
records (e.g., addressing hardware and network equipment performance issues). The 
text of 23 publications could not be accessed. The text of the remaining 134 
publications was downloaded and analyzed. 
 
3 Results 
 
In the early 2000s, the process of evaluating the performance of software 
applications was conducted in three steps. First, components were described using 
Unified Modeling Language (UML) or Architecture Description Language (ADL) 
diagrams, then the project was transformed into an analytical model such as 
queueing networks (QN) or Stochastic Rendezvous Network (SRN) model. In the 
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final stage, the experimental results were used to refine the design (Yuan et al., 2006). 
Further development of techniques such as benchmark-based testing, profiling and 
prototyping have greatly simplified and accelerated the performance evaluation 
process (Hsu & Devetsikiotis, 2007). 
 
3.1 Benchmarks 
 
Benchmarks are a key tool for evaluating the performance of software applications 
and configurations. Testing is performed in isolated environments to accurately 
analyze resources including CPU, memory, and networking (Chhetri et al., 2014; 
Peng et al., 2004; Podzimek & Chen, 2013). For example, the IBM Trade 
Performance Benchmark tool is designed to analyze all layers of enterprise 
application architecture, including client, server, and storage layers (Dube et al., 
2007). In high performance computing (HPC), NASA uses specialized HPC 
benchmarks that enable deep analysis of systems (Mehrotra et al., 2012). 
Microbenchmark approaches evaluate individual components such as CPU and 
memory, while Macrobenchmarks measure system performance in real-world 
scenarios (Scheuner, 2022).  
 
3.2 Performance monitoring of software applications  
 
Real application monitoring is an approach to performance evaluation based on 
analyzing system behavior through real or simplified versions of applications (Tsuji 
et al., 2021).  Applications are instrumented to collect data on parameters such as 
resource utilization, task execution time, and access to shared resources, allowing 
workloads to be modeled for the target platform (Ittershagen et al., 2015). Basic 
monitoring techniques include tracing, logging, and the use of specialized tools that 
help collect data on function calls and other aspects of system behavior (Becker et 
al., 2008; Guo et al., 2015; Meyer et al., 2020; Saastamoinen & Kreku, 2011; Yao et 
al., 2018). Certain solutions use user agents to collect data, followed by processing 
and visualization of the results (Willnecker et al., 2015). 
 
3.3 Key performance indicators 
 
Approaches to software application performance evaluation cover a wide range of 
metrics and techniques. Taking into account the interests of various stakeholders, 
including end users, testers, and developers, requires the selection of appropriate 
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techniques and metrics for performance evaluation. Users emphasize response time, 
while testers focus on throughput, reliability, maximum number of users, and fault 
tolerance (Devaraj et al., 2008; Guan et al., 2019; Li et al., 2019). Key metrics such 
as average response time and throughput are complemented by specific metrics such 
as Equivalent Instruction Count (EIC) and Normalized Equivalent Instruction 
Count (NEIC), which take into account “wait time”, CPU, memory and network 
usage (Meyer et al., 2020; Rupnow et al., 2010; Wang & Ying, 2018; Weyuker & 
Vokolos, 2001). Metrics of successful/failed requests and task timing characteristics 
are important for analyzing systems under load to improve scaling algorithms 
(Cholomskis et al., 2018). 
 
3.4 Server hardware data collection tools  
 
Software application monitoring technologies have evolved from simple profiling 
tools to sophisticated solutions. The first tools, such as prof and gprof, captured 
function timestamps and became a standard for UNIX systems (Malony, 1990). 
Application performance management (APM) tools such as Dynatrace and 
AppDynamics monitor response times, resource usage and failure rates, with 
centralized data storage for analysis (Rabl et al., 2012). Cloud providers, including 
Amazon CloudWatch, provide CPU and memory utilization data (Podzimek & 
Chen, 2013), while the Ganglia and Nagios tools provide online access to server 
performance information  (Yao et al., 2018). 
 
3.5 Building performance models 
 
Building performance models is a key analysis step that allows us to predict and 
evaluate the behavior of systems early in the design process. Architectural models 
are used to plan capacity and automate resource management by considering metrics 
such as resource utilization, response time, and throughput (Eismann et al., 2018). 
Advanced approaches include analytical modeling, measurement, and simulation, 
where analytical models use mathematical expressions, measurements are applied to 
existing systems, and simulations create models for preliminary evaluation 
(Evangelin Geetha et al., 2011; Huang, 2004; Rupnow et al., 2010). 
  



