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Modern healthcare services have advanced greatly due to rapid 
improvements in technology. The next generation of 
advancements requires precise and personalised treatments, 
especially for chronic diseases. Computational means are an 
effective way to achieve this through intelligent decision support 
assisted by superior data collection and analytics. An emerging 
concept to facilitate this is digital twins (DTs)—digital   replicas 
of physical entities. DTs have evolved over the years across 
various industries including aerospace, control engineering, 
manufacturing, design optimization, and more. DTs in healthcare 
though, have been explored only relatively  recently. One of the 
most interesting questions lies in creating DTs of humans to 
model healthcare aspects to enable intelligent decision support. 
Working towards this quest, this paper attempts to answer the 
research question: How might precise and personalised 
treatments for chronic diseases be planned in real-time through 
explainable digital twins? We attempt to answer this question in 
the context of breast cancer. 
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1 Introduction 
 
Digital Twins (DTs), i.e., digital replicas of physical entities, have evolved over the 
past several decades across various industries (Barricelli et al., 2019; Tao et al., 2018) 
including aerospace, control engineering, manufacturing, design optimization, and 
more. The parallel advancements in computation capabilities and internet 
connectivity that have led to 5G and beyond in telecommunication, and Industry 4.0 
and beyond in industrialization, have enabled Artificial Intelligence (AI) to be 
coupled with DTs, thereby enhancing the capabilities and the applicability of DTs. 
This evolution encouraged the exploration of DTs in more human-centric sectors 
like healthcare as well (Katsoulakis et al., 2024). 
 
One of the most potent questions that arose along this exploration is, “Can we create 
digital twins of human beings?” Why? Because they may be able to capture and help 
us make sense of the enormous amounts of data being generated in healthcare, and 
maybe this can help deliver superior healthcare through more precise and 
personalized medicine derived through data-driven decision support offered to 
clinicians and other stakeholders including patients. This thought has catalyzed 
several research attempts in modern times (Björnsson et al., 2020; Liu et al., 2019; 
Ștefănigă et al., 2024; Wickramasinghe et al., 2021; Wickramasinghe & Ulapane, 
2024, 2025; Wickramasinghe, Ulapane, Andargoli, et al., 2022; Wickramasinghe et 
al., 2023; Wickramasinghe, Ulapane, Nguyen, et al., 2022; Wickramasinghe, Ulapane, 
Sloane, et al., 2024; Wickramasinghe, Ulapane, Zelcer, et al., 2024), which have 
attempted to conceptualize and model different aspects of humans, more 
specifically, patients in healthcare, and healthcare processes, with the objective of 
deriving data-driven intelligent decision support to help make superior clinical 
decisions and better manage healthcare processes. 
 
With the involvement of all these data and AI, one of the challenges that emerges is 
computational complexity (Andargoli et al., 2024) which demands the likes of cloud 
computing (Dang et al., 2019; Liu et al., 2019). With that comes a whole lot of other 
questions such as privacy, security, ownership of data, intellectual property, and so 
on. In the pursuits towards the future, we might find solutions for such questions, 
but for the time being, it is fair to say that we have not yet found optimal solutions 
for these challenges. Therefore, whilst maintaining the hype and being ambitious, it 
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is also important to wind back and be practical in this pursuit for a digitally enabled 
healthcare. 
 
To do this, it is still important be realistic and to think how might we make use of 
concepts like DTs, in a computationally feasible manner to be tractable through 
simple and local computers, or ‘edge devices’ (Rancea et al., 2024) as some call them, 
so that an interested healthcare provider might be able to implement locally. In the 
interest of this aforesaid computational simplicity, and also the added benefit of 
explainability, in this paper, we attempt to answer the following research question: 
How might precise and personalized treatments for chronic diseases be planned in 
real-time through explainable digital twins? We attempt to answer this question 
through using breast cancer as a case study for a chronic disease. More specifically, 
we target at achieving more precision and personalization in planning a kind of 
immunotherapy for Triple-Negative Breast Cancer (TNBC) (Foulkes et al., 2010). 
 
2 Review of Related Literature 
 
2.1 Digital Twins (DTs) in Healthcare 
 
A recent scoping review in 2024 by (Katsoulakis et al., 2024) has identified eight 
main applications of DTs for health; namely, personalized medicine, clinical trials, 
biomarker and drug discovery, bio-manufacturing, device design, surgical planning, 
hospital management design & care coordination, and wellness. Several years before, 
in 2021, (Wickramasinghe et al., 2021) too identified similar applications for DTs in 
healthcare and viewed DTs as mathematical models irrespective of the application. 
(Wickramasinghe et al., 2021) identified DTs to function as grey box, surrogate, or 
black box mathematical models. Grey box DTs are partially or fully governed by 
well-known principles, such as physics, or statistics. Surrogate DTs need not 
necessarily have underlain sophisticated analytics capabilities but can be useful for 
display purposes—such as a dashboard display of an emergency department 
workflow. Black box digital twins are often underpinned by sophisticated machine 
learning models, such as neural networks. They may not be apparently explainable 
but usually have strong data handling and analytics utility. Building on this 
knowledge, in this paper as an attempt to answer our target research question, we 
attempt to combine the grey box and surrogate model attributes to realize DTs 
targeted at personalized medicine. Our choice of grey box and surrogate attributes 
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helps our DTs function in real-time on edge devices while being computationally 
simple and explainable.       
 
