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Bio-based glyceric acid, an oxidation product of glycerol, was 
converted into acrylic acid and its esters, crucial polymer 
precursors, using a new catalytic approach in a sustainable 
manner. Avoiding gaseous H2 or dangerous chemicals, the crucial 
step is Re-catalyzed deoxydehydration (DODH) in an alcoholic 
medium. In addition to being a solvent and hydrogen donor, 
alcohol also forms protective ester groups with acrylic and 
glyceric acids. This study examined several catalysts, alcohols, the 
presence of H2, and temperatures. Acrylic acid and methyl acrylate 
were produced in 72 hours with a 65% combined yield using a 
Re/C catalyst and methanol at 150 °C under N2. This versatile 
process can also be transferred to other alcohols enabling the 
production of various alkyl acrylates and monomers. 
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1 Introduction 
 
Acrylic acid (AA) and acrylate esters are essential building blocks in the polymer 
industry. To reduce a dependency on fossil fuels, bio-based production of acrylic 
acid and its ester from glycerol has been explored. Various routes have been 
explored in review articles (Avasthi et al., 2020; Beerthuis et al., 2015; Sun et al., 
2017) and detailed studies (Katryniok et al., 2011a; Wang et al., 2022a). Mainly 
conversion from glycerol to acrylic happen through catalytic dehydration to acreloin 
(Abdullah et al., 2022; Katryniok et al., 2010 or ally alcohol (Dethlefsen & Fristrup, 
2015; Jentoft, 2022), which are then further oxidized to acrylic acid (Li & Zhang, 
2016; Yang et al., 2016).  
 
Another conversion route involves glycerol oxidation to lactic acid (Razali & 
Abdullah, 2017b) or glyceric acid (GA) (Fan et al., 2021b), followed by dehydration 
to acrylic acid or acrylates (Huang et al., 2023a, 2023b). Our study presents the first 
heterogeneously catalyzed conversion of GA into AA or esters, avoiding toxic 
reagents like indoline (Boucher-Jacobs & Nicholas, n.d.) and relying on solid Re 
catalysts. 
 
From our previous study for DODH of mucic acid (Brigita Hočevar et al., n.d.; 
Harth et al., 2024) the commercial Re/C showed the most promising results and that 
is why it was chosen for that reaction as well. In this study different temperatures in 
either hydrogen or an inert atmosphere were observed over time.  
 
2 Material and Methods  
 
2.1 Chemicals used 
 
Glyceric acid (GA; 20–22 wt% aqueous solution, LD-2,3-dihydroxypropanoic acid) 
was sourced from TCI Chemicals. Methanol (MeOH; >99.8%) was obtained from 
J.T. Baker, while alternative alcohols such as ethanol (99.9%, J.T. Baker), iso-
propanol (>99.8%, Merck), n-propanol (>99.5%, Sigma-Aldrich), n-butanol 
(>99.9%, Honeywell), and n-pentanol (>99%, Sigma-Aldrich) were also tested. 
Homogeneous catalysts, including Re2O7, (NH4)ReO4, and KReO4 (≥99%, Sigma 
Aldrich), were used without pretreatment. Supported rhenium catalysts (5 wt% Re) 
such as Re/C, Re/TiO2, Re/SiO2, Re/Al2O3, and Re/H-ZSM-5 were procured from 
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Riogen Inc. and underwent pre-treatment via reductive heating at 400 °C under H2 

flow. N2 (5.0) and H2 gases were provided by Messer. 
 
2.2 Reaction set up 
 
Catalytic experiments were conducted in stainless steel high-pressure batch reactors 
(Parr 5000 Multi Reactor System, 75 mL capacity) (Figure 1) with magnetic stirring 
and independent heating. A typical experiment involved adding 500 mg of GA 
solution and 45.0 mL of alcohol (e.g., methanol) to achieve a ~20 mM GA solution. 
Rhenium catalysts were added at a fixed GA-to-Re molar ratio of 25:1, 
corresponding to 0.04 mmol of Re. The reactor was sealed, purged three times with 
N2, pressurized to 5 barg with N2 or H2, and stirred at 600 rpm. Heating was set to 
a ramp of 4 K min⁻¹ to the desired temperature (typically 150 °C, with additional 
tests at 120, 165, and 180 °C) and held isothermal for 72 hours. After the reaction, 
the reactor was cooled to room temperature, depressurized, purged with N2, and 
opened to collect the product mixture for analysis. Samples were taken during 
reaction as well. 
 

