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Accurate food classification is essential for ensuring compliance 
with dietary regulations, nutritional standards, and sustainability 
guidelines, but it remains challenging due to fragmented data and 
semantic complexity. This study presents a pipeline leveraging 
large language model (LLM) embeddings, ontology mapping, and 
human-in-the-loop validation to enhance food classification in 
institutional food services. The pipeline achieves high accuracy in 
dietary-group mapping (precision 0.94, recall 0.91, F1-score 0.92), 
though precise FoodEx2 code matching remains challenging. A 
confidence-based validation strategy effectively balances 
automated processes with expert oversight to manage ambiguity. 
The proposed approach enables digital transformation of 
traditionally fragmented food service systems, enhancing 
transparency, operational efficiency, and alignment with dietary 
and public health guidelines. Future research should deploy this 
pipeline in operational canteen settings to refine embedding 
techniques, enhance accuracy, and support sustainable nutrition 
management. 
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1 Introduction 
 
The rapid advancement of Emerging Digital Technologies (EDT), including 
Artificial Intelligence (AI), data pipelines, and automation, is reshaping industries by 
enabling data-driven decision-making, and process optimization (Oluwaseun 
Badmus et al., 2024). From healthcare and finance to supply chain management and 
public services, these technologies offer increased efficiency (Bialas et al., 2023; Elias 
et al., 2024; Khedr and S, 2024; Kulal et al., 2024). However, their widespread 
adoption presents significant challenges, particularly regarding data interoperability, 
ethical AI governance, and transparency (Danks and Trusilo, 2022).  
 
In institutional food services, these challenges manifest in heterogeneous data 
formats, fragmented digital ecosystems, and the complexity of integrating AI-driven 
solutions into existing infrastructure (Wolfert et al., 2023; Agrawal et al., 2025; Dhal 
and Kar, 2025). Ensuring sustainable and nutritionally balanced food offerings in 
canteens requires a structured approach to data harmonization and regulatory 
alignment (Gaitán-Cremaschi and Valbuena, 2024). One approach to this is 
FoodEx2, which is a comprehensive food classification system developed by the 
European Food Safety Authority and is used to categorize and standardize food 
products, ingredients, and food-related data (EFSA, 2015). By utilizing food 
ontologies like FoodOn, food items can be systematically classified and connections 
between food, health, and the environment established (Dooley et al., 2018). Unlike 
isolated ontologies, FoodOntoMap links multiple sources with semantic tags, 
enhancing interoperability (Popovski et al., 2019). This ontology mapping addresses 
the lack of annotated food corpora and named-entity recognition systems, 
supporting research on food systems, human health, and sustainability (Popovski, 
Seljak and Eftimov, 2020). Food classification is essential for evaluating national and 
international dietary guidelines, as all food-based dietary guidelines (FBDG) rely on 
food groups. Across 90 countries, FBDG emphasizes core principles such as dietary 
variety, prioritizing fruits, vegetables, and legumes, and limiting sugar, fat, and salt. 
In detail, the recommendations on dairy, red meat, and fats can vary (Herforth et al., 
2019). A systematic review by Leme et al., 2021 found that, on average, only 40% of 
individuals across both high-income and low- to middle-income countries meet their 
national dietary recommendations. Addressing this issue requires scalable tools to 
evaluate the nutritional quality of the food supply and support the development of 
effective public health interventions. Despite the challenges, existing research shows 
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promising AI approaches in extracting food data and estimating nutritional values 
(Hu, Ahmed and L’Abbé, 2023; Harris et al., 2025). To further address these 
challenges, knowledge graphs, NER and machine learning integration have emerged 
as a promising solution (Cudré-Mauroux, 2020). Ontologies provide a structured 
framework for standardizing food-related data, allowing AI-driven systems to 
harmonize diverse nutritional databases, procurement records, and sustainability 
tracking tools (Popovski et al., 2019; Shirai et al., 2021; Min et al., 2022). 
 
This study applies the EDT framework to enable business integration and digital 
transformation within institutional food services, exemplified through company 
canteens (Serrano-Santoyo et al., 2021). The developed pipeline, leveraging Large 
Language Models (LLM), addresses fragmented data, inconsistent food 
classification, and regulatory compliance, thereby enhancing transparency and 
operational efficiency. By aligning food offerings with dietary guidelines and public 
health goals, the pipeline supports the nutritional and operational transformation to 
an adaptive digital ecosystem. 
 