2.2 Immunotherapy for Triple-Negative Breast Cancer (TNBC) 
 
TNBC is an aggressive type of breast cancer. It is linked with the lack of three 
receptors: namely, estrogen receptors, progesterone receptors, and human epidermal 
growth factor receptor 2 (HER2) (Dass et al., 2021; Foulkes et al., 2010). As a result, 
TNBC is typically more aggressive. It is also faster in growth rate and has higher risk 
of metastasis. Moreover, it has limited treatment options and poor prognosis 
(Kesireddy et al., 2024; Obidiro et al., 2023). 
 
In this backdrop, certain immunotherapies, such as certain immune checkpoint 
inhibitors have been identified as potential treatment options for TNBC. Such 
immune checkpoint inhibitors typically make cancer cells more vulnerable to our 
body’s own immune system, thereby making our own immune system work against 
cancer. However, when such treatment is carried out, it is not only the cancer cells 
that become vulnerable to the immune system, because such immunotherapies 
typically cannot be delivered locally. When delivered, such treatments affect the 
whole body, and thus healthy cells too become more vulnerable to the immune 
system, leading to certain complications and side-effects. That is a trade-off of this 
type of treatment. However, immune checkpoint inhibitors such as PD-1 and PD-
L1 inhibitors have been approved in certain countries, including Australia, as a form 
of immunotherapy less than a decade ago to treat TNBC. The outcomes and side 
effects, though, have remained variable. It is therefore beneficial if it is possible to 
predict likely prognosis prior to treatment, hence we have chosen TNBC as a case 
study for our DTs. Through this case study we explore as to how DTs might be 
used for precise and personalized planning of PD-1/PD-L1 inhibitor treatment for 
TNBC candidates by trying to find beforehand, who is statistically congruent to best 
respond to which PD-1/PD-L1 inhibitor treatments. 
 
3 Methodology 
 
We used an approach inspired by Design Science Research Methodology (DSRM) 
(Hevner et al., 2010) to design a DT platform to help precise and personalized 
planning of PD-1/PD-L1 inhibitor treatments for TNBC. The approach followed 
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is depicted in Figure 1. Details about each step are provided in the following 
subsections. 
 

 
 

Figure 1: The DSRM-inspired methodology followed in this study 
 
3.1 Problem Identification Phase 
 
This work started through a collaboration between the authors and a team of cancer 
biologists who study the effects of immunotherapies on breast cancer at a cellular 
biomarker level. This collaboration started in a backdrop of immune checkpoint 
inhibitor treatments such as PD-1 and PD-L1 inhibitors have been approved in 
Australia recently, especially for TNBC patients. The state of matters was that such 
treatments were quite expensive, and a limited number of candidates were eligible to 
receive them in Australia. Even among the limited recipients, the outcomes and the 
side effects were variable. Therefore, we asked the pertinent question as to whether 
we can predict the prognosis of PD-1 and PD-L1 inhibitor treatments on TNBC 
patients, as this would enable the identification of best receptive patients, prior to 
receiving immunotherapy treatment, and in turn this would reduce the incidences of 
adverse outcomes and side-effects. This line of thought led the authors, and the 
collaborators to secure the Victorian Medical Research Acceleration Fund (VMRAF) 
grant GA-F4669635-1352, to explore avenues for predicting prognosis of PD-1 and 
PD-L1 inhibitor treatments, making use of genetic information obtained from 
TNBC patients. The view from the collaborating cancer biologists was that they have 
a wealth of genetic information, but it was difficult to find direct patterns. This 
opened the avenue to explore the use of machine learning and AI to address this 
problem.  
 
Moreover, as part of the ‘problem identification’ phase, a rapid review of literature 
was conducted with the objective of mapping out the diversity of immunotherapy 
treatment options and outcomes pertaining to TNBC. The protocol followed for 
this review was published in Open Science Framework at: https://osf.io/2bzds/. 
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The PRISMA guidelines (Stevens et al., 2018) and the Cochrane methodology 
(Garritty et al., 2024) were followed for reviewing the literature and reporting. The 
outcome of this review was a set of themes that summarized the diversity of 
immunotherapy treatment options for TNBC, along with associated outcome 
measures and side-effects. These findings are summarized in Figure 2 in the Results 
section.  
 