 
 

Figure 1: Parr reactor system 
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2.3 Analyical methods 
 
Gas chromatography-mass spectrometry (GC-MS) analysis was performed using a 
Shimadzu GCMS-QP 2010 Ultra system (Kyoto, Japan) equipped with a Zebron 
ZB-5MSi nonpolar capillary column (length: 60 m, diameter: 0.25 mm, film 
thickness: 0.25 µm). Compound identification was conducted via mass spectrometry, 
scanning fragment ions in the range of 35–500 m/z, and matching against the NIST 
17 (National Institute of Standards and Technology) library. Quantification was 
achieved using a flame ionization detector (FID). The analysis employed a 
temperature-programmed method: the column oven was initially held at 333 K for 
5.5 minutes, then ramped to 563 K at a rate of 20 K min⁻¹ and held constant for 8 
minutes. The injector and detector were maintained at 563 K, with an injection 
volume of 0.5 µL and a split ratio of 5:1. Product quantification was based on FID 
peak areas and external calibration curves derived from commercially available 
reference compounds. Although GA could not be detected, probably due to its 
decomposition or low volatility, several products were successfully identified, 
including glycerate esters, acrylic acid, propanoic acid and its methyl esters — methyl 
acrylate and methyl propanoate. 
 
3 Results and discussion 
 
3.1 GCMS analysis 
 
All results of the reaction products were analyzed by GC-MS. Figure 2 represents a 
typical chromatogram of product spectra. 
 
3.2 Screening of different temperatures and gas phases 
 
The results of the screening of different temperatures and different gas phases are 
represented in the Figure 2. The temperature variation shows that expectedly all 
reactions involved are enhanced with increasing temperature, i.e. DODH, 
hydrogenation and esterification, which results in other products. However, 
considering the market value of the unsaturated products acrylic acid and methyl 
acrylate, the most optimal temperature for N2 atmosphere is 150 °C, and yields near 
60 % were obtained after 72 h. 
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Figure 2: Representative gas chromatograms of product mixtures. Pink line represents a GC 
oven temperature. The main product are:  A – methylal, oxidation product of methanol; B – 

methyl acrylate (5); C – methyl propanoate (7); D – acrylic acid (4); E – propanoic acid. 
 

 
 

Figure 2: Yields of DODH products after 10 and 72 h of glyceric acid over Re/C in methanol 
at different reaction temperatures and under either inert N2 gas or reducing H2 gas 

atmosphere of 5 barg 
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The results of the screening of different temperatures and different gas phases are 
represented in the Figure 2. The temperature variation shows that expectedly all 
reactions involved are enhanced with increasing temperature, i.e. DODH, 
hydrogenation and esterification, which results in other products. However, 
considering the market value of the unsaturated products acrylic acid and methyl 
acrylate, the most optimal temperature for N2 atmosphere is 150 °C, and yields near 
60 % were obtained after 72 h. 
 
3.3 Reaction over time 
 
All samples were measured with GCMS. By stopping the reaction at shorter 
intervals, it becomes possible to obtain other products as well. The results are 
represnted in the Figure 3. To gain a deeper understanding of the reaction 
mechanism and kinetics, microkinetic models will be employed in future studies. 
 

 
 

Figure 3: Example of one reaction with yields over time of deoxydehydration products over 
Re/C (Riogen) catalysts in methanol at T = 150°C, 5 barg, N2 atmosphere. Reaction 

conditions: 100 mg of glyceric acid, 45.0 mL methanol, 140 mg catalyst, 150 °C, 5 bar N2, 
72 h. 

 
4 Conclusion 
 
This study demonstrates that the Re-catalyzed deoxydehydration (DODH) of 
glyceric acid is a promising and sustainable method for converting glycerol-derived 
glyceric acid into acrylates. The reaction was successfully carried out using Re/C, 
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surpassing typical homogeneous catalysts. The process, conducted in alcohols that 
also act as reducing agents, eliminates the need for hazardous reagents like H2. 
Acrylic acid readily form alkyl acrylates with alcohols, and different alcohols enable 
the production of a variety of alkyl acrylates. The highest yield of methyl acrylate 
(>45 %) was achieved over Re/C at 150 °C in methanol after 72 hours. 
 
This approach not only improves acrylate production efficiency but also opens new 
research directions. Future work should focus on enhancing catalyst activity, 
selectivity, stability, and reusability, as well as applying microkinetic models to better 
understand and optimize acrylate formation. 
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