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Generative AI's (GenAI) rapid growth raises environmental 
concerns due to high energy consumption. Despite accelerating 
technological advancements, understanding how different 
stakeholders in the GenAI ecosystem can contribute to 
environmental sustainability remains limited. We address this gap 
with a taxonomy of actions for environmentally sustainable 
GenAI ecosystems. Our taxonomy, developed through a design 
science approach combining literature review and case analysis, 
categorizes environmental sustainability interventions across 
resources, models, and usage. We identify key stakeholders 
(hardware manufacturers, cloud providers, model developers, 
application providers) and map their roles in implementing these 
actions. The taxonomy reveals trade-offs between performance, 
cost, and environmental sustainability, highlighting the need for 
context-specific strategies. Through an illustrative vignette, we 
demonstrate how GenAI application providers can systematically 
implement sustainability measures. We provide a framework for 
researchers and practitioners to develop environmentally 
responsible GenAI solutions, fostering coordinated action to 
ensure GenAI benefits without compromising environmental 
well-being. 
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1 Introduction 
 
By 2026, data centers and AI systems will consume approximately 1000 TWh of 
electricity annually, equivalent to Japan's total consumption (IEA, 2024), making 
energy the "primary bottleneck" for AI development (Lacey & Phillips, 2024). This 
surge, driven by increasingly complex AI models and popular GenAI tools like 
ChatGPT, strains energy infrastructure while increasing carbon emissions and water 
usage (Zuccon et al., 2023), creating tension between innovation and environmental 
sustainability. 
 
While GenAI capabilities advance rapidly, understanding how different ecosystem 
stakeholders1 can improve environmental sustainability remains limited. Current 
research primarily addresses technical optimizations (Bai et al., 2024; Jiang et al., 
2024; Yu et al., 2024), yet environmentally sustainable deployment requires 
coordinated action across stakeholders. The complex relationships and roles within 
the GenAI ecosystem and their environmental sustainability opportunities are not 
yet clearly mapped. 
 
To address this gap, we developed a taxonomy using Nickerson et al.'s (2013) design 
science-informed approach, combining conceptual-to-empirical and empirical-to-
conceptual strategies. Taxonomies aim to conceptualize objects within a domain of 
interest to assist researchers and practitioners in deepening their understanding. 
Through a structured literature review (vom Brocke et al., 2015; Webster & Watson, 
2002) and analysis of real-world cases across the ecosystem, we created a 
comprehensive framework that categorizes stakeholder actions and responsibilities 
to facilitate targeted environmental sustainability strategies throughout the GenAI 
ecosystem. 
 
2 Background 
 
Generative AI (GenAI), a technology capable of creating content like text, images, 
and code, relies on a complex ecosystem of interconnected components (Banh & 
Strobel, 2023). We can view this ecosystem as four interacting layers: the hardware 
layer (specialized chips like Nvidia GPUs); the cloud provider layer (Infrastructure-

 
1 Stakeholders are non-human entities in the GenAI ecosystem, mostly organizations.  



F. Helms, K. Hönemann, M. Wiesche: Building Green Generative AI: An Ecosystem-wide Approach to 
Environmental Sustainability 619 

 

 

as-a-service offerings, e.g., AWS, Microsoft Azure, Google Cloud); the models layer 
(foundation models like GPT-4o to specialized models); and the applications layer 
(user-facing tools like ChatGPT and Midjourney). These layers interact dynamically, 
with each stage consuming energy as users engage with applications that utilize 
models hosted on cloud platforms running on specialized hardware. 
 
Therefore, the GenAI capabilities come with a significant environmental cost, 
primarily through energy consumption projected to reach 1000 TWh by 2026 (IEA, 
2024). This energy demand is driven by several factors: the computationally intensive 
training of large models, the ongoing energy required for inference, and the energy 
used for data storage and transfer. It is estimated that GPT-3 consumed 1,287MWh 
for training, while total inference demands required higher energy consumption (de 
Vries, 2023). Carbon intensity varies with electricity sources, which can be reduced 
by switching to sustainable energy sources or offsetting carbon emissions through 
certificates (Schwartz et al., 2020). Another aspect is the choice of models and their 
size, which significantly impact the energy consumption for training and inference 
(Argerich & Patino-Martinez, 2024; Everman et al., 2023). GenAI's rapid growth, 
with OpenAI’s ChatGPT reaching 300 million weekly users by December 2024, 
further intensifies these concerns (Roth, 2024). Beyond energy, water usage is also a 
significant concern (Zuccon et al., 2023). Current research efforts in environmental 
GenAI sustainability have mostly focused on specific parts of the GenAI ecosystem 
(Verdecchia et al., 2023), such as model training (McDonald et al., 2022), inference 
(Samsi et al., 2023), or benchmarking (Hodak et al., 2024). A holistic, ecosystem-
level perspective is largely missing. 
 