994 44TH INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT: 
HUMAN BEING, ARTIFICIAL INTELLIGENCE AND ORGANIZATION 

 

 

Automatic performance model generation from UML diagrams enables the use of 
Layered Queueing Networks (LQNs) and Petri nets for quantitative analysis 
(Campos & Merseguer, 2006; D’Ambrogio & Iazeolla, 2005; Gómez-Martínez & 
Merseguer, 2006; Pham & Nguyen, 2013; Tang et al., 2018). Markov models, which 
describe probabilistic transitions between system states, integrate with UML and 
stochastic process algebra, simplifying the prediction and analysis of complex 
systems (Sbeity & Dbouk, 2014; Tribastone & Gilmore, 2008). 
 
Alternative approaches to software performance analysis and optimization cover 
UML diagram annotation, probabilistic methods, and specialized optimization tools. 
For example, the Software Performance MDA Framework methodology automates 
the transformation of UML diagrams into LQN models by extending the analysis of 
non-functional attributes (Di Marco & Mirandola, 2006). Other approaches, such as 
the AOP-based Performance Evaluation Framework, simplify the verification of 
performance requirements through aspects, and Response Surface Methodology 
optimizes the parameters of simulated applications in a cost-aware manner (Hsu & 
Devetsikiotis, 2007). Using Software Performance Curves and integrating workflows 
with UML through Directed Acyclic Graphs strengthens the connection between 
the design and analysis of software applications (Westermann & Momm, 2010; 
Zhang et al., 2011). Using UML-MARTE with LQN transformation and Genetic 
Search Algorithm allows to find optimal configurations of modeled applications 
(Amoozegar & Nezamabadi-pour, 2012). Polynomial Chaos Expansion 
methodology emphasize uncertainty accounting and self-adaptive performance 
(Aleti et al., 2018; Incerto et al., 2017). Another area is represented by analyzing 
dependencies between input parameters and performance characteristics using 
statistical models and machine learning (Aleti et al., 2018; Buneci, 2008; Happe et 
al., 2009; Moghadam, 2022; Yao et al., 2018).  
 
3.6 Comprehensive application performance evaluation 
 
Integrated performance evaluation of software applications combines application, 
infrastructure, and user interaction data to provide a comprehensive analysis. This 
approach, which began by describing systems as vector characteristics of basic 
operations such as I/O and processor commands (Xiaolong, 2001), has evolved with 
the introduction of the Apdex index, which converts response time data into a 
measure of user satisfaction (Chhetri et al., 2014). Methods such as Statistical 
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Learning Theory evaluate the average response time and its deviations to identify 
problems (Wang & Ying, 2018), while analyzing the optimal and maximum number 
of users determines the stability and reliability of the system (Li et al., 2019). Data 
integration, including response time, throughput, CPU and memory usage, not only 
allows you to optimize resources, but also to predict system behavior under changing 
loads (Tsuji et al., 2021).  
 
Discussion 
 
The results of this research emphasize the importance of comprehensive 
methodologies for evaluating the performance of software applications operating in 
complex ecosystems. A review of existing literature reveals persistent challenges in 
standardizing performance metrics, optimizing resource utilization, and developing 
effective modeling techniques. Addressing these challenges is critical to ensure the 
reliability and efficiency of software applications that play a key role in modern 
organizational processes and user satisfaction. The use of SPE methodology has 
proven to be effective in the early stages of performance prediction and 
optimization. 
 
Benchmarking continues to play a key role in evaluating infrastructure 
configurations, providing valuable data on the capabilities of systems under different 
load conditions. However, there is a need to improve benchmarking practices by 
integrating micro- and macro-level analyses for more detailed and comprehensive 
assessments. 
 
Modern software application monitoring tools provide accurate data collection, but 
challenges remain in aggregating and interpreting data from various system 
components to derive actionable insights. The use of user-friendly visualization and 
analytics platforms based on artificial intelligence can greatly enhance the utility of 
monitoring solutions. 
 
The research emphasizes the importance of selecting appropriate performance 
metrics in line with stakeholder goals. To bring these perspectives together, 
composite performance indicators that integrate user experience metrics with 
infrastructure metrics need to be developed. 
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The use of statistical and machine learning techniques shows potential in improving 
prediction accuracy while reducing reliance on big data. 
 
Integrated performance measurement systems that combine application, 
infrastructure, and user interaction data open the door to comprehensive systems 
analysis. 
 
Conclusion 
 
This research confirms the key role of performance evaluation in modern software 
development. Analysis of literature and practices demonstrates the need to 
standardize metrics, integrate monitoring data, and use modern models for 
performance analysis.  
The future of software performance evaluation research involves the development 
of automation of monitoring processes, data collection and analysis, standardization 
of metrics and methodologies to unify approaches, and the use of hybrid modeling 
approaches that combine analytical and simulation techniques. These directions will 
ensure the creation of more reliable, scalable and efficient software solutions that 
meet user expectations and business requirements. 
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