2 Literature 
 
2.1 Data Pipelines 
 
Data pipelines play a critical role in integrating, processing, and analyzing data across 
multiple sources. They enable data flow between disparate systems, ensuring that 
information is structured and ready for analysis. In sectors where data originates 
from heterogeneous and unstructured sources, traditional data pipelines often 
struggle to maintain interoperability (Foidl et al., 2024). Unlike conventional extract, 
transform and load systems, modern data pipelines leverage artificial intelligence and 
automation to handle real-time ingestion, data standardization, and transformation 
(Kolluri, 2024).  In institutional food services, information is often scattered across 
different systems, including Enterprise Resource Planning (ERP) software, supplier 
databases, nutritional databases, and menu management tools. These datasets 
frequently exist in incompatible formats such as Excel spreadsheets, PDFs, CSV 
files, and proprietary ERP exports. The lack of a standardized data exchange format 
makes integration difficult, requiring complex preprocessing before meaningful 
analysis can take place (Zadeh et al., 2018). Greater access to real-world data further 
complicates the evolution of data schemas across platforms (Zhang et al., 2022). 
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Current data pipelines struggle with inconsistencies, quality issues, and inefficiencies 
in dynamic environments. While machine learning can automate schema adaptation 
and improve data quality, their use in scalable, cross-platform workflows is still 
limited. More research is needed to develop AI-driven automation for better 
interoperability, quality assurance, and regulatory compliance (Santhosh Bussa, 
2024). 
 
2.2 Ontology Mapping for Data Integration 
 
Ontologies provide structured vocabularies that enable semantic interoperability 
between disparate datasets. In domains where data consistency is critical, ontology-
based classification ensures that different terms referring to the same entity are 
aligned under a common framework (Gruber, 1995). While ontologies have 
traditionally been developed as rule-based systems, recent advances in artificial 
intelligence and natural language processing have enhanced their usability, enabling 
automated ontology mapping across multiple data sources (Wei and Li, 2025). 
 
Machine learning models, particularly deep learning and transformer-based 
architectures have significantly improved the automation of entity recognition and 
classification. LLMs are now capable of extracting structured knowledge from 
unstructured text, making them valuable tools for ontology mapping in data 
pipelines (Ciatto et al., 2025). With advanced LLMs from companies like OpenAI, 
ontology mapping with embedding models like text-embedding-3-large has 
significantly improved in accuracy. Embeddings represent concepts as high-
dimensional vectors, capturing semantic similarities beyond lexical differences. This 
enhances alignment in complex domains like biomedicine and regulatory 
compliance, where terminologies evolve across institutions. By reducing reliance on 
rule-based mappings, embeddings improve scalability while maintaining high 
precision in entity linking (Sousa, Lima and Trojahn, 2025; Taboada et al., 2025). In 
the healthcare sector, AI-driven Fast Healthcare Interoperability Resources mapping 
has enabled seamless integration of patient records across hospitals, insurance 
providers, and government agencies (Li et al., 2023). Similarly, in supply 
management, AI-powered ontology mapping has improved logistics efficiency by 
standardizing product categories across global supplier networks (Regal and Pereira, 
2018).  
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Despite the existence of standardized food classification systems like FoodEx2 and 
ontologies, their practical implementation remains limited, and current policies still 
fail to drive the necessary transformation toward a sustainable food system. To 
overcome fragmented approaches and address systemic crises, a new research and 
policy agenda is needed that strengthens cross-sectoral governance and effectively 
integrates food policies (Edwards, Sonnino and López Cifuentes, 2024). AI-based 
mapping offers a potential solution to those challenges by automatically linking raw 
ingredient data to a predefined classification system, reducing manual labor and 
improving data consistency (Hua et al., no date; Goel and Bagler, 2022; Youn, Li and 
Tagkopoulos, 2023). 
 
2.3 Digital Integration for Sustainable Food Systems 
 
Digital tools like blockchain, AI, and digital twins can boost sustainability in the food 
value chain by improving efficiency and resource use. Yet, outdated infrastructure, 
regulatory hurdles, and fragmented data limit their integration and impact (Michel et 
al., 2024). Achieving meaningful business integration in institutional food services 
requires overcoming siloed policy approaches by connecting policies across sectors 
and governance scales. Effective integration involves moving away from isolated 
processes toward interconnected governance frameworks, addressing interactions 
among health, environmental, and socio-economic sectors (Edwards, Sonnino and 
López Cifuentes, 2024). By systematically combining fragmented data from diverse 
stages of the food supply chain, AI and digitalization provide advanced predictive 
capabilities. Furthermore, integrating data-driven approaches fosters transparency, 
trust, and compliance with sustainability objectives throughout the food value chain 
(Marvin et al., 2022). 
 
