
Low Code Programming with APEX
How to and practical cases

Editors: Robert Leskovar and Alenka Baggia

Low Code Programming with APEX
How to and practical cases

Editors: Robert Leskovar and Alenka Baggia

September, 2024

Title Low Code Programming with APEX

Subtitle How to and Practical Cases

Editors Robert Leskovar
(University of Maribor, Faculty of Organizational Sciences)

Alenka Baggia
(University of Maribor, Faculty of Organizational Sciences)

Review Igor Bernik
(University of Maribor, Faculty of Criminal Justice and Security)

Blaž Rodič
(Faculty of Information Studies)

Language editing Rachel McRae (Copy-Editor) and William McRae (Oracle Academy, Principal Instructor)

Technical editors Robert Leskovar
(University of Maribor, Faculty of Organizational Sciences)

Jan Perša
(University of Maribor, University Press)

Marina Bajić
(University of Maribor, University Press)

Cover designer Robert Leskovar
(University of Maribor, Faculty of Organizational Sciences)

Cover graphics APEX wordcloud, Robert Leskovar, 2024

Graphic material Source are own unless otherwise noted. Authors and Leskovar, Baggia (editors), 2024

Published by University of Maribor
University Press
Slomškov trg 15, 2000 Maribor, Slovenia
https://press.um.si, zalozba@um.si

Issued by University of Maribor
Faculty of Organizational Sciences
Kidričeva cesta 55a, 4000 Kranj, Slovenia
https://fov.um.si, dekanat.fov@um.si

Edition 1st

Publication type E-book

Published at Maribor, Slovenia, September 2024

Available at https://press.um.si/index.php/ump/catalog/book/906

Project name Better Employability for Everyone with APEX - BeeAPEX

Project number ID 2021-1-SI01-KA220-HED-000032218

This publication is co-founded by the Erasmus+ Programme of the European Union.

CIP - Kataložni zapis o publikaciji
Univerzitetna knjižnica Maribor

004.43(057.5)(0.034.2)

LOW code programming with APEX [Elektronski vir] : how to and practical cases / editors Robert Leskovar in
Alenka Baggia. - E-knjiga. - Maribor : University of Maribor, University Press, 2024

Način dostopa (URL): https://press.um.si/index.php/ump/catalog/book/906
ISBN 978-961-286-902-1 (Pdf)
COBISS.SI-ID 209110019

© University of Maribor, University Press
/ Univerza v Mariboru, Univerzitetna založba

Text © Authors and Leskovar, Baggia (editors), 2024

This book is published under a Creative Commons Attribution-ShareAlike 4.0 International licence (CC BY-SA 4.0). This license
allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the
creator. The license allows for commercial use. If you remix, adapt, or build upon the material, you must license the modified
material under identical terms.

Any third-party material in this book is published under the book’s Creative Commons licence unless indicated otherwise in the
credit line to the material. If you would like to reuse any third-party material not covered by the book’s Creative Commons licence,
you will need to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by-sa/4.0/

ISBN 978-961-286-902-1 (pdf)
978-961-286-903-8 (softback)

DOI https://doi.org/10.18690/um.fov.5.2024

Price Free copy

For publisher Prof. Dr. Zdravko Kačič, Rector of University of Maribor

Attribution Leskovar, R., Baggia, A. (eds.). (2024). Low Code Programming with APEX: How to and Practical
Cases. University of Maribor, University Press. doi: 10.18690/um.fov.5.2024

Contents

Acknowledgement 29

Preface 30

Contributors 33

IHow to in APEX 34

1 How to start Oracle APEX? 35
VJERAN STRAHONJA AND DIJANA OREŠKI

1.1 What is Oracle APEX and what is it for? .35
1.1.1 What is Oracle APEX? .35
1.1.2 And what is the application? .35
1.1.3 How can Oracle APEX help in application development?35
1.1.4 Application development cycle .36

1.2 How to start Oracle APEX? .41
1.2.1 What is your skill level? .41
1.2.2 Use on-premise APEX instance .42
1.2.3 https://apex.oracle.com .43
1.2.4 Virtual Box Appliance / Virtual Machine43
1.2.5 APEX docker .44
1.2.6 APEX instance in Oracle Cloud Infrastructure46
1.2.7 APEX instance in Oracle Academy .47

1.3 Questions .47
1.4 Answers .47

2 How to prepare a database? 48
ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND SCHWINGER

2.1 How to Model the Data .49
2.1.1 Logical Model .49
2.1.2 Relational Model .51
2.1.3 Normalization of an RDB-Schema .54

2.2 How to Manage the RDBS-Schema – SQL-DDL .57
2.2.1 Automatic Table Generation using ODM59
2.2.2 Automatic Table Generation using Quick SQL59
2.2.3 Manual Table Creation using SQL-DDL .60
2.2.4 Manual Table Management using Object Browser60

2.3 How to Manipulate Data – SQL-DML .60
2.3.1 Data Manipulation using SQL-DML .61
2.3.2 Data Manipulation using ORACLE’s Object Browser (OB)61

2.3.3 Data Manipulation using Quick SQL .61
2.4 How to Query Data – SQL-DQL .61

2.4.1 Data Querying using SQL-DQL .61
2.4.2 Data Querying using ORACLE’s Query Builder (“QB”)63

2.5 Building up the DB-Layer – The Big Picture .63
2.6 Questions .63
2.7 Answers .63

3 How to Navigate in APEX? 77
ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND SCHWINGER

3.1 Web Application Development Process followed by APEX77
3.2 The Start Menu of APEX .78
3.3 Overview of the App Builder – Create and Manage your Apps79
3.4 Create Application – Three Use Cases .79
3.5 Create Application – Properties, Pages, Features and Settings80
3.6 Specify Pages .81
3.7 Maintain and Modify a Page – Page Designer .82
3.8 Run Application or Page .82
3.9 Questions .82
3.10 Answers .83

4 How to exchange data in APEX? 89
ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND SCHWINGER

4.1 Importing and Exporting Data Using “Data Workshop”89
4.1.1 Importing Data .89
4.1.2 Importing Steps .90
4.1.3 Exporting Data .93

4.2 Importing and Exporting Data Using “Object Browser”93
4.3 Exporting the Result of a SQL-Command .94
4.4 Exporting Data from an Application Report .94
4.5 Enabling Data Exchange with RESTful Services .95

4.5.1 REST Architectural Pattern .95
4.5.2 Enabling a DB Schema for RESTful Access95
4.5.3 Resource Modules | Templates | Handlers96
4.5.4 Using “AutoREST” instead of Manually Defining Resources96

4.6 Questions .97
4.7 Answers .97

5 How to generate a first draft of the application? 107
ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIMPIRIS AND DIMITRIOS VARSAMIS

5.1 Why business need applications? .107
5.2 Setting up the ORACLE APEX Environment .107
5.3 SQL workshop example development .108

5.3.1 Quick SQL .109
5.3.2 SQL Script .112

5.4 Data driven part of application .114
5.5 Administration of application .115
5.6 Access control .115
5.7 Supplementary learning material .116

5.7.1 Exported applications .116

5.7.2 Video guides .116
5.8 Questions .116
5.9 Answers .116

6 How to manage reports? 128
ZUZANA ŽILLOVÁ, ERIK MALINA, MATEJ GROCHAL, ANDREJ STANÍK, ANDREA MELEKOVÁ, MICHAL KVET AND

MIROSLAV POTOČÁR

6.1 Report .128
6.2 Classic Report .131
6.3 Column Toggle Report .132
6.4 Interactive Report .132
6.5 Questions .135
6.6 Answers .136

7 How to manage forms? 148
VERONIKA ŠALGOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

7.1 Types of forms .148
7.2 Editable Interactive Grid .148
7.3 Form on a Table .149
7.4 Master Detail Form .150
7.5 Questions .151
7.6 Answers .151

8 How to transform text reports into charts? 155
IVAN PASTIERIK, MICHAL KVET AND MIROSLAV POTOČÁR

8.1 Chart .155
8.2 Creating Bar Chart .156
8.3 Adding Filtering to Bar Chart .157
8.4 Adding Sorting to Bar Chart .160
8.5 Creating Different Types of Charts .161
8.6 Questions .162
8.7 Answers .162

9 How to manage menus? 171
VERONIKA ŠALGOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

9.1 How to manage menus .171
9.2 Side Menu .171
9.3 Top Menu .172
9.4 Mega Menu .172
9.5 Editing Menu Lists .172
9.6 Questions .173
9.7 Answers .173

10 How to collaborate in a team? 174
PRZEMYSŁAW STANISZEWSKI, MONIKA SOŃTA AND ADAM KIERZKOWSKI

10.1 Collaborative knowledge production is the essence of low-code development174
10.2 Being online together .174
10.3 Tech savviness through collaboration .175
10.4 Features description .176

10.4.1 Page locking .176

10.4.2 Comments .176
10.4.3 Build options .176
10.4.4 Team development .177
10.4.5 Feedback .178
10.4.6 Standardization .179

10.5 Conclusions .181
10.6 Questions .182
10.7 Answers .182

11 How to benefit from a gallery of applications and plug-ins? 184
VJERAN STRAHONJA AND DIJANA OREŠKI

11.1 How to install sample and starter apps? .184
11.2 Starter Apps .185
11.3 Sample Apps .186
11.4 Plug-ins .188
11.5 Questions .191
11.6 Answers .191

12 How to manage packaged and multilingual applications? 192
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

12.1 Application and packaged application .192
12.2 Application .194

12.2.1 Scope of application .194
12.2.2 Create tables .194
12.2.3 Insert data .194
12.2.4 Generate application .195

12.3 Packaged application .196
12.4 Multilingual application .197
12.5 Supplementary learning material .199

12.5.1 Exported applications .200
12.5.2 Video guides .201

12.6 Questions .201
12.7 Answers .201

IIConstructing application in APEX 208

13 Intranet news for employees 209
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

13.1 Business view of the case .209
13.2 Problem definition .209
13.3 Use cases .210

13.3.1 Narrative description of use case .210
13.3.2 Semi-structured description .210
13.3.3 Use case diagram .210

13.4 Data model .214
13.4.1 Narrative description of data model .214
13.4.2 Logical data model .214
13.4.3 Relational data model .214