3 Research Design and Methodology 
 
We developed a taxonomy following the method proposed by Nickerson et al. 
(2013), which has become the de facto standard for taxonomy development in 
Information Systems (IS) research (Szopinski et al., 2019). This approach enables 
systematic classification of dimensions relevant to environmental GenAI 
sustainability, valuable for structuring complex domains while revealing 
relationships between elements and their theoretical foundations (Bailey, 1994; 
Schöbel et al., 2020). We adapted the methodology of Kundisch et al. (2022) to 
ensure rigorous development of  our taxonomy. 
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Our taxonomy aims to equip GenAI ecosystem stakeholders with a tool for 
developing environmentally sustainable solutions based on real-world cases, 
benefiting both researchers and practitioners seeking guidance on environmental 
sustainability and cost-influencing activities. Thus, as a first step, it is necessary to 
identify a meta-characteristic, which serves as the overarching purpose of the 
taxonomy. In our case, the meta-characteristic stated as follows: “Features and 
properties of GenAI ecosystems that impact environmental sustainability. Then, the 
next step in a taxonomy development process is to define the ending conditions that 
end the iterative taxonomy building process. Nickerson et. al (2013) proposed five 
subjective ending conditions and eight objective ending conditions, which we 
adopted in our building process. We employed a hybrid approach combining 
conceptual-to-empirical, where characteristics and dimensions are derived from 
literature, researcher’s existing knowledge, and individual judgment,  and empirical-
to-conceptual, where real-world objects are analyzed and grouped based on their 
shared characteristics. (Nickerson et al., 2013). Based on this approach we developed 
meta-dimensions (MDs), dimensions, characteristics, and their relevant stakeholders 
to formulate our taxonomy. 
 
First, we conducted a structured literature review following vom Brocke et al. (2015) 
and Webster & Watson (2002), searching for sustainability-related GenAI 
publications across recognized databases (Scopus, AIS eLibrary, arXiv) with a post-
2021 timeframe. We included arXiv to capture the most recent publications in this 
rapidly evolving field. We limited the timeframe to post-2021, as the launch of 
ChatGPT in 2022 marked the primary onset of GenAI ecosystem development and 
research. Our search strategy encompassed titles, abstracts, and keywords using the 
search string: ("sustainab*" OR "climat*" OR "energ*" OR "environmental") AND 
("generative AI" OR "generative artificial intelligence" OR "genai" OR "llm" OR 
"large language model" OR "text-to-image"). After screening 1,671 articles, we 
identified 53 relevant publications, with four additional papers from forward and 
backward searching. We focused on articles addressing the direct environmental 
sustainability aspects of GenAI operations. Articles discussing the application of 
GenAI for sustainability in other fields, such as energy research (Kench et al., 2024) 
or enhancing climate literacy (Atkins et al., 2024), were excluded.  
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Table 1: Meta-Dimensions (MDs) and Dimensions 
 

Meta-Dimensions (MDs) Dimensions Sources 
Resources Compute Resources (Liu & Yin, 2024) 

 Energy Resources (Dodge et al., 2022) 
Models Model Size (Argerich & Patino-Martinez, 2024) 

 Training & Fine-tuning (Albalak et al., 2024; Bai et al., 
2024) 

Usage Inference (Stojkovic et al., 2024) 
 Input/Output (Husom et al., 2024) 
 User Interface (Ren et al., 2023) 

 Source: Own 

 
In the second iteration, to further ground our proposed taxonomy with practical 
relevance, we followed an empirical-to-conceptual approach by analyzing real-world 
cases from 20 key ecosystem stakeholders identified in an industry report, including 
hardware manufacturers, cloud computing providers, model providers, and 
application providers (Artificial Analysis, 2024). For those 20 stakeholders we 
conducted an internet search and analyzed the relevant documentations and 
applications for further information for the taxonomy building process. We 
identified no new characteristics in the second iteration. The taxonomy was finalized 
after verifying all ending conditions were met (Nickerson et al., 2013). After reaching 
saturation, we abstracted from the identified dimensions and characteristics to group 
them under meta-dimensions, which are presented in Table 1 (Nickerson et al., 2013; 
Strobel et al., 2024). 
 