3.2 Defining Objectives Phase 
 
Following the ‘problem identification’ phase, we defined objectives for a potential 
solution. Given the nascency of this area, we decided to be guided by the themes 
identified from the conducted rapid review to design a computationally simple web-
based DT platform that can provide clinical decision support on precise and 
personalized planning of PD-1/PD-L1 treatments for TNBC. The web-based 
function was chosen to ensure easy accessibility over the internet, while 
computational simplicity was weighed in to ensure ability to implement on edge 
devices and local servers. To achieve computational simplicity, for this design we 
chose offering decision support purely based on statistical congruence—meaning 
assessing how statistically similar a present patient is to cohorts of past patients. 
Thereby we derive decision support based on DTs constructed from a cohort 
matching approach.  
 
3.3 Design Phase  
 
At the design phase we planned three key aspects for a solution. The first was the 
patient journey with the DT platform integrated within. The planned patient journey 
is depicted in Figure 3 in the Results section. This DT platform was planned to 
perform as a clinical decision support tool. Therefore, it is designed primarily for the 
use of clinicians. However, it can be used by clinicians in consultation with patients 
for shared decision-making. The second aspect we designed was a web-based 
frontend to display results that would assist clinical and shared decision-making. The 
designed web-based frontend is depicted in Figure 4 in the Results section. Thirdly, 
we designed graphical means to display results more elaborately along with DTs of 
patients identified based on statistical congruence, or cohort matching—meaning, 
finding cohorts of past patients that statistically best match a present patient. Details 
about the functionality of the DT dashboard are provided in the Results section. 
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3.4 Internal Assessment Phase  
 
Following the 'design phase,' the designs were informally discussed with the 
collaborating cancer biologists. Their feedback, thoughts and recommendations 
were recorded. Their recommendations are summarized in the Results section. 
 
3.5 Plan for Future Work 
 
As future work it was planned to refine the web-based frontend as well as the 
statistical rules for cohort matching based on the feedback received from the cancer 
biologists and implement the platform. Initially, due to the lack of data from TNBC 
patients, it was decided to run the platform based on synthetic data produced 
mimicking real-world patients. 
 
4 Results and Discussion 
 
4.1 Diversity of Immunotherapy Treamtments on TNBC 
 
The findings from the rapid review that was conducted as part of the ‘problem 
identification’ phase were summarized highlighting the diversity of immunotherapy 
treatment options for TNBC, along with associated outcome measures and side-
effects. These findings are presented in Figure 2. 
 
4.2 The Planned Patient Journey 
 
The patient journey that was planned as part of the 'design phase' is depicted in 
Figure 3. The DT platform is integrated within the patient journey as a clinical 
decision support tool plus a decision aid for shared decision making through the 
collaboration of both clinicians and patients. 
 
4.3 The Desiged Web-Based DT Frontend 
 
The designed web-based DT frontend is depicted in Figure 4 and it is followed by a 
description about how decision support is derived through our proposed cohort 
matching approach.  
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Figure 2: Key findings from the rapid review (https://osf.io/2bzds/) conducted on 
immunotherapy for TNBC 
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Figure 3: Proposed patient journey with DT platform integrated 
 

 
 

Figure 4: Snapshot of the proposed DT frontend dashboard for precise and personalized 
immunotherapy treatment planning for TNBC (please zoom in if required to read texts in 

this image) 
 
The DT frontend in Figure 4 will be accessible for clinicians as a clinical decision 
support tool. It can be used in collaboration with patients for shared decision 
making. At the top right, it has a button named ‘Load Patient.’ That is where the 
process starts. When a patient is in front of the clinician, the process can be started 
by the clinician pressing on the ‘Load Patient’ button. This will provide an option 
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like scanning a unique QR code for the patient. Once the unique identifier (QR code 
or similar) is scanned, the patient’s genetic biomarkers along with other relevant 
information will be fetched from a dedicated server. The fetched information will 
be displayed onscreen as shown in Figure 4. To confirm the fetched data matches 
the present patient, a preceding popup window will appear, showing some patient 
personal identifiers like name and date of birth. That information will appear only 
on that popup window but not on the DT screen shown in Figure 4 to preserve 
patient’s privacy. This popup window can be cross-checked by the clinician and the 
patient to confirm the right information has been fetched. Once confirmed, the 
popup window can be closed, and then the relevant information will appear on the 
DT screen shown in Figure 4.  
 
As can be seen in Figure 4, patient information is stratified into two groups, i.e., 
demographic information and disease detail. Demographic information includes 
patient’s age (in years, inclusive of a range plus or minus five years for cohort 
matching), sex (Male or Female), and ethnicity (e.g., African, East Asian, South 
Asian, Southeast Asian, Middle Eastern and North African (MENA), European, 
Hispanic or Latino, Indigenous Peoples, Pacific Islander, Mixed or Multi-Ethnic, 
etc.). All such demographic details are eventually used to select a cohort of past 
patients to which the present patient will match on a statistically congruent basis—
thereby achieving a degree of personalization. 
 
Then, as disease details, the dashboard is specifically designed for TNBC. The other 
main disease information considered is the cancer stage (e.g., Stage IA, IB, IIA, etc.). 
Next, relevant genetic biomarkers are considered. In the context of TNBC and PD-
1/PD-L1 inhibitors, the literature review we conducted as part of the ‘problem 
identification’ phase revealed that biomarkers such as PD-L1 CPS score, CD8+ T-
cell infiltration and Tumor Mutational Burden amongst others are relevant. These 
biomarkers are designed to be considered as quantitative values, i.e., a real-valued 
number. For cohort matching, these numbers are considered with a margin of 
±10%. That means, past patients who have had biomarker values within ±10% of 
the present patient will form a matching cohort to the present patient.   
 
Next, the clinician can select available immunotherapy treatment options (e.g., PD-
1 inhibitors (e.g., Pembrolizumab, Nivolumab, Camrelizumab, Toripalimab, or 
SHR-1210), PD-L1 inhibitors (e.g., Atezolizumab, Durvalumab, Avelumab, or 
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Adebrelimab), and click on the button named ‘Match Cohort.’ This will then fetch 
the outcome data of the past patients within the matching cohort to the present 
patient, and display certain outcome measures, and possibly side-effects also as 
shown in the ‘Outcome Measures’ panel in Figure 4. Displayed outcome measures 
include the likes of Objective Response Rate (ORR), Problem Free Survival (PFS) 
range in months, and Overall Survival (OS) range in months, and likely side-effects 
(e.g., fatigue, nausea, list of immune-related adverse events (AEs), etc.). This display 
can be used by clinicians to make informed decisions about the best treatment 
options that are statistically congruent pertaining to the present patient, thereby 
achieving a degree of personalization. These decisions can be made collectively with 
patients, thereby achieving patient empowerment through shared decision making. 
When presenting outcome measures, data of a present patient is interfaced and used 
in an intelligent digital model of a patient constructed for the purpose of clinical 
decision support, thereby the DT paradigm being realized. Furthermore, we have 
planned more elaborate displays of outcome measures such as the one in Figure 5, 
which illustrates the population of past patients along with a discovered DT (i.e., the 
most statistically congruent cohort to the present patient). Such displays can better 
express the degree of personalization that has taken place.  
 

 
 

Figure 5: Population of past patients alongside a discovered DT (i.e., the most statistically 
congruent cohort to the present patient) depicting personalization of outcome measures 

 
4.4 Outcomes from the Internal Assessment Phase 
 
From the discussions that were carried out with the collaborating caner biologists, 
their main suggestion was about the biomarkers. They suggested using biomarker 
quantities normalized per square area and normalized per number of cancer cells 
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present. In an intuitive mathematical sense, normalizing biomarkers as such makes 
great sense, and therefore we decided to use normalized values in our future 
implementations of this platform.  
 
5 Conclusions 
 
Answering the research question “How might precise and personalized treatments 
for chronic diseases be planned in real-time through explainable digital twins?” was 
attempted. A DSRM-inspired approach was followed to answer the research 
question. A computationally simple, real-time, and explainable DT platform that is 
based on statistical congruence was proposed. This is designed to provide clinical 
decision support to achieve precise and personalized planning of immunotherapy 
treatments for TNBC.  
 
This paper contributed to theory by proposing an approach of matching cohorts of 
past patients based in statistical congruence to present patients as a form DTs 
capable of deriving decision support and insights based on statistics, thereby 
preserving computational simplicity, explainability and the ability to implement on 
edge devices and local servers to offer real-time clinical decision support.   
 
As a contribution to practice, this paper proposed a DT-incorporated patient 
journey, frontend designs for a DT platform, and certain statistical and logical steps 
for deriving DTs and insights through cohort matching in a computationally simple 
and explainable manner.  
 
TNBC and immunotherapy, the target healthcare context of this work, is new and 
we are restricted by the lack of data from TNBC patients. Therefore, we had to 
resort to proceeding with synthetic data to develop our algorithms. The lack of real 
data and having to rely on synthetic data is a limitation that underpins our work.  
 
DTs in healthcare are at their infancy but there is the potential for significant benefits 
to realize simultaneously more personalized and precise clinical decision support. 
Future work will fucus on refining our algorithms and DT platforms based on 
feedback received from our collaborating cancer biologists and the latest findings in 
cancer treatment, all whilst being condescended to value-based healthcare principles. 
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