13.5 Application interfaces .215

13.6 Supplementary learning material .216
13.6.1 Exported application .216
13.6.2 Video guides .217

13.7 Questions .217
13.8 Answers .217

14 GreenDi - Catalog of plants 219
VJERAN STRAHONJA, DIJANA OREŠKI, DARKO ANDROČEC AND ANA KUTNJAK

14.1 Business view of the case .219
14.2 Problem definition .219
14.3 Use cases .220

14.3.1 Narrative description of use case .220
14.3.2 Semi-structured description .220
14.3.3 Use case diagram .220

14.4 Data model .222
14.4.1 Narrative description of data model .222
14.4.2 Logical data model .222
14.4.3 Relational data model .223

14.5 Application interfaces .223
14.6 Supplementary learning material .223

14.6.1 Exported application .223
14.6.2 Video guides .224

14.7 Questions .224
14.8 Answers .224

15 GreenDi - User Authorisation and Management 226
VJERAN STRAHONJA, DARKO ANDROČEC, ANA KUTNJAK AND LARISA HRUSTEK

15.1 Business view of the case .226
15.2 Problem definition .226
15.3 Use cases .227

15.3.1 Narrative description of the use case .227
15.3.2 Semi-structured description .227
15.3.3 Use case diagram .227

15.4 Data model .229
15.4.1 Narrative description of a data model .229
15.4.2 Logical data model .229
15.4.3 Relational data model .229

15.5 Application interfaces .229
15.6 Supplementary learning material .230

15.6.1 Exported application .230
15.6.2 Video guides .230

15.7 Questions .231
15.8 Answers .231

16 Small Innovation System 232
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

16.1 Business view of the case .232
16.2 Problem definition .232
16.3 Use cases .232

16.3.1 Narrative description of use case .232

16.3.2 Semi-structured description .233
16.3.3 Use case diagram .233

16.4 Data model .233
16.4.1 Narrative description of data model .233
16.4.2 Logical data model .233
16.4.3 Relational data model .237

16.5 Application interfaces .238
16.6 Supplementary learning material .239

16.6.1 Exported application .239
16.6.2 Video guides .239

16.7 Questions .240
16.8 Answers .240

17 Business process management 242
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

17.1 Business view of the case .242
17.2 Getting started with Flows for APEX .245

17.2.1 Install Flows for APEX .245
17.2.2 Install Sample Process Flow Application245
17.2.3 Read and practice exercises .245

17.3 Problem definition .245
17.4 Use cases .246

17.4.1 Narrative description .246
17.4.2 Semi-structured description .246
17.4.3 Use case diagram .246

17.5 Workflow model .249
17.6 Data model .250

17.6.1 Narrative description of data model .250
17.6.2 Logical data model .250
17.6.3 Relational data model .251
17.6.4 Quick SQL for generating SQL script .251
17.6.5 Sequence and two stored functions .253

17.7 Application interfaces .255
17.7.1 List of values in Shared Components .255
17.7.2 Plug-ins in Shared Components .256
17.7.3 Sales manager .256
17.7.4 Production manager .260
17.7.5 Financial manager .260
17.7.6 Chief executive officer - business manager .261

17.8 Linking application with Flows for APEX .261
17.9 Define user roles .262
17.10Testing and correcting errors .262
17.11Supplementary learning material .263

17.11.1 Exported application .263
17.11.2 Video guides .265

17.12Questions .265
17.13Answers .265

18 GreenDi – Exchange of Plants and Seeds 271
VJERAN STRAHONJA, DIJANA OREŠKI, DARKO ANDROČEC AND ANA KUTNJAK

18.1 Business view of the case .271
18.2 Problem definition .271
18.3 Use cases .272

18.3.1 Narrative description of use case .272
18.3.2 Semi-structured description .272
18.3.3 Use case diagram .273

18.4 Data model .273
18.4.1 Narrative description of data model .273
18.4.2 Logical data model .273
18.4.3 Relational data model .274

18.5 Application interfaces .274
18.6 Supplementary learning material .274

18.6.1 Exported application .274
18.6.2 Video guides .275

18.7 Questions .275
18.8 Answers .275

19 Book review management system 277
ANA KUTNJAK, LARISA HRUSTEK, ALENKA BAGGIA AND ROBERT LESKOVAR

19.1 Business view of the case .277
19.2 Problem definition .277
19.3 Use cases .278

19.3.1 Narrative description of the use case .278
19.3.2 Semi-structured description .278
19.3.3 Use case diagram .278

19.4 Data model .278
19.4.1 Narrative description of data model .278
19.4.2 Logical data model .278
19.4.3 Relational data model .280
19.4.4 SQL script .280
19.4.5 Quick SQL .282

19.5 Application interfaces .283
19.5.1 Administrator .283
19.5.2 User .284

19.6 Define user roles .285
19.7 Supplementary learning material .285

19.7.1 Exported application .286
19.7.2 Video guides .286

19.8 Questions .287
19.9 Answers .287

20 Bill-of-material and cost calculation 288
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

20.1 Business view of the case .288
20.2 Problem definition .288
20.3 Use cases .289

20.3.1 Narrative description .289
20.3.2 Semi-structured description .289
20.3.3 Use case diagram .292

20.4 Data model .292

20.4.1 Narrative description of data model .292
20.4.2 Implementation of business rules in data base293
20.4.3 Logical data model .293
20.4.4 Relational data model .293
20.4.5 Objects in APEX .295

20.5 Application interfaces .298
20.6 Supplementary learning material .299

20.6.1 Exported applications .300
20.6.2 Video guides .300

20.7 Questions .300
20.8 Answers .300

21 Nutrition and diet management 302
ROBERT LESKOVAR, ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIMPIRIS AND DIMITRIOS VARSAMIS

21.1 Business view of the case .302
21.2 Problem definition .302
21.3 Use cases .303

21.3.1 Narrative description .303
21.3.2 Semi-structured description .303
21.3.3 Use case diagram .303

21.4 Data model .303
21.4.1 Logical data model .306
21.4.2 Relational data model .306
21.4.3 QuickSQL .306
21.4.4 SQL Script .309

21.5 Preparing data for testing in spreadsheet .310
21.5.1 Create a hex dump .310
21.5.2 Create a spreadsheet .311
21.5.3 Load test data in APEX from spreadsheets .311

21.6 Application interfaces .312
21.6.1 First draft of the application .312
21.6.2 Create demo users for APEX application313
21.6.3 Authorization schemes, application access control, roles and user roles313
21.6.4 Static file for background on the login page314
21.6.5 Lists of values .315
21.6.6 Web pages and grants .316
21.6.7 Web pages and authentications .316
21.6.8 Nutrition report .323

21.7 Supplementary learning material .324
21.7.1 Exported application .325
21.7.2 Video guides .325

21.8 Questions .325
21.9 Answers .325

22 Office Hours Scheduling 331
JACEK MAŃKO, MONIKA SOŃTA AND ROBERT LESKOVAR

22.1 Business view of the case .331
22.2 Problem definition .332
22.3 Use cases .332

22.3.1 Narrative description .332

22.3.2 Semi-structured description .333
22.3.3 Use case diagram .333

22.4 Data model .333
22.4.1 Narrative description of data model .333
22.4.2 Logical data model .335
22.4.3 Relational data model .335
22.4.4 Quick SQL .336
22.4.5 SQL script for creating tables .336
22.4.6 Query builder in APEX .336

22.5 Application interfaces .337
22.5.1 Management application interfaces .337
22.5.2 Student office application interfaces .338
22.5.3 Student application interfaces .338
22.5.4 Teacher application interfaces .339

22.6 Supplementary learning material .339
22.6.1 Exported application .340
22.6.2 Video guides .345

22.7 Questions .345
22.8 Answers .346

23 Telco case 348
VERONIKA ŠALGOVÁ, JOZEF KOSTOLNÝ, MICHAL MRENA, MICHAL KVET AND MIROSLAV POTOČÁR

23.1 Business view of the case .348
23.2 Problem definition .348
23.3 Use cases .348

23.3.1 Narrative description .349
23.3.2 Semi-structured description .349
23.3.3 Use case diagram .349

23.4 Data model .350
23.4.1 Narrative description of data model .350
23.4.2 Logical data model .350
23.4.3 Relational data model .350

23.5 User authentication and user roles .350
23.6 Application interfaces .354

23.6.1 Application design .355
23.7 Scripts .355
23.8 Creating a home page .355
23.9 Creating a customer page .355
23.10Creating a manager page .356
23.11Supplementary learning material .356

23.11.1 Exported application .356
23.11.2 Video guides .357

23.12Questions .357
23.13Answers .357

24 Car rental case 366
ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIMPIRIS AND DIMITRIOS VARSAMIS

24.1 Business view of the case .366
24.2 Problem definition .366
24.3 Use cases .367

24.3.1 Narrative description of use case .367
24.3.2 Semi-structured description .367
24.3.3 Use case diagram .367

24.4 Data model .367
24.4.1 Narrative description of data model .367
24.4.2 Logical data model .369
24.4.3 Relational data model .369
24.4.4 SQL Script .369

24.5 Application interfaces .371
24.6 Supplementary learning material .373

24.6.1 Exported applications .373
24.6.2 Video guides .373

24.7 Questions .373
24.8 Answers .374

Bibliography 377
Articles .377
Books .377

Index 378

List of Figures

1.1 Application development cycle. .36
1.2 Business Model Canvas [6] .38
1.3 The basic concepts of the Use Case diagram. .39
1.4 Generalization/specialization of Actors. .40
1.5 Boundaries of the system and associations "include" and "extend".41
1.6 Use Cases diagram of the Hotel Reservation system.42
1.7 Searching for the APEX docker. .44