3 Methodology 
 
This study follows a Design Science Research approach to develop an AI-driven 
data pipeline for classification and mapping. The research focuses on structuring 
unstructured data, aligning it with predefined taxonomies, and integrating 
mechanisms for human oversight to ensure regulatory traceability. The study applies 
principles from the Exploratory Framework for Ethical and Regulatory Implications 
of EDT in Table 1, to examine how AI-driven classification can be validated and 
mapped to food guidelines. The methodology involves the development of a 
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crosswalk-based framework to establish interoperability between classification 
systems. 
 

Table 1: Framework for Ethical and Regulatory Implications of EDT 
 

Observed Conditions Research Questions Desired Conditions 
Recipe data in PDFs is 
unstructured, making it 
difficult to analyze and 

categorize. 

How can LLMs be leveraged to 
classify and map food data 

from unstructured text? 

AI should support, rather than 
replace, expert decision-making 

in food classification and 
dietary assessments. 

Current methods for 
classifying foods against 
nutritional guidelines are 
manual, time-consuming 

How can regulatory elements 
be integrated into AI-driven 

food classification? 

The pipeline should improve 
efficiency while ensuring 

transparency 
 
3.1 Architecture 
 
The LLM pipeline for heterogeneous data in Figure 1 supports transparent and 
regulatory-compliant AI decisions through ontology mapping, iterative learning, and 
structured expert oversight. By integrating human-in-the-loop validation, the 
pipeline ensures alignment with policy and ethical governance principles. Its 
architecture facilitates business integration by transforming fragmented food-service 
data into a unified digital ecosystem, shifting from manual, disconnected processes 
toward integrated compliance and sustainability management. The pipeline’s 
adaptable design further allows implementation across multiple domains, including 
public health, sustainability initiatives, and environmental monitoring, where 
regulatory tracking and accuracy are critical. 
 

 
 

Figure 1: LLM Pipeline for Heterogeneous Data Mapping  



K. Nils Röhl, R. Alt, J. Wirsam: LLM Pipeline for Mapping Heterogeneous Data: A Case Study in 
Food Classification 489 

 

 

Unstructured data from diverse sources (e.g., text documents, PDFs, databases) can 
be extracted and standardized using Natural Language Processing and entity 
recognition models. AI models generate semantic embeddings that allow for 
ontology-based classification, linking extracted data to structured taxonomies or 
regulatory databases. The use of crosswalk files ensures consistency and facilitates 
interoperability between national and international guidelines. This approach allows 
the pipeline to adapt to country-specific regulatory frameworks while maintaining 
cross-domain applicability. AI-generated classifications undergo a confidence-based 
validation process, where low-confidence mappings are flagged for human review. 
This ensures that automated classification aligns with national guidelines, balancing 
efficiency with expert oversight. Validated classifications feed into an iterative 
learning system, improving ontology mapping accuracy over time. This continuous 
refinement makes the system adaptive to policy changes. 
 
3.2 Use-Case Canteen Recipe Ingredient Classification  
 
OpenAIs LLM embedding “text-embedding-3-large” is used to match extracted 
entities to predefined taxonomies, selected for its semantic performance and ease of 
integration. Human validation processes refine mappings and address uncertainties. 
The pipeline architecture is implemented in the context of a company canteen 
setting, where ingredient names can be extracted from PDFs, and mapped to 
Planetary Health Diet (PHD) groups and FoodEx2 term codes.  
 

 
 

Figure 2: Company Canteen Pipeline for PHD Mapping 
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3.3 Validation 
 