4 Results 
 
The final taxonomy and their relevant stakeholders are presented in Table 2. 
Dimensions and characteristics are presented in the following. 
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Table 2: Taxonomy of Environmental Sustainability Actions in GenAI Ecosystems 
 

MDs Dimensions Characteristics Stakeholders 

R
es

ou
rc

es
 Compute  

Resources 

Hardware Choice Hardware Cloud Model Application 

Partitioning Hardware Cloud   

Power Capping Hardware Cloud   

Energy  
Resources 

Tracking Emissions  Cloud Model Application 

Time & Location Shifting  Cloud Model Application 

M
od

el
s Model Size 

Model Compression   Model Application 

Model Choice   Model Application 

Specialized Models   Model Application 

Training  
& Finetuning 

Algorithms   Model Application 

Data Management   Model Application 

U
sa

ge
 

Inference 
Batching    Application 

Caching    Application 

Input/Output 
Input Optimization    Application 

Output Optimization    Application 

User Interface Energy Usage Display    Application 
 Source: own 

 
4.1 Resources 
 
4.1.1 Compute Resources 
 
Hardware update strategies significantly reduce energy usage, as shown by the 
transition from NVIDIA T4 to A100 GPUs, which cuts carbon emissions by 83% 
for equivalent workloads (Liu & Yin, 2024). Novel architectures like memristor 
crossbar chips achieve 69% energy reduction compared to traditional systems (Wang 
et al., 2024). Several companies offer application specific integrated circuit (ASIC) 
chips specialized for AI computational efforts at greater energy efficiency, e.g. AWS 
Trainium and Inferentia or Google Tensor Processing Units (TPU) (Jouppi et al., 
2023). 
 
GPU partitioning effectively manages smaller workloads, reducing energy demand 
by up to 33% and enabling 55% faster fine-tuning while using 42% less energy, 
though with 2-9.5x slower computation (Amazon Web Services, 2025). 
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The power consumption of GPUs can be capped to reduce energy consumption and 
temperature of the chips, which can extend the lifespan of GPUs (Zhao et al., 2023). 
Power capping reduces GPU energy consumption during inference by 23.21% with 
only 6.7% increased inference time (Samsi et al., 2023). Similarly, training a BERT 
model with a 150W cap (vs. 250W) needs 108.5% of the time but only 87.7% of the 
energy (McDonald et al., 2022). A 20% lower frequency cap for the GPUs, which 
saves about 20% of power, can support a medium load without lowering the latency 
or throughput of inference (Stojkovic et al., 2024). 
 
4.1.2 Energy Resources 
 
Tools like FootPrinter help assess datacenter carbon footprints (Niewenhuis et al., 
2024). Time and location shifting leverages varying renewable energy availability, 
reducing emissions for training GenAI models (Dodge et al., 2022; Jagannadharao 
et al., 2023). Routing inference requests to greener datacenters can reduce carbon 
emissions by 35% while maintaining acceptable latency (Chien et al., 2023). Leading 
cloud providers offer tools which allow users to track carbon emissions of their 
usage and inform users about the energy mix at their chosen locations. 
 
4.2 Models 
 
4.2.1 Model Size 
 
Models with smaller number of parameters use less energy (Argerich & Patino-
Martinez, 2024; Liu & Yin, 2024). Quantization techniques like GPT-Generated 
Unified Format (GGUF) reduce energy usage by decreasing numerical precision and 
thus computational requirements (Rajput & Sharma, 2024). A 4 bit quantized model 
uses less than half of the energy of a 16-bit model, while reducing inference latency 
3x (Argerich & Patino-Martinez, 2024). Distillation is another approach to reduce 
model size by transferring knowledge from larger to smaller models for specific use 
cases (Alzoubi & Mishra, 2024). Some cloud providers offer services to distill models 
for customers’ use cases. 
 
Model selection should balance efficiency with performance requirements (Argerich 
& Patino-Martinez, 2024; Everman et al., 2023). Developers of end-user apps can 
also utilize techniques to choose the right model for the requested task by employing 
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model cascading or model routing. Model cascading starts the inference process with 
the smallest, most efficient model and only escalates requests to larger ones when 
necessary. This enables smaller models to answer simple tasks and only employs 
larger models for more complex tasks, reducing energy consumption (L. Chen et al., 
2023; L. Chen & Varoquaux, 2024). Model routing assesses the complexity of the 
requested task to decide on the right model to answer successfully (L. Chen & 
Varoquaux, 2024). End-user applications like Perplexity and ChatGPT allow the user 
to choose a model for specific tasks. Perplexity also features an “auto mode” to 
select appropriate models based on users’ prompts. 
 
Developers have to decide whether to use a base model or fine-tune a model to their 
specific use case, requiring additional energy usage. Fine-tuning should be used 
judiciously, as specialized models for medical and financial domains often don't 
outperform base models (Jeong et al., 2024; X. Li et al., 2023). Specialized models 
still outperform large general models in classification tasks such as sentiment, 
approval/disapproval, emotions, and party positions (Bucher & Martini, 2024). 
While large general models can achieve many of the tasks of specialized models in a 
zero-shot manner with no further fine-tuning, the energy impact of larger models is 
greater than those of smaller models (Luccioni et al., 2024). 
 
4.2.2 Training & Fine-tuning 
 
Algorithms for fine-tuning models can be optimized to reduce the computational 
need of fine-tuning models. Fine-tuning optimization frameworks like GreenTrainer 
achieve 64% reduction in computation by adaptively selecting tensors based on 
importance and backpropagation cost, demonstrating energy-efficient training 
without performance sacrifice (Huang et al., 2024). Additional efficiency approaches 
during model training include data parallelism (dividing datasets across nodes), 
model parallelism (distributing model layers across nodes), and mixed-precision 
training (reducing floating-point types) (Bai et al., 2024). 
 
For LLMs trained on massive text corpora, improving dataset efficiency significantly 
reduces energy demands. The quality of large text datasets vary which calls for 
careful selection of data to train a capable model and reduce energy consumption 
(Albalak et al., 2024). Data pruning estimates the importance of data points in the 
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dataset to prioritize those data points during training (D. Chen et al., 2024; Zhuang 
et al., 2023). 
 
4.3 Usage 
 
4.3.1 Inference 
 
Batch processing improves GPU utilization and energy efficiency, particularly for 
smaller models (Argerich & Patino-Martinez, 2024). Reducing batch size during low 
demand can save up to 15% of energy consumption (Stojkovic et al., 2024). Most 
API providers offer services to process requests in batches to save cost, compute, 
and thus energy usage. 
 
Caching requested answers in databases reduces energy usage by retrieving stored 
responses for similar prompts rather than re-running inference, particularly 
beneficial for LLM-powered search engines (Betti et al., 2024). Most API providers 
offer prompt caching capabilities that store parts of prompts or documents so that 
in future requests models can access this cached information without reprocessing. 
 
4.3.2 Input/Output 
 
For multimodal LLMs, selecting only important image tokens can reduce token 
count by 79%, decreasing processing time by 67% and memory usage by 30% (Betti 
et al., 2024). Similarly, simplifying text prompts and concatenating multiple queries 
into single prompts reduces computational demands (L. Chen et al., 2023; Husom 
et al., 2024). 
 
Image generation is more energy-intensive than text generation (Luccioni et al., 
2024). When generating images with diffusion models, reducing the number of 
inference steps and image resolution lowers the energy usage (Seyfarth et al., 2025). 
Early detection of unsuccessful image generations can reduce inference time by 12% 
(Betti et al., 2024). For text generation, energy usage scales with the length of the 
generated text (Husom et al., 2024). Instructing larger models to provide concise 
answers can reduce carbon footprint by 40%, though with reduced accuracy for 
complex reasoning tasks (B. Li et al., 2024). This can be realized through most API 
providers by adapting the system message to generate shorter answers or defining a 
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maximum number of tokes to return. End-user applications such as ChatGPT and 
Claude also allow users to define system preferences or styles which could include 
an instruction to generate shorter answers.  
 
4.3.3 User Interface 
 
A way to save energy through reducing the use of GenAI tools is by presenting the 
user with information about the environmental sustainability of the continued use 
of the tool. Displaying energy usage information through visualizations effectively 
promotes sustainable usage, with users responding positively to transparency about 
environmental impact (Ren et al., 2023). 
 
5 Application 
 
We illustrate the taxonomy's practical application with a vignette describing choices 
and events (Miles et al., 2020). Consider "Imaginarium," a hypothetical text-to-image 
generation service similar to DALL-E or Midjourney. Using the taxonomy, 
Imaginarium can systematically analyze its operations to identify environmental 
sustainability opportunities across different ecosystem layers. 
 
At the resource level (cloud provider), Imaginarium could select providers offering 
energy-efficient hardware (newer GPUs, TPUs) and utilize tools to track emissions. 
They could strategically choose data centers with more renewable energy and explore 
time/location shifting for training and inference. 
 
At the model level (model/API providers, application developers), Imaginarium 
could offer a smaller, efficient diffusion model, potentially accepting a minor image 
quality trade-off for substantial energy reductions. Techniques like quantization 
could further minimize the model's memory and computational demands. 
 
Within the usage layer (application developers, end-users), Imaginarium could offer 
batch inference for predictable loads or cache generated images for frequent 
prompts. Features encouraging smaller images or fewer inference steps could be 
implemented, with transparent feedback on energy implications. This example 
shows how applying the taxonomy helps Imaginarium identify concrete 
environmental sustainability actions across multiple GenAI ecosystem layers. 
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6 Discussion 
 
We presented a taxonomy of stakeholders and activities in the GenAI ecosystem 
specifically designed to identify environmental sustainability opportunities. This 
holistic framework is crucial for understanding GenAI's complex environmental 
footprint. We demonstrate that responsibility for environmental GenAI 
sustainability cannot be assigned to a single stakeholder or confined to a specific 
layer within the ecosystem. It needs to be a coordinated effort, encompassing 
hardware manufacturers, cloud providers, model developers, application developers, 
and even end-users. Given the great importance of platforms for the development, 
access, and deployment of GenAI capabilities, the interconnectedness of these 
platforms and their diverse stakeholders means that actions and challenges at one 
level impact others, necessitating coordinated approaches for environmental 
sustainability (Heimburg et al., 2025). 
 
We show inherent trade-offs between performance, cost, and environmental 
sustainability. For instance, larger models offer higher performance but consume 
significantly more energy (Argerich & Patino-Martinez, 2024; Liu & Yin, 2024). 
Conversely, model compression can reduce energy consumption, but may slightly 
decrease performance (Rajput & Sharma, 2024). The optimal approach is highly 
context-dependent, contingent upon the specific application, its performance 
requirements, and the acceptable environmental impact.  
 
We identify numerous opportunities for enhancing efficiency at various stages, from 
hardware choice and data center operations to model optimization and application-
level choices. These efficiency improvements not only mitigate environmental 
impact but can also lead to significant cost savings, creating a mutually beneficial 
scenario for both environmental sustainability and economic viability. 
 
We show that the ecosystem is closely connected and measures to achieve 
environmental sustainability rely on different stakeholders to be achieved 
successfully. Transparent reporting standards of the environmental effects of GenAI 
operations are therefore crucial. Hardware manufacturers and cloud providers 
should offer standardized reports on the energy usage and environmental 
sustainability of their offerings. Model providers can then reliably calculate and 
report environmental factors for training and inference. This ecosystem-wide 
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transparency enables application providers and end-users to make informed choices 
about their GenAI usage and its environmental impact. Hugging Face, a platform 
for hosting GenAI models, has created a promising initiative to increase 
transparency in the reporting of environmental impact of different GenAI models 
(Hugging Face, 2025). 
 
While we provide a comprehensive taxonomy, we acknowledge limitations and 
outline promising directions for future research. The GenAI ecosystem is 
characterized by rapid and continuous evolution. New models, hardware 
advancements, and innovative techniques are constantly emerging. Consequently, 
the taxonomy will require regular updates and refinements to maintain its relevance 
and accuracy in this dynamic landscape. A recent example is the release of reasoning 
models such as OpenAI o1 (OpenAI, 2024) and DeepSeek R1 (DeepSeek-AI et al., 
2025), which, by design, produce a greater amount of tokens during inference and 
thus have higher energy demands. Furthermore, the taxonomy identifies 
opportunities but doesn't precisely quantify environmental impact for each action, 
focusing primarily on technical and operational aspects.  
 
Future research should explore the role of economic incentives, such as carbon 
pricing mechanisms, and policy regulations to encourage sustainable practices across 
the ecosystem. Understanding user behavior is another critical area for future 
investigation. Further research is needed on how user interface design, information 
presentation, and user education can influence user choices and promote 
environmentally sustainable usage patterns. 
 
In conclusion, we present a taxonomy promoting a holistic, environmentally 
sustainable approach to GenAI development and deployment. By promoting 
coordinated action across the entire ecosystem, we contribute to the responsible and 
environmentally sustainable development of this transformative technology. The 
application vignette demonstrates its practical value, offering a roadmap for 
companies improving their environmental sustainability. The goal is to ensure that 
the substantial benefits of GenAI can be realized without compromising long-term 
environmental well-being. 
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