2.1 DBS as the Backbone of Web Applications. .48
2.2 Logical Model of our Running HR Example using an ER-Diagram.50
2.3 Managing the Logical Model with ODM. .51
2.4 Managing Attributes with ODM. .52
2.5 Managing Relationships with ODM. .53
2.6 RDB-Schemata and Table Schemata. .54
2.7 Process for RDB-Schema Generation out of the Logical Model.55
2.8 Automatically Generated RDB-Schema. .56
2.9 GUI-Elements for Managing Columns of the RM.56
2.10 GUI-Elements for Managing the RM. .57
2.11 Normalization Steps – Overview. .58
2.12 Categories of SQL Statements. .58
2.13 Export of the RDB-Schema into a DDL-script. .65
2.14 Upload and Execution of a SQL-Script. .66
2.15 Accessing Quick SQL via SQL Workshop .67
2.16 Generated SQL-Script based on Quick SQL. .67
2.17 SQL Command Editor. .68
2.18 SQL Statement for Creating Table Departments.68
2.19 SQL Statement for Dropping Table Departments.68
2.20 SQL Statement for Altering Table Departments68
2.21 Table Management with ORACLE’s Object Browser.69
2.22 SQL Statement for Inserting new Data into Table Departments.69
2.23 SQL Statement for Updating the Salary of all Employees in Table Employees.69
2.24 SQL Statement for Updating the Salary of Employee "Miller", only.69
2.25 SQL Statement for Updating more than one attribute in Table Employees.69
2.26 SQL Statement for Deleting all Data from Table Employees.70
2.27 SQL Statement for Deleting some Data from Table Employees.70
2.28 Random Data Insertion with Quick SQL. .70
2.29 SQL Statement for Retrieving all Data from Table Employees.70
2.30 Excerpt from Retrieving all Data from Table EMPLOYEES.71
2.31 SQL Statement for Retrieving all Data from Table Employees ordered by Salary. . . .71
2.32 Excerpt from Retrieving all Data from Table Employees ordered by their Salary. . . .71
2.33 SQL Statement for Retrieving certain Data from Table Employees only.71
2.34 Excerpt from Retrieving certain Data from Table Employees only.72

2.35 SQL Statement for Retrieving Data from Table Employees using TO_CHAR().72
2.36 Excerpt from Retrieving Data from Table Employees using TO_CHAR()-Function. . .72
2.37 SQL Statement for Joining Data from Table Employees and Table Departments. . .72
2.38 Excerpt from Retrieving Data from Table Employees and Table Departments. . . .73
2.39 SQL Statement for Counting the number of Employees and Building the Sum of

their Salaries from Table Employees. .73
2.40 Excerpt from Retrieving the Number of Employees and Building the Sum of their

Salaries from Table Employees. .73
2.41 SQL Statement for Grouping the Data by Their Salary and Ordering the Result by

the Number of Employees with that Salary from Table Employees.73
2.42 Excerpt from Grouping the Data by Their Salary and Ordering the Result by the

Number of Employees with that Salary from Table Employees73
2.43 Overview of the ORACLE Query Builder (“QB”).74
2.44 Using the Query Builder to build a Join. .75
2.45 Overview on the Options to Manage thee DB-Layer.76

3.1 Overall Development Process in APEX. .78
3.2 Oracle APEX Workspace Homepage. .79
3.3 Overview of the App Builder. .80
3.4 Create Application Wizard: Three Use Cases when Creating an Application.81
3.5 Properties and Pages. .82
3.6 Features and Settings. .83
3.7 Application Homepage - Developer’s view. .84
3.8 Creating a Page. .85
3.9 Page Designer. .86
3.10 Running Entire Application. .87
3.11 Running Individual Pages. .88

4.1 Data Exchange Options in APEX. .90
4.2 Using Data Workshop to Load Data - Access through SQL Workshop.91
4.3 Using Data Workshop to Load Data - Access through App Builder.92
4.4 Provision of Data Source. .93
4.5 Loading Data into New Table. .94
4.6 Loading Data into Existing Table. .98
4.7 Exporting ("Unloading") Data. .99
4.8 Unload Data Wizard. .100
4.9 Import/Export of Table Data Using the Object Browser.101
4.10 Data Export of the Result of a SQL-Query. .102
4.11 Export of Data From an Application Report. .102
4.12 RESTful Services for Data Exchange – Basic Architecture.103
4.13 Enabling a DB Schema for RESTful Access. .104
4.14 Relationships Between the Different Components of ORDS RESTful Services. . . .104
4.15 Example RESTful Services for Table Employees.105
4.16 Enabling REST Service in the Object Browser. .106

5.1 Type in APEX link and sign in. .108
5.2 Request an Oracle APEX Workspace initial steps.109
5.3 Request an Oracle APEX Workspace completion.110
5.4 Oracle APEX Workspace approved. .110
5.5 Activation email from APEX. .111
5.6 Set up a new password for Workspace APEX. .111

5.7 Workspace APEX environment. .112
5.8 Logical Model of our Running HR Example. .117
5.9 Relational Model of our Running HR Example. .118
5.10 Insert Quick SQL code to APEX workspace. .119
5.11 Run SQL script. .119
5.12 Create App starting process. .119
5.13 Create App from Script. .120
5.14 Web application created. .120
5.15 App builder environment. .120
5.16 App Login Page. .121
5.17 Your new App environment. .121
5.18 Manage users and groups environment. .122
5.19 Access control example. .122
5.20 Add new users. .123
5.21 Add roles to users. .124
5.22 Create button configuration. .125
5.23 Contributor access and rights. .126
5.24 Reader access and rights. .127

6.1 Selection of page type. .129
6.2 Creation of page with report. .130
6.3 Rendering. .131
6.4 Properties of region. .132
6.5 Various data sources. .132
6.6 Layout. .133
6.7 Appearance. .133
6.8 Templates. .134
6.9 Advanced. .134
6.10 Header and Footer. .135
6.11 Server-side Condition. .135
6.12 Read Only. .136
6.13 Security, Server Cache and Customization. .136
6.14 Pagination. .137
6.15 Number of rows to load. .137
6.16 Download and Printing. .137
6.17 Center of page designer. .138
6.18 Type of column. .138
6.19 Column settings. .138
6.20 Format Mask. .139
6.21 Customization. .139
6.22 Option for sorting by column. .139
6.23 Location of green arrow for page showcase. .139
6.24 Classic report example. .140
6.25 Possibility to change visibility of column in Column Toggle Report.140
6.26 Interactive Report. .140
6.27 Search panel. .141
6.28 Searching. .141
6.29 Actions Button. .141
6.30 Selection of columns to display. .142
6.31 Column Filter. .142
6.32 Row Filter. .143

6.33 After clicking on Data button. .143
6.34 Sort. .143
6.35 Aggregate. .144
6.36 Flashback. .144
6.37 Control Break. .144
6.38 Control Break result. .144
6.39 Highlight. .145
6.40 Highlight result. .145
6.41 Row Per Page. .145
6.42 Chart in the interactive report. .146
6.43 Group By. .146
6.44 Save Report. .146
6.45 Download. .147

7.1 Interactive Grid with Customers .148
7.2 Actions of Interactive Grid .149
7.3 Hide icon of the Phone column .149
7.4 Displayed columns .150
7.5 Freeze icon of the Address column .150
7.6 Sorting the Address column .151
7.7 Aggregate icon of the Address column .151
7.8 Types of charts .152
7.9 Form for inserting customers .152
7.10 Stacked master detail form of Customer Flat Rates153
7.11 Side by Side master detail form of Customer Flat Rates153
7.12 Drill Down master detail form – first page .154
7.13 Drill Down master detail form – second page .154

8.1 Data model used in example application. .155
8.2 Selecting and placing Chart region. .156
8.3 Layout body section after placing Chart region. .156
8.4 Tree overview showing error in chart series. .157
8.5 Final configuration of sales series .158
8.6 Data returned by executing SQL query. .159
8.7 Chart shown when launching the application. .159
8.8 Changing title attribute for x axis. .160
8.9 Sales Chart after labelling axes. .161
8.10 Selecting and placing Checkbox Group item. .161
8.11 Setting basic attributes of Checkbox Group item.162
8.12 Setting list of values for Checkbox Group item. .163
8.13 Setting default values for Checkbox Group item. .163
8.14 Linking Sales Chart region with Checkbox Group item.164
8.15 Creating Dynamic Action for P1_PRODUCTS_CHOICE item.164
8.16 Setting basic attributes of on change Dynamic Action.165
8.17 Setting attributes of Refresh action. .165
8.18 Dynamic Action to refresh Sales Chart in tree overview.166
8.19 Application after implementing product filtering.166
8.20 Selecting and placing Select List item. .166
8.21 Sales Chart region after placing and renaming Select List item.167
8.22 Setting list of values for Select List item. .167
8.23 Setting static values for Select List item. .167

8.24 Adding refresh Dynamic Action for Select List item.168
8.25 Setting Order By Item for Sales Chart region. .168
8.26 Setting Order By clauses for Select List item used for sorting.168
8.27 Application after implementing chart sorting. .169
8.28 Changing the type of graph to Line with Area. .169
8.29 List of Values for Select List item used for filtering product sales by year.170
8.30 Setting source SQL Query and column mapping for Monthly Sales Chart region. . .170
8.31 Monthly Sales Chart. .170

9.1 Expanded Side Navigation Menu .171
9.2 Top Navigation Tabs .172
9.3 Top Navigation Menu .172
9.4 Top Navigation Mega Menu .172
9.5 Navigation menu attributes .173

10.1 Page Blocking feature in APEX. .176
10.2 Locking a specific page. .177
10.3 Adding comments. .178
10.4 Build options. .179
10.5 Team Development feature. .179
10.6 Activation of Team Development feature. .180
10.7 Customization of Team Development feature. .180
10.8 Issue-related communication inside Team Development feature.181
10.9 Allowing feedback in Application definition. .182
10.10Submitting feedback in application. .183
10.11Utilities menu. .183

11.1 Oracle APEX workspaces come with Sample Apps and Starter Apps.184
11.2 Starter Apps in Gallery. .185
11.3 Installation of starter app Team Calendar. .186
11.4 Sample Apps. .187

12.1 Application import and export wizard. .193
12.2 Transforming Quick SQL to SQL commands. .195
12.3 Script CH12INSERT insert data in three tables and commit transactions.195
12.4 Create application from script. .196
12.5 Selecting application name and all features. .197
12.6 Selecting Shared components. .198
12.7 Creating list of values from scratch. .198
12.8 Name and type of CH12_LOV_COMPETENCE_DESCRIPTION.199
12.9 Entering SQL SELECT command. .199
12.10Name and type of CH12_LOV_COMPETENCE_LEVEL.200
12.11Display and return values for CH12_LOV_COMPETENCE_.201
12.12Page 7 in application (Ch12 Job Competences). .202
12.13Page 7 report (Ch12 Job Competences). .202
12.14Select Supporting Objects. .202
12.15Setting prerequisites. .203
12.16Set check on existence of three tables. .203
12.17Set prompt to rename application. .203
12.18Set installation scripts. .203
12.19Set deinstallation scripts. .203

12.20Import the application into another workspace. .204
12.21Licence agreement. .204
12.22Rename imported application. .204
12.23Adding a role to user. .205
12.24Defined languages for translation. .205
12.25Seed translatable text. .205
12.26Export strings for particular language and page. .205
12.27Translation of "target" tagged strings in lines 48, 52, 56, 60, 72 and 76.206
12.28Uploading XLDIFF translation files. .206
12.29Applying changes and publishing. .206
12.30Final publishing of the application translation. .207
12.31Setting application primary language. .207
12.32Translated page. .207

13.1 Use case diagram. .210
13.2 Logical data model. .214
13.3 Relational data model. .215
13.4 The Contributor (Publisher) dashboard. .215
13.5 Publishing news with attachments. .216
13.6 Viewer (Reader) dashboard. .216
13.7 Viewer (Reader) access to news. .217
13.8 Administrator dashboard. .217
13.9 Editing employee role by Administrator. .218

14.1 Use case diagram - Catalog of plants. .222
14.2 Logical data model. .223
14.3 Relational data model. .224
14.4 Interactive grid for Plant Form. .225
14.5 Public part – open browsing of plant data. .225

15.1 Use case diagram - GreenDi User Authorization and Management227
15.2 Logical data model. .229
15.3 Relational data model. .230
15.4 User Form. .230
15.5 User History Form. .231

16.1 Use case diagram. .233
16.2 Logical data model. .237
16.3 Relational data model. .237
16.4 The Employee dashboard. .238
16.5 Submitting idea with attachments. .238
16.6 Organizational Structure in the company. .239
16.7 Small Innovation Idea overview. .240
16.8 Reviewer dashboard. .241
16.9 Page for reviewing the ideas. .241

17.1 Integrating Flows for APEX with APEX application.244
17.2 Use case diagram. .249
17.3 Workflow - processing inquiry - BPMN diagram.249
17.4 Creating instances. .250
17.5 Creating instance of the flow CH17. .250
17.6 Start demo instance. .251

17.7 Complete first task in demo instance. .251
17.8 Executing tasks in parallel gate. .252
17.9 Completed demo instance. .252
17.10Logical data model. .253
17.11Relational data model. .254
17.12Home page of "CH17 Business Process Management" application.255
17.13Sales - initiated process. .257
17.14Sales - flow report. .257
17.15Sales - flow diagram for selected instance. .257
17.16Sales - flow report for selected instance. .258
17.17Sales - inquiry report. .258
17.18Sales - list of documents. .258
17.19Sales - uploading document for inquiry. .259
17.20Sales - list of documents after uploading and refreshing.259
17.21Sales - report for selected instance after uploading three documents.260
17.22Sales - flow report for selected instance after uploading three documents.261
17.23Manufacturing - flow report. .261
17.24Manufacturing - BPMN diagram - state of instance.262
17.25Manufacturing evaluation. .262
17.26Manufacturing evaluation finished, instance waiting to financial evaluation.263
17.27Finance - flow report. .263
17.28Finance - BPMN diagram - state of instance. .264
17.29Financial evaluation. .264
17.30Financial evaluation finished, instance waiting to business evaluation.265
17.31Finance - BPMN diagram - state of instance. .265
17.32Business - flow report. .266
17.33Business evaluation. .266
17.34Business evaluation finished, instance terminated. .267
17.35Showing the state of the instance on BPMN diagram.267
17.36Setting page items. .268
17.37Completing step in Flows for APEX. .268
17.38Define roles and user roles in Application Access Control menu.269
17.39Granting "create job privilege" to workspace. .269
17.40Import workflow called CH17 into Flows for APEX - step 1.269
17.41Import workflow called CH17 into Flows for APEX - step 2.270

18.1 Use case diagram - Exchange of Plants and Seeds273
18.2 Logical data model. .274
18.3 Relational data model. .275
18.4 Offers - interactive report. .276
18.5 Message form. .276

19.1 Use case diagrams. .280
19.2 Logical data model. .281
19.3 Relational data model. .282
19.4 Generating application out of script CH19CREATEINSERT - part 1.283
19.5 Generating application out of script CH19CREATEINSERT - part 2.284
19.6 Adding book by administrator. .285
19.7 Adding category by administrator. .285
19.8 User registration. .286
19.9 Browsing and adding reviews. .286

19.10Form to comment a review .287

20.1 Use case diagram. .292
20.2 Logical data model. .293
20.3 Definition of unique index in Oracle SQL Data Modeler.294
20.4 Relational data model. .294
20.5 Generating SQL script by using Quick SQL tool.296
20.6 Application home page. .298
20.7 Managing basic data - report. .299
20.8 Managing basic data - form. .299
20.9 Managing structure data -report. .300
20.10Managing structure data -form. .300
20.11Page for calculation of bill of material. .301

21.1 Use case diagram. .308
21.2 Logical data model. .309
21.3 Relational data model. .310
21.4 Generated SQL code in right pane. .311
21.5 Diagram in right pane. .311
21.6 Run generated SQL script. .312
21.7 Preparation of hex dump file in WSL. .312
21.8 Preparation of sheets with hex dump photos. .313
21.9 Loading data -pasted content from the sheet ch21_ingredient.314
21.10Generating draft application. .314
21.11Creating multiple users - step one. .315
21.12Creating multiple users - step two. .316
21.13Add authorization scheme. .318
21.14Adding role and setting static identifier. .319
21.15Adding user role assignments. .319
21.16Adding user role assignments. .320
21.17Adding static file to application -step 1. .320
21.18Adding static file to application -step 2. .321
21.19Create User Report (page 2) and User Editor (page 3).322
21.20Set link for column ID to page 3. .323
21.21User Report and User Editor for ADMIN role. .324
21.22User Report for CHEF and REGUSER roles. .325
21.23Category Report and Category Editor for CHEF role.325
21.24Recipe Report for CHEF role. .326
21.25Recipe General Editor for CHEF role. .326
21.26ngredient Report for CHEF role. .327
21.27Ingredient Editor for CHEF role. .327
21.28Ingredients in recipes for CHEF role - view. .327
21.29Ingredients in recipes for CHEF role - change. .328
21.30Comments with link to editor for ADMIN role. .328
21.31Create button for REGUSER role. .328
21.32Manage comments for ADMIN role. .329
21.33SQL Query for Nutrition report. .329
21.34Primary report. .330
21.35Named Elements report. .330

22.1 Use case diagram. .335

22.2 Logical data model. .336
22.3 Relational data model. .337
22.4 Data model described with Quick SQL. .338
22.5 An example Query Builder usage. .339
22.6 Application home page. .339
22.7 Management dashboard. .340
22.8 Office hours interactive report for student office. .341
22.9 Rescheduling form for student office. .341
22.10Office hours interactive report after rescheduling.342
22.11Calendar of student appointments. .342
22.12Calendar of all office hours offered by teachers in student’s study program.343
22.13Enrollment to office hours through calendar -picking calendar slot.343
22.14Enrollment to office hours through calendar -selecting the purpose.344
22.15Enrollment to office hours through calendar -successful enrollment.344
22.16Checking the enrollment through the "View my appointments" menu item.345
22.17Detailed interactive report of all student appointments.345
22.18Detailed report on teacher appointments. .346
22.19Teacher calendar with visible student names, their languages and purposes.346
22.20Rescheduling teacher office hours with NONE enrolled - the calendar view.347
22.21Rescheduling teacher office hours with NONE enrolled - new date entered.347
22.22The results of rescheduling teacher office hours with NONE enrolled.347

23.1 Use Case Diagram. .351
23.2 Logical data model. .352
23.3 Relational data model. .353
23.4 Customer dashboard. .358
23.5 Customer dashboard – Invoice modal window. .359
23.6 Customer dashboard – Invoice in PDF. .359
23.7 Customer dashboard – Stats of minutes. .359
23.8 Customer dashboard – Stats of SMS. .360
23.9 Customer dashboard – Stats of data. .360
23.10Manager dashboard – Add customer. .361
23.11Manager dashboard – Manage customer. .362
23.12Manager dashboard – View customers. .362
23.13Manager dashboard – Customer export. .363
23.14Manager dashboard – Customer export in XLS file.363
23.15Administrator dashboard. .364
23.16A landing page with login. .364
23.17Login page. .364
23.18Regions of the body. .365
23.19List of content. .365
23.20HTML code of a static region. .365

24.1 Use case diagram. .369
24.2 Logical model of the Car Rental Project .370
24.3 Relational Model of the Car Rental Project .371
24.4 Log in to the app. .372
24.5 Home page of the app. .372
24.6 Cars template .373
24.7 How to make a column with photos. .375
24.8 Customers data. .376

24.9 Rent car template. .376

List of Tables

13.1 Use case description: publishing internet news. .211
13.2 Use case description: reading intranet news .212
13.3 Use case description: managing the intranet portal.213

14.1 Use case description: browsing catalog of plants .221

15.1 Use case description: user Authorization and Management.228

16.1 Use case description: idea submission. .234
16.2 Use case description: overview of ideas. .235
16.3 Use case description: idea evaluation. .236

17.1 Use case description: prepare inquiry documentation.247
17.2 Use case description: evaluate manufacturing aspects of inquiry.247
17.3 Use case description: evaluate financial aspects of inquiry.248
17.4 Use case description: evaluate business aspects of inquiry.248

18.1 Use case description: exchange of Plants and Seeds.272

19.1 Use case description: book reviews management system279

20.1 Use case description: report and maintain basic data.289
20.2 Use case description: report and maintain structure data.290
20.3 Use case description: calculate BOM. .291

21.1 Use case description: delete the particular recipe comment304
21.2 Use case description: compose the recipe .305
21.3 Use case description: add user comment on recipe306
21.4 Use case description: prepare customised nutrition report on recipe307
21.5 Requirements for pages and grants. .317

22.1 Use case description: rescheduling of office hours by teacher.333
22.2 Use case description: student enrollment for office hours.334

23.1 Use case description: add service. .349
23.2 Use case description: show service status. .350
23.3 Sample data stored in the CH23_Person table. .353

24.1 Use case description: accessing cars, customers and car rent reservation368

List of Links

: https://beeapex.eu .29
University of Maribor: https://www.um.si/en/home-page29
Faculty of Organizational Sciences,: https://fov.um.si/en29
University of Zagreb: http://www.unizg.hr/homepage .29
Faculty of Organization and Informatics,: https://www.foi.unizg.hr/en29
University of Žilina,: https://www.uniza.sk/index.php/en/29
Kozminski University,: https://www.kozminski.edu.pl/en29
International Hellenic University: https://www.ihu.gr/en/enhome29
Johannes Kepler University: https://www.jku.at/en .29
Oracle Academy: https://academy.oracle.com .29
THE RIGHT THING SOLUTIONS: https://www.right-thing.solutions/ords/r/app/en/home 29
apex.oracle.com: https://apex.oracle.com .43
apex.oracle.com: https://apex.oracle.com .43
Free VirtualBox Appliance: https://www.oracle.com/database/technologies/databaseapp

dev-vm.html .43
Pre-Built Developer VMs: https://www.oracle.com/technetwork/community/developer-v

m/index.html .43
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12116
Oracle User Group in Netherlands: https://www.nloug.nl/174
APEX Alpe Adria, Austria/Croatia/Slovenia: https://www.aaapeks.info/home/174
APEX Connect in Germany: https://apex.doag.org/ .174
APEX Community within Oracle Developer and Technology User in USA: https://www.

odtug.com/ .174
SQL Developer: https://www.oracle.com/database/sqldeveloper/technologies/download/ .193
TOAD: https://www.toadworld.com/downloads .193
McKinsey’s DELTAs: https://www.mckinsey.com/industries/public-and-social-sector/

our-insights/defining-the-skills-citizens-will-need-in-the-future-world-of-work . . .194
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12200
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12216
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12223
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12230
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12239
Flows for APEX: https://flowsforapex.org/ .243
tutorials on Flows for APEX: https://flowsforapex.org/latest/getting-started/243
Flows zip file version 22: https://github.com/flowsforapex/apex-flowsforapex/releases/d

ownload/v22.2/FlowsforAPEX_v22.2.zip .245
Flows for APEX instructions: https://flowsforapex.org/latest/installation/245
tutorials on Flows for APEX: https://flowsforapex.org/latest/getting-started/245
BPMN tutorial: https://flowsforapex.org/latest/tutorials245
APEX integration tutorial: https://flowsforapex.org/assets/files/Tutorial_Flows_for_AP

EX_v22.2.zip .245

https://beeapex.eu
https://www.um.si/en/home-page
https://fov.um.si/en
http://www.unizg.hr/homepage
https://www.foi.unizg.hr/en
https://www.uniza.sk/index.php/en/
https://www.kozminski.edu.pl/en
https://www.ihu.gr/en/enhome
https://www.jku.at/en
https://academy.oracle.com
https://www.right-thing.solutions/ords/r/app/en/home
https://apex.oracle.com
https://apex.oracle.com
https://www.oracle.com/database/technologies/databaseappdev-vm.html
https://www.oracle.com/database/technologies/databaseappdev-vm.html
https://www.oracle.com/technetwork/community/developer-vm/index.html
https://www.oracle.com/technetwork/community/developer-vm/index.html
https://beeapex.eu/course/view.php?id=12
https://www.nloug.nl/
https://www.aaapeks.info/home/
https://apex.doag.org/
https://www.odtug.com/
https://www.odtug.com/
https://www.oracle.com/database/sqldeveloper/technologies/download/
https://www.toadworld.com/downloads
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/defining-the-skills-citizens-will-need-in-the-future-world-of-work
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/defining-the-skills-citizens-will-need-in-the-future-world-of-work
https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=12
https://flowsforapex.org/
https://flowsforapex.org/latest/getting-started/
https://github.com/flowsforapex/apex-flowsforapex/releases/download/v22.2/FlowsforAPEX_v22.2.zip
https://github.com/flowsforapex/apex-flowsforapex/releases/download/v22.2/FlowsforAPEX_v22.2.zip
https://flowsforapex.org/latest/installation/
https://flowsforapex.org/latest/getting-started/
https://flowsforapex.org/latest/tutorials
https://flowsforapex.org/assets/files/Tutorial_Flows_for_APEX_v22.2.zip
https://flowsforapex.org/assets/files/Tutorial_Flows_for_APEX_v22.2.zip

28

public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12263
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12274
www.kaggle.com: https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-r

eviews .277
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12285
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12299
Pietro Jeng: http://https://www.pexels.com .314
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=21324
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=12339
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=23356
public BeeAPEX project page: https://beeapex.eu/course/view.php?id=24373
10.1007/s12110-002-1016-3: https://doi.org/10.1007/s12110-002-1016-3377
10.1145/337180.337228: https://doi.org/10.1145/337180.337228377

https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=12
https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviews
https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviews
https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=12
http://https://www.pexels.com
https://beeapex.eu/course/view.php?id=21
https://beeapex.eu/course/view.php?id=12
https://beeapex.eu/course/view.php?id=23
https://beeapex.eu/course/view.php?id=24
https://doi.org/10.1007/s12110-002-1016-3
https://doi.org/10.1145/337180.337228

Acknowledgement

Project partners and the team:
• University of Maribor Faculty of Organizational Sciences,
• University of Zagreb Faculty of Organization and Informatics,
• University of Žilina,
• Kozminski University,
• International Hellenic University and
• Johannes Kepler University

would like to acknowledge the financial support given by the through the Action
Erasmus + Better Employability for Everyone with APEX (project ID 2021-1-SI01-KA220-HED-
000032218), co-funded by the Erasmus+ programme of the European Union.

The European Commission support for this publication’s production does not constitute en-
dorsement of the contents which reflects only the views of the authors, and the Commission cannot
be held responsible for any use which may be made of the information contained therein.

Big thanks to:
• Oracle Academy Program Manager Mr. Darko Jureković for his continuous support in

project results dissemination and
• THE RIGHT THING SOLUTIONS CEO Mr. Aljaž Mali for his valuable advices on APEX

before and during the project.

BeeAPEX project team

https://beeapex.eu
https://www.um.si/en/home-page
https://fov.um.si/en
http://www.unizg.hr/homepage
https://www.foi.unizg.hr/en
https://www.uniza.sk/index.php/en/
https://www.kozminski.edu.pl/en
https://www.ihu.gr/en/enhome
https://www.jku.at/en
https://academy.oracle.com
https://www.right-thing.solutions/ords/r/app/en/home

Preface

Welcome to the exploring of Oracle Application Express (APEX) – an intuitive and powerful low-
code development platform for creating data-driven web applications. This textbook is designed to
equip you with the competences needed to harness the full potential of Oracle APEX and build
cutting-edge applications to address real-world business challenges.

Part I of this textbook is “How to”, dedicated to the fundamental aspects of Oracle APEX. In these
twelve chapters, you will embark on a journey to understand the core concepts, gain access to
APEX, and explore various functionalities to build robust applications. Each chapter delves into a
specific topic, providing clear instructions, and facilitating hands-on learning experience.

Chapter 1: “How to start Oracle APEX?” explains the fundamentals of what APEX is, along
with what it can be used for, before describing various ways to prepare the APEX environment for
a hands-on learning experience and application development.

Chapter 2: “How to prepare a database?” provides introduction to data modeling, managing
data base, manipulating data and querying data. For beginners a big picture understanding of data
base concepts is a must.

Chapter 3: “How to navigate in APEX?” gives a tour of APEX functionalities which enable the
development, generation and customization of different web pages and it’s components. Running
and testing the APEX application is just one tab away from development environment.

Chapter 4: “How to exchange data in APEX?” gives insight into importing and exporting data
within APEX. The chapter covers data exchange with files such as spreadsheets and also through
RESTful services.

Chapter 5: “How to generate a first draft of the application?” invites you to try the development
power of APEX. You will find that once you decide what your data is, you can immediately generate
appealing and functional application with no programming. It also how basic access control for end
users with different roles can be instantly generated.

Chapter 6: “How to manage reports?” guides you through delivering views of the data through
classic and interactive reporting wizards. APEX reports already include functionalities for end-user
customization of reports with no programming at all.

Chapter 7: “How to manage forms?” introduce you to three common types of web form
including master-detail. You will customize and generate form pages with no programming skills.

Chapter 8: “How to transform text reports into charts?” pave a path to utilize APEX capabilities
to present data as charts directly beside text reports.

31

Chapter 9: “How to manage menus?” presents types of various navigation elements for your
APEX application.

Chapter 10: “How to collaborate in a team?” offers insight into APEX functionalities which
serve teams since it is a rare situation that application development will involve only one developer.

Chapter 11: “How to benefit from a gallery of sample applications and plug-ins?” invites you
to apply powerful APEX capabilities through re-use of good patterns.

Chapter 12: “How to manage packaged and multilingual applications?” sets a path to distribute
your application to other APEX environments for users that speak different languages.

Part I also covers topics which are vital for application security, deployment strategies, and
readiness for the real-world.

Part II of this textbook takes you beyond the fundamentals, presenting twelve engaging business
cases which require you to solve a problem. Each case is carefully documented to provide a holistic
understanding of application development from a business, data and user interface perspective. This
part includes applications:
for businesses:

• intranet news for employees,
• small innovation system,
• business process management with workflows,
• bill of material calculation,
• book review system,
• nutrition and diet management,
• office hours scheduling,
• telecommunication company billing,
• car rental business

for communities:
• catalog of plants,
• exchange of plants.

and general applicable user authorization and management. In each business case, you will explore:
• Business view of the case: an overview of the business situation.
• Problem definition: A search to answer who and why someone has a headache.
• Use cases: Three types of description are presented: narrative, semi-structured and graphical

to prepare UML use case documentation.
• Logical and relational data model: APEX is fully featured to start fresh new data structures,

to use and modify existing ones, to combine with other data modeling tools and to support
forward or reverse engineering. Developers’ efforts to ensure appropriate chunks of data and
the relationships between and considering business needs are a foundation to proceed with
user interfaces.

• Application interfaces: textbook provides HTML pages, reports, forms, fields, menus, buttons,
hyperlinks which materializes the business situation, the solution to the business problem,
and the use cases and data with end-user in mind.

• Supplementary learning material: To enhance, accelerate and help you on the development
path you will find links to exported applications, scripts, data and video tutorials for each
chapter. These resources will provide you with practical insights, allowing you to reinforce
your knowledge and apply it directly to real-world projects.

Whether you are an experienced developer seeking to expand your skill-set or a beginner eager to
explore the world of APEX, this textbook is your definitive guide. Our hope is that also non-IT
learners will also find it an invaluable companion on the journey to mastering Oracle APEX and
building innovative applications that make a positive impacts.

32

The textbook and supplementary material are designed for approximately 75 hours of student effort
(3 ECTS). We hope that different modes of study can be applied through:

• teacher lead class lectures and lab exercises,
• blended learning and also
• self-paced study.

Depending on the learner’s background knowledge and available time to run the course, teachers
can easily assemble a set of chapters that suits the learning situations like: extracurricular courses,
summer schools, time limited events for low-code introductions for all students (not only in IT or
CS), and practitioners in various branches of industry.

APEX versions 22 and 23 were used for developing this textbook and supplementary learning
material. We believe that concepts and core technologies explained and applied in the contents will
be beneficial also to the learners of the future APEX versions.

Get ready to embark on an exciting learning adventure with Oracle APEX! Enjoy using wizards
and low-coding!

Professor Robert Leskovar
BeeAPEX project leader, Chair of IT Department, UM, Faculty of Organizational Sciences

Contributors

List of authors (by surname in alphabetical order) and chapters:

First name and surname Chapter
Darko Andročec 14, 18

Athanasis Angeioplastis L5, 21, L24
Alenka Baggia C12, C13, C16, C17, 19, C20
Matej Grochal 6
Larisa Hrustek C15, 19

Elisabeth Kapsammer L2, L3, L4
Adam Kierzkowski C10

Jozef Kostolný 23
Ana Kutnjak C14, 15, C18, L19
Michal Kvet 6,7, 8, 9, 23

Robert Leskovar L12, L13, L16, L17, C19, L20, L21, C22
Erik Malina 6

Jacek Mańko L22
Andrea Meleková 6

Michal Mrena 23
George Myllis 5, 21, 24
Dijana Oreški C1, C11
Ivan Pastierik L8

Miroslav Potočár C6, C7, C8, C9, C23
Uroš Rajkovič 12, 13, 16, 17, 20

Werner Retschitzegger 2, 3, 4
Wieland Schwinger C2, C3, C4

Monika Sońta 10, 22
Andrej Staník 6

Przemysław Staniszewski L10
Vjeran Strahonja L1, L11, L14, L15, L18
Veronika Šalgová L7, L9, L23

Alkiviadis Tsimpiris 5, 21, 24
Dimitrios Varsamis C5, C21, C24

Zuzana Žillová L6
*L = lead author, C = corresponding author

I How to in APEX
IHow to in APEX 34

1 How to start Oracle APEX? 35
VJERAN STRAHONJA AND DIJANA OREŠKI

2 How to prepare a database? 48
ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND

SCHWINGER .

3 How to Navigate in APEX? 77
ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND

SCHWINGER .

4 How to exchange data in APEX? 89
ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND

SCHWINGER .

5 How to generate a first draft of the applica-
tion? . 107

ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIM-

PIRIS AND DIMITRIOS VARSAMIS .

6 How to manage reports? 128
ZUZANA ŽILLOVÁ, ERIK MALINA, MATEJ GROCHAL, ANDREJ

STANÍK, ANDREA MELEKOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

7 How to manage forms? 148
VERONIKA ŠALGOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

8 How to transform text reports into charts?
155

IVAN PASTIERIK, MICHAL KVET AND MIROSLAV POTOČÁR . . .

9 How to manage menus? 171
VERONIKA ŠALGOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

10 How to collaborate in a team? 174
PRZEMYSŁAW STANISZEWSKI, MONIKA SOŃTA AND ADAM

KIERZKOWSKI .

11 How to benefit from a gallery of applica-
tions and plug-ins? 184

VJERAN STRAHONJA AND DIJANA OREŠKI

12 How to manage packaged and multilin-
gual applications? 192

ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA . .

1. How to start Oracle APEX?

VJERAN STRAHONJA AND DIJANA OREŠKI

1.1 What is Oracle APEX and what is it for?
1.1.1 What is Oracle APEX?

Oracle APEX (also known as APEX or Oracle Application Express) is an enterprise low-code
development platform, developed by Oracle Corporation, which enables users to create and deploy
applications using a web-based interface. It is a set of tools for creating different types of applica-
tions that consist of programs for working with data in the database: including entering, storing,
displaying, changing, calculating and logical operations with data, etc. Using this platform enables
the development of applications for various purposes that include generating a database based on
a set of structured data or data models, working directly with data in the database using the SQL
language, creating user interfaces, generating various tabular and graphical reports and deploying
web applications on Oracle databases.

1.1.2 And what is the application?
An application is generally a set of computer programs that has a specific purpose and works on
a set of data in a database. We are particularly interested in business applications: those whose
programs are used to process data on business processes and transactions. The development of an
application, even a simple one, is a complex thought and creative process, which requires certain
knowledge and skills. Firstly, an algorithmic way of thinking (algorithmic literacy) is required. It is
the ability to conceptualize, and the awareness that an algorithm exists in a situation, along with the
ability to apply it; the knowledge of how to design and use an algorithm, and the ability to critically
evaluate algorithms. Knowledge and skills of creating high-quality records in a programming
language (coding), testing and debugging, and other things we usually call programming are also
required.

1.1.3 How can Oracle APEX help in application development?
When developing computer programs, we cannot avoid the algorithmic way of thinking. Using
platforms and tools for low-code / no-code programming, such as Oracle APEX, allows non-
programmers to easily program without the need to know the details of a programming language
and advanced programming skills. So, they can focus on the problem and the algorithm rather than
the programming language and technology. We are particularly interested in fast, user-friendly

1.1 What is Oracle APEX and what is it for? 36

application development for accessing, unifying, analysing and displaying data from open data
sources and from corporate databases. Open data are freely available data for anyone to access,
use and share. They can be used without restrictions (or with some), shared with others or used to
create new works. They are made available by governments, companies and other organizations
to promote transparency and cooperation. Today there are many easily accessible sources of
meteorological, traffic, geological health and similar data, as well as statistics on education, health,
economy, etc. Corporate databases contain data on business transactions and other data that are
created as a result of business processes. Visualization, analysis, integration and different views of
this data can be used to make business decisions or achieve some other benefits. Oracle APEX is
used for prototype development, which is used to discuss what the program should do and show
the IT specialist what the user wants. The prototype reflects the essential features of the system.
Later, it is added to the system that will be used or serves as a basis for creating a system in another
programming language, tool, or platform.

1.1.4 Application development cycle
Regardless of what kind of application we develop and what kind of methodological framework,
development tools or platform we use, the application development cycle goes through several
stages. These stages are different in different methodological approaches. Figure 1.1 shows one
possible pattern of the application development cycle (see Figure 1.1).

Development cycle

Planning (1)

Problem
definition

(1.1)

Business
model (1.2)

Project
alignment

(1.3)

Design (2)

Construction
(3)

Implementation
(4)

Maintainance
(5)

Business
view of

case (5.1)

Objectives
(5.2)

Requirements
(5.3)

Figure 1.1: Application development cycle.

As shown in the figure, the application development cycle contains the following phases or
processes:

1. Planning (defining the problem and project)
• definition and analysis of the business model

1.1 What is Oracle APEX and what is it for? 37

• requirement specification
• determination of basic processes and data
• technology and architecture decisions
• development planning

2. Application design
• analysis and specification of requirements
• logical application design (use cases and logical data model)

3. Construction of the application
• database design
• development (prototype) of the application
• testing

4. Implementation of the application
The Planning is followed by Design, Construction and Implementation. These phases or

processes can be performed sequentially or iteratively (evolutionary, incremental), so that we go
through the entire development cycle several times and add a part of the functionality in each
iteration.

Application Planning The application development cycle begins with the Planning. With
simple applications, the initial information for the Planning of the application can be Problem
definition, document which clearly states the problem. Who has a headache? Why is this a real
headache? What is the manifestation of the problem? It can be a few sentences or pages of text. In
the case of complex business applications, detailed specifications should consider:

• Business view of the case describes how people inside organization perceive situations or
what they expect from the application.

• Objectives of the application development describe what the application wants to achieve
terms of business, technological and/or other factors, present as the indicators of success.

• Business model describes values, customer segments, customer relationships and channels,
key partners, activities and resources, structure and sources of revenues and costs, etc.

• Software requirements specification defines requirements regarding function, behavior, per-
formance, technology etc.

• The project plan describes the scope and phases of the future project, the activities (tasks)
that are performed in individual phases, the inputs and outputs of individual activities, the
resources that are needed, the interconnection of activities and their duration, costs, risks, etc.

There are methods for creating each of the listed specifications, which are described in the
literature. For example, Alexander Osterwalder [6] developed the Business Model Canvas method,
which is used to develop, improve and document new and existing business models As shown on
Figure 1.2, it is actually a visual chart of 9 building blocks that describe the value proposition
provided by the organization, its customers, relationships and channels with them, key partners,
activities and resources, as well as the cost structure and revenue streams.

While Business Model Canvas (BMC) serves to foster understanding, analysis and design of
the business model, and especially what needs to be supported by the application we develop, and
Software Requirements Specification (SRS) is a document that describes what the software will do
and how it will be expected to perform. SRS describes the functionality, performance and other
characteristics that the application must have in order to support the business model and needs of
all users.

Application Design From the first computers and computer programs to today, hundreds of
different methodological approaches, methods and techniques of application design have been
developed. The methodology of program design has changed with technological development. Low-
code / no-code program development is an approach that prefers simple methods, understandable
to users who are not professional software developers. However, application development requires
some design processes before program generation.

1.1 What is Oracle APEX and what is it for? 38

Key activities:
Which activ-
ities provide
value to certain
customer seg-
ments? What
methods do we
use?

Customer re-
lationships:
What are re-
lations with
the certain cus-
tomer segment,
at what cost
and problems?

Key resources:
What key re-
sources does
our value
proposition
require (service,
delivery system,
people ...)?

Channels:
What channels
do we use to
reach certain
segment?

Key partners
(suppliers):

Who they are?
What goods and
services do we
get from them?

Value
proposition:

What values do
we deliver to a

specific
customer or

segment of cus-
tomers(goods,
services and
other needs)?

Customer
segments:

From whome do
we create value,

who are our
customers?

Cost structure: What are the most important
costs and what are their drivers?

Revenue stream: What are our sources of
income? What value are our customers

willing to pay and how much?

Figure 1.2: Business Model Canvas [6]
.

As we mentioned before, a computer application is a set of programs that work with data in
a database. To develop an application, we need to design both the programs and the database. If
the database already exists, we must know how to use it, and above all, understand the data model.
For the needs of low-code / no-code program development, we will introduce the most necessary
design methods. At the same time, the basis of the design is the creation of models that also have a
graphic representation. We will use the following methods:

• Use Case (UC) model that defines the relationship between the application and the environ-
ment.

• An entity-relationship (ER) model that describes the structure of data at a logical level.
Use case will be explained in the continuation of this chapter, while entity-relationship (ER)

will be explained in Chapter 2.

Use Case (UC)
Use cases are one of the software development methods. They describe the relationship between
the system (application) and the environment (users and other systems). The method is simple, so
even non-professional users understand it. Use cases are an integral part of the Unified Modeling
Language (UML), the most used modeling language today in the field of software engineering,

1.1 What is Oracle APEX and what is it for? 39

which provides a standard way to visualize the design of a system. There is a rich literature UML
and the Object Management Group (OMG) takes care of its development and standardization.
UML contains 13 methods and diagrammatic techniques for modeling the structure, behavior and
interaction of software, and we will only utilize Use cases.

The Use case model consists of two parts:
• Specifications (narrative description) of use cases
• Use case diagram
First, we will study the Use Case diagram. This diagram describes what the system does,

from the point of view of an observer outside the system. It doesn’t matter how the system works
internally.

The basic concepts of the Use Case diagram are shown in Figure 1.3.

Figure 1.3: The basic concepts of the Use Case diagram.

A use case represents a set of actions that can be performed by a system (e.g., a software
component) in interaction with external actors. It is a story that describes how actors use the system
to achieve certain goals or perform tasks. It represents an abstract task that has a purpose. The link
(Association) connects the participants in the communication, for example the actor and the use
case, and represents their interaction and the relationship between the system and the environment
(behaviour). An Actor represents a set of roles that interact with the system in the same way, for
example a user class, some kind of external system or similar. An actor is someone outside the
System under discussion who interacts with it but is not part of it. It can be a living being (User,
Patient, Pilot), or another system (Billing System, Bank, Carrier).

The diagram can also show the classification structure (see Figure 1.4), which explains the
generalization/specialization of the concepts, for example Actors. All subclasses (children) inherit
properties and behaviour from the superclass (parent), which means that they also inherit links to
use cases from the parent. At the same time, an individual subclass can enter a communication that
neither the superclass nor other subclasses enter into.

Figure 1.5 shows the boundaries of the system as a rectangle with the name of the system,
inside which the use cases are located.

UC diagrams do not show workflow or sequence of use cases. However, there are two allowed
types of associations between use cases which are also shown in Figure 1.5:

• "include" is an association from the base use case to the included use case, indicating that the
base use case contains the behavior of the included use case. In this way, the functionality
and behavior that is often used is separated into a use case that we will include as necessary
in other use cases. Note that the basic use case is not complete without inclusion.

• "extend" is an association from a use case that is an extension to a base use case, indicating
that the behavior of the base use case is extended by the behavior of the extension. At the
same time, the extension is not part of the basic use case, nor should this communication
always exist and function flawlessly.

The use of the aforementioned concepts of the Use cases diagram is best explained with
example, such as the Hotel Reservation system, shown in Figure 1.6.

The system whose behaviour we are observing is a Hotel Reservation. The system is all within
the boundaries shown by the rectangle. The surroundings of the system are outside the rectangle.

1.1 What is Oracle APEX and what is it for? 40

Figure 1.4: Generalization/specialization of Actors.

Within the system boundaries are six Use cases, shown by ellipses with names. Outside the system
are Actors, who communicate with the system, that is, its Use cases - this communication is
shown by connecting lines, and associations. Any User is an actor who communicates with Check
Availability. This Use case communicates with an external actor, Rooms DB. It is some kind of
external reservation system that has information about rooms and reservations in its database. Any
User can Book the room. This UC includes another UC, Update User. The classification structure
of the User actor is shown on the left. Agent, Receptionist and Guest are "a kind of actor" Any
user. In the case shown, only Guest can communicate with UCs Check In and Pay the bill. UC
Update User is included in Pay the bill, which means that user data can also be updated within the
bill payment functionality. UC Pay by card extends the Pay the bill functionality, this means that
card payment can be called up during bill payment. Pay by card communicates with an external
credit card payment service CC billing. Administrator can communicate with UC Update user and
update user information. As we already mentioned, the use case model consists of two parts:

• Specifications (narrative description) of use cases
• Use case diagram.
The Use Case specification describes scenarios and internal logic of Use Cases, initial states

(preconditions) and final states, interfaces, system messages, specification of error and exception
processing and similar. Usually, some kind of template is used for the Use Case specification, as
we will use in this book.

Construction, implementation and maintenance of the application The construction of the
application implies the creation of a program and the realization of a physical database. We will
use the Oracle APEX platform for this, as will be explained later in the book. The first version of
the application that works and can be tested is a prototype of the application. This prototype can be
upgraded and expanded. Considering what will happen with the prototype later, we distinguish
between two types of prototypes: throw away, and upgradeable. An upgradeable prototype is
improved and upgraded to a state that is suitable for use. Whilst the "throw away" prototype serves
as an illustration of the functionality and a model on which the application will be built, usually on

1.2 How to start Oracle APEX? 41

Figure 1.5: Boundaries of the system and associations "include" and "extend".

another platform. If we intend to use the application prototype, we must implement it - that means
install it in the production environment, educate users, prepare the database and similar.

The implementation phase is followed by the use of the and maintenance. These include fixing
and removing errors, improving performance and minor extensions of functionality. If major
changes are needed, a new development cycle of the application is started.

1.2 How to start Oracle APEX?
Software development is considered to be complex due to the amount of programming required.
Consequently, low code solutions are proposed in order to overcome complexity. Implementing
a low code approach allows the development of sophisticated apps that are both functional and
complex - without writing a line of code. Oracle Application Express is one of the best low-code
options for this. There are various ways to start Oracle APEX. Oracle APEX can be used anywhere
a database is running, both on-premises and in a private cloud. It can be a physical, dedicated server,
a virtualized machine, or a docker image (which is particularly well-liked by Oracle Application
Express developers and can be launched on a laptop, while traveling by bus, or plane). Additionally,
Exadata can be utilized, a super-capable physical APEX server in the cloud. This chapter will cover
all of the shortly describe all options how to access APEX development environment.

1.2.1 What is your skill level?
There are several possibilities to start with Oracle Application Express - APEX. Your current
skill level determines the recommended way to start. Let’s assume that you have specific domain
competences in any organizational process (e.g., selling, hiring, manufacturing, lending, marketing,
legal matters, health-care, constructing, education) and the following digital skill levels:

• Absolute beginner: comfortable with web browser, no programming experience at all;
recommendation: use on-premise instance or apex.oracle.com or Oracle Academy

• Begginer: comfortable with web browser, little programming experience e.g. using spread-
sheets and setting formulas; any other other programming language; recommendation: use
on-premise instance or apex.oracle.com or Oracle Academy

• Fresh citizen developer: comfortable with web browser; little programming experience; un-
derstanding what is database, table, table column, primary key, foreign key; basic querying, in-
serting, updating and deleting; recommendation: use on-premise instance or apex.oracle.com
or Oracle Academy or VBox appliance

• Skilled citizen developer: comfortable with web browser; moderate programming expe-

1.2 How to start Oracle APEX? 42

Figure 1.6: Use Cases diagram of the Hotel Reservation system.

rience with procedures and functions in any database management system; intermediate
querying, inserting, updating and deleting; recommendation: use on-premise instance or
apex.oracle.com or Oracle Academy or VBox appliance or APEX docker

• On the road to professional developer: developing skills in PL/SQL and JavaScript; recom-
mendation: use on-premise instance or apex.oracle.com or APEX docker or OCI APEX
instance

Your user role and the location of Oracle APEX will determine how you log in and use the
application. Oracle APEX can be installed locally on your computer or in a hosted environment
like an Oracle Cloud service. Depending on the installation type, the sign-in procedure varies.
Users need to create a workspace, add Oracle APEX users, then sign in to the workspace before
developing or installing apps. Multiple users can collaborate on the same Oracle APEX installation
using a workspace while maintaining the privacy of their objects, data, and applications. If Web
browser supports JavaScript, users can log into a workspace to access the Oracle APEX home
page. Each workspace has a distinct name and ID. Within Oracle APEX Administration Services, a
workspace can be manually created by an instance administrator, or users can make requests. An
independent program called Oracle APEX Administration Services is used to oversee a complete
Oracle APEX instance.

1.2.2 Use on-premise APEX instance
This section describes how to install Oracle APEX in a on-premises (or local) installation. Oracle
APEX installation involves several steps. Those steps are:

• Choose between Full or Runtime Environment. Full Environment gives access to the
App Builder development environment completely. For production implementations where
you wish to execute unchangeable apps, a Runtime Environment is good option. Oracle
APEX enables the ability to install only a runtime version of Oracle APEX for testing and
production instances. Since developers cannot accidentally update a production program
in a runtime instance, this runtime environment reduces installed footprint and rights and

1.2 How to start Oracle APEX? 43

enhances application security. Users can run production applications in an Oracle APEX
runtime environment, but it does not have a Web interface for administration. A runtime
environment is more secure because it just contains the components required to run the
program.

• Verify installation requirements. Verify whether your system satisfy the minimum re-
quirements for installation. There are five groups of requirements: a) Oracle Database
Requirements (Oracle APEX release 22 requires an Oracle Database release 12.1.0.2 or later.
Oracle APEX runs on all database editions, including Enterprise Edition (EE), Standard
Edition (SE) and Express Edition (XE). Oracle APEX can be installed in single-instance
database and in Oracle Real Application Clusters (Oracle RAC) database.), b) Browser
Requirements (Oracle APEX requires a JavaScript-enabled browser and supports the current
and prior major release of Google Chrome, Mozilla Firefox, Apple Safari, and Microsoft
Edge.), c) Web Listener Requirements (Oracle APEX requires Oracle REST Data Services
(ORDS) 19.x or later), d) Disk Space Requirements (Oracle APEX disk space requirements
310 MB free space for APEX software files on the file system if using English only download
and 705 MB if using full download, 220 MB free space in APEX tablespace, 100 MB free
space in SYSTEM tablespace, 60 MB free space in APEX tablespace for each additional
language (other than English) installed, e) Oracle XML DB Requirements (Oracle XML
DB must be installed in the Oracle database that you want to use if you are installing a full
development environment. If you are using a preconfigured database created either during an
installation or by Database Configuration Assistant or DBCA, Oracle XML DB is already
installed and configured.)

• Install the software. Install Oracle APEX by downloading a ZIP file from the Oracle APEX
page and then download and install Oracle REST Data Services (ORDS).

1.2.3 https://apex.oracle.com
Navigate your browser to apex.oracle.com. Requesting a free workspace is the fastest way to get
started with Oracle APEX. It only takes a few seconds to join up, and workspace is prepared for
users to begin developing apps. This approach doesn’t require a cloud account and it is free. To
start with Oracle APEX:

• Type in your web browser: apex.oracle.com
• Click on the Start for Free Today button
• On the web page that appears, select Request a free Workspace
• Put in your name, the e-mail address, give your workspace a name and click Next
• Complete the survey and put in why you are requesting workspace. Read through the terms

and conditions and accept the terms, click Next
• At this point, you will get an email from the Oracle APEX, click on the link to register and

set up a password.

1.2.4 Virtual Box Appliance / Virtual Machine
Navigate your browser to Free VirtualBox Appliance. The main purpose of appliance is development
and testing. The APEX version is usually behind the latest. Download Oracle Virtual Box and
Extension manager. Setup Oracle Virtual Box and Extension manager. Import .ova file. Start
appliance.

The Oracle APEX Development VM is a ready-to-use virtual machine that you may utilize by
simply importing it into VirtualBox. Oracle Pre-Built Virtual Machines are available with Oracle
accounts. All you need to do is install Oracle Virtual Box (Free Virtual Machine Client), and then
import any appliance (Pre-Built VM). Oracle has several Pre-Built Developer VMs.

To set up VM, do the following:
• Download and install Oracle VM VirtualBox on your host system.

https://apex.oracle.com
https://apex.oracle.com
https://www.oracle.com/database/technologies/databaseappdev-vm.html
https://www.oracle.com/technetwork/community/developer-vm/index.html

1.2 How to start Oracle APEX? 44

• Download the files (the use of a download manager is highly recommended)
• Import your VM: File > Import Appliance to launch Appliance Import Wizard. Click

Choose... to browse to the directory you re-assembled all the files in and select the
OTN_Developer_Day_VM.ova. Then click Next to begin importing the virtual machine. It
will prompt you to agree to the appropriate developer licenses while importing. You will see
’Oracle Developer Days (Powered Off) when it is finished importing.

• Test your VM: Once the import has completed, double-click the OTN Developer Days VM.
Click OK to close the Virtualbox Information dialogs. When you get to the Enterprise Linux
6 screen you can now login. (Username and password is oracle.) Allow the process to
complete; it is ready when you see a terminal window, which you can close. Once you are
finished working in the guest VM you can shut it down via System > Shut Down; this will
return the guest VM to the Powered Off state.

The key benefits of utilizing Virtual Machines include:
• Utilizing new Oracle software without having to perform complex installations or needing

vendor involvement.
• Experimenting without exposing your workstation.
• Free guided training provided by Oracle in the form of Hands On Labs.

1.2.5 APEX docker
Get official APEX docker on Oracle site. Navigate your browser to Oracle Vagrant and Docker
builds.

Oracle APEX can be installed as Docker container. Dockers are very convenient way for
developers since they can be installed on PCs and laptops. We strongly recommend to get an APEX
docker only from trustworthy sources. Setup is usually quick and simple. For learning Oracle
Database and APEX their version might not be important but for production use take attention to
versions. The rest of this section describe one possible way to install APEX docker locally on your
computer. In this process we clone the official Oracle docker image which contain development
tools.

1. First step is to install docker on the machine. Docker can be easily downloaded and installed
from the docker homepage: https://docs.docker.com/desktop/install/windows-install/

2. Second step is to sign up for a free account on the oracle container registry: https://containe
r-registry.oracle.com/ords/f?p=113:10 Docker images are pulled out from this registry (see
Figure 1.7).

Figure 1.7: Searching for the APEX docker.

3. Third step is to open a terminal window and access the Oracle registry using the previously
created user.

docker login container-registry.oracle.com

https://docs.docker.com/desktop/install/windows-install/
https://container-registry.oracle.com/ords/f?p=113:10
https://container-registry.oracle.com/ords/f?p=113:10

1.2 How to start Oracle APEX? 45

It’s better to create a network in a docker environment so dockers can communicate with
other dockers using a hostname.

docker network create ords-database-network

At this point, we have done all that we need and can execute the command to run our Oracle
Database XE in a docker on our laptop.

docker run -d --name testapex --hostname database
--network=ords-database-network -p 1521:1521
container-registry.oracle.com/database/express:latest

Note that the parameter name, hostname and network were used here. Explanation:
• The first flag -d will run the container in a detached mode.
• The parameter –name specifies the container name.
• -p maps the port 1521 on the host machine to the port 1521 in the container, so we can

connect to the database.
• –network connects the container to the network we created.
• –hostname give a name to the DB server.
• The last parameter is the image we want to use to spin up the container.

If you want to connect by sqlplus you can execute this command:

docker exec -it -u oracle testapex sqlplus / as sysdba

With the show pdbs command you will check the status of pdbs. Change the default password
using the below command (in this case the new password will be Welcome1!!). Before
execute this command please be sure the pdb XEPDB1 is open for read and write).

docker exec testapex ./setPassword.sh Welcome1!!

To set up APEX for Oracle XE installation in docker, perform further steps. From the
terminal session pull the image of ords.

docker login container-registry.oracle.com

Then execute the pull command to download the ords image.

docker pull container-registry.oracle.com/database/ords:latest

To configure the APEX installation, create a directory.

mkdir ~/APEX

Put the string information inside a file on this directory.

echo ‘CONN_STRING=sys/Welcome1##@database:1521/XEPDB1’ >
~/APEX/conn_string.txt

1.2 How to start Oracle APEX? 46

Note that the parameter hostname of Oracle Database XE docker and the service of the pdb
for the string connection were used. Define CONN_STRING variable as follows (needs to
be in below shape, without single quote):

CONN_STRING=user/password@host:port/service_name

At this point, we can run the docker.

docker run --rm --name apex
-v /Users/lbindi_it/APEX:/opt/oracle/variables
--network=ords-database-network -p 8181:8181
container-registry.oracle.com/database/ords:latest

The same parameter network was used here. To monitor the installation, you can open
another terminal session and execute this command:

docker run — rm — name apex
-v /Users/lbindi_it/APEX:/opt/oracle/variables
--network=ords-database-network -p 8181:8181
container-registry.oracle.com/database/ords:latest

Change the password for APEX_PUBLIC_USER user inside the database. To do that login
in a Oracle XE docker by sqlplus.

sqlplus sys/Welcome1##@//localhost:1521/XEPDB1 as sysdba

Set the password.

alter user APEX_PUBLIC_USER identified by Welcome1##;

Now you can connect to APEX environment on your local computer with browser.

http://localhost:8181/ords

1.2.6 APEX instance in Oracle Cloud Infrastructure
Oracle Cloud Infrastructure (OCI) offers APEX low-code application development on the Au-
tonomous Infrastructure as a fully managed service that is pre-configured and ready to use. OCI
provides elastic scalability, security, high availability and global access via regional cloud data
centres. In order to create an APEX Service instance, the procedures for gaining access to Oracle
Cloud Infrastructure (OCI) are described in this section. The steps involved in accessing OCI are as
follows:

1. Get an OCI account. User must have an OCI account or have access to an OCI account in
order to use the APEX Service. User can use an existing OCI account if their organization has
a sales agreement with Oracle. To seek access, first get in touch with the OCI administrator
for your company. Consider Oracle Cloud Free Tier if you are a single user beginning from
scratch or are unsure of where to begin. As well as a free initial allocation of Cloud Credits,
this offers a free non-expiring OCI tenancy and account. During a trial term, these credits can
be used to purchase paid OCI services, such as APEX Service. You must upgrade the account
to paying status and buy more credits if you want to keep using APEX Service after the trial
time has ended or the free credits have run out (whichever happens first). Your OCI account

1.3 Questions 47

will change to a condition where it can only utilize OCI services that have a tiny Always Free
form available if you don’t upgrade before the trial expires. A minor Always Free shape is
there in APEX Service. Oracle advises that you convert your account to a paying one and buy
more credits either during or after the trial period. Begin the signup process, by reviewing
Oracle Cloud Infrastructure Free Tier. To start signup, go to https://signup.oraclecloud.com/.

2. Sign in to the OCI Console. Use a compatible web browser to find the OCI Console Sign-In