To validate the embeddings mapping, a test set of FoodEx2 names were manually 
labeled with PHD categories from the 430 subgroups of the FoodEx2 hierarchy 
code and applied to the underlying names. The first and second hierarchy has been 
removed to reduce misleading general food category matching, resulting in 4,416 
entries. Flavors, vitamins, chemical elements, and composite dishes, which could 
belong to multiple food groups, were labeled as “unknown”. The final validation file 
consists of 2,750 entries, including FoodEx2 codes and PHD group classifications. 
To assess the effectiveness of the pipeline, F1-score and recall metrics were used to 
evaluate the PHD group embeddings generated by the “text-embedding-3-large” 
model against the validated file. A second test was conducted using zero-shot 
prompting with gpt4o-mini for mapping PHD groups to the FoodEx2 validation 
names. Another validation for ingredient data, was performed by mapping FoodEx2 
name embeddings to given ingredients from FRIDA, the national food database 
from Denmark. FoodEx2 codes from FRIDA have been filtered based on the 
“unknown” codes list earlier, resulting in 935 entries with food names and their 
validated FoodEx2 codes. Embeddings have been created for all entries using “text-
embedding-3-large” to compare them with the embedded FoodEx2 names.  Cosine 
similarity was applied to determine the accuracy of this mapping. 
 
4 Results 
 
Figure 3 presents the classification results for a food group matching task using an 
embedding model (“text-embedding-3-large”) and GPT-4o-mini. The GPT-4o-mini 
model exhibits higher performance across all food groups. The “text-embedding-3-
large” model achieves a precision of 0.84, recall of 0.78, and an F1-score of 0.79, 
while GPT-4o-mini attains a precision of 0.94, recall of 0.91, and an F1-score of 
0.92. In the “text-embedding-3-large” classification, the food categories “eggs” 
(precision: 0.17, recall: 1.00) and “unsaturated fats” (precision: 1.00, recall: 0.06) 
represent the lowest-performing cases, with eggs displaying low precision but high 
recall, and unsaturated fats exhibiting high-precision but low recall. Additionally, 
starchy vegetables show low precision (0.51) and recall (0.53). In contrast, dairy 
(precision: 0.94, recall: 0.84) is among the highest-performing categories. The GPT-
4o-mini model demonstrates its lowest classification performance in the 
“unsaturated fats” (precision: 0.79, recall: 0.62) and “saturated fats” (precision: 0.71, 
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recall: 0.78) categories, while achieving the highest precision and recall for “fish and 
seafood" (precision: 0.99, recall: 0.98) and “eggs” (precision: 0.97, recall: 0.97).  
 

 
 

Figure 3: Food Group Classification Report 
 
The similarity score distribution in Figure 4 shows a distinction between correct and 
incorrect classifications of FoodEx codes, with correct matches generally having 
higher similarity scores. Incorrect classifications tend to cluster at lower values, with 
some overlap between the distributions. The median similarity score for correct 
matches is higher than for incorrect ones. 
 

 
 

Figure 4: Distribution of Similarity Scores for PHD Category Matches 
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Table 2 provides two examples of false classifications in the text-embedding model. 
The model misclassified “emperors” as eggs (similarity score: 0.257) and “sea asters” 
as fish and seafood (similarity score: 0.372).  
 

Table 2: False PHD Category Labels 
 

Food Name Correct Category Incorrect Category Cosine Similarity 
Emperors Fish and seafood Eggs 0.257 
Sea asters Vegetables Fish and seafood 0.372 

 
 
4.1 FoodEx2 Code Matching Results 
 
Figure 5 visualizes the distribution of similarity scores for correct and incorrect 
FoodEx2 code matches using OpenAI’s “text-embedding-3-large” model. Correct 
matches are shown in green (median 0.73), while incorrect matches are shown in red 
(median 0.66). The graph on the right displays the accuracy of FoodEx2 code 
matching based on cosine similarity across the closest three matches. The 1st match 
has an accuracy of 46.28%, the 2nd match has 13.19%, and the 3rd match has 5.74%.  
 

 
Figure 5: Embedding Matches of FoodEx2 and FRIDA Food Names 

 
5 Discussion 
 
The developed LLM-based classification pipeline demonstrates significant potential 
for aligning food categorization with national and international dietary guidelines, 
such as the PHD. By integrating crosswalk files, category assessment, and 
confidence-based validation, the system provides a structured approach to food 
classification. The ability to automate category assignment using GPT-4o-mini has 
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shown promising results, with the model successfully aligning food items to broader 
dietary groups with high accuracy. This suggests that LLM-assisted classification can 
support large-scale food policy assessments, improving transparency in food system 
monitoring. However, while category-level classification performs well, the exact 
matching of FoodEx2 codes remains a challenge due to the nuances in food naming 
conventions. The results showed that 46.28% of food items were correctly classified 
in the first match, while additional codes were identified in the second and third 
matches. A small part of the matching is shown in Table 3 in the appendix. This 
highlights that even when the top match is incorrect, valid classifications frequently 
appear in the nearest similarity ranks, demonstrating that embeddings capture 
meaningful relationships between food names even if perfect alignment is not always 
achieved. 
 
5.1 Balancing Precision  
 
Overlapping similarity scores between correct and incorrect classifications of 
FoodEx2 codes, complicate establishing a clear decision threshold. Especially when 
food names differ subtly due to preparation methods or regional variations. For 
example, categories like “eggs” and “unsaturated fats” illustrate how semantic 
ambiguity can significantly impact precision and recall. 
 
This underscores the need for a strategic balance between automation accuracy and 
expert validation. Setting similarity thresholds too strictly reduces classification 
errors but increases manual effort, while lower thresholds boost automation but risk 
misclassification. Thus, confidence-based human oversight is essential for balancing 
precision effectively. Ensuring this balance is critical for reliable dietary assessment, 
effective regulatory compliance, and successful digital transformation in nutritional 
management and business integration. 
 
5.2 Limitations and Future Research Directions 
 
The results indicate specific challenges in food category classification, particularly in 
groups like “eggs” and “unsaturated fats”, where semantic ambiguity and 
overlapping similarity scores reduce classification accuracy. This highlights the need 
for further refinement in category-level matching, especially for food names 
overlapping multiple categories. A potential improvement would be to introduce 



494 38TH BLED ECONFERENCE: 
EMPOWERING TRANSFORMATION: SHAPING DIGITAL FUTURES FOR ALL 

 

 

finer-grained subcategories within broader food groups and use crosswalk files to 
systematically link them to higher-level categories. This could improve classification 
accuracy by allowing AI models to recognize context-specific variations. 
 
A key limitation of this study is the reliance on FRIDA FoodEx2 codes as the 
validation dataset. As demonstrated in Table 3, a direct name match for boiled 
potatoes does not correspond to the expected code due to FRIDA’s assignment of 
a distinct FoodEx2 code for the boiling process, despite the existence of a code for 
boiled potatoes. Further cleaning by removing or separating cooking processes could 
improve the matching. This discrepancy constrains validation accuracy, 
underscoring the need for a more comprehensive and systematically curated 
validation dataset. More broadly, this issue reflects fundamental challenges within 
food systems ontology, where inconsistencies in classification, granularity, and 
contextual interpretation can limit interoperability and data harmonization across 
different databases.  
 
For FoodEx2 classification, a more effective strategy could also involve ranking the 
top five similarity-based matches instead of relying solely on the highest-scoring 
option. Presenting multiple candidate classifications would allow an AI-driven 
decision layer to assess contextual relevance and select the most appropriate match. 
This approach could improve classification robustness, particularly in cases where 
food names have slight variations due to preparation methods, processing 
techniques, or regional terminology differences. Further research could also explore 
reasoning models, few-shot approaches, and smaller models for local usage. 
Reasoning models and Few-shot learning approaches could help resolve semantic 
ambiguities by leveraging contextual understanding, improving classification in 
complex categories like “eggs” and “unsaturated fats”. Smaller, locally deployable 
models could enhance data security and privacy by processing sensitive food 
classification data on-device. This approach minimizes data transmission risks, 
ensures compliance with privacy regulations, and allows organizations to retain 
control over proprietary datasets. Further research should implement the LLM 
pipeline in operational canteens, with active involvement of stakeholders, for 
evaluating the pipeline adoption in institutional food services. 
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6 Conclusion 
 
This study explored an LLM food classification pipeline to address technical and 
regulatory challenges in institutional food services. The developed LLM pipeline, 
combining embeddings, crosswalk mapping, and human validation, improves dietary 
assessment, data standardization, and regulatory compliance. While GPT-4o-mini 
achieved high accuracy at the dietary group level, precise FoodEx2 code matching 
remains challenging due to semantic ambiguity and naming variations. A confidence-
based validation ensures transparency and accountability by balancing automation 
with human oversight, supporting expert decision-making. It demonstrates AI’s 
potential to transform fragmented processes into integrated digital ecosystems 
through practical and ethical interventions. Future research should focus on 
evaluating the pipeline within operational canteen environments, engaging 
stakeholders directly, investigating LLM embeddings, reasoning models, and locally 
deployable AI models to enhance data privacy, nutritional quality, and sustainability 
outcomes. 
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Table 3: FRIDA food name embedding cosine similarity FoodEx2 matches 
 

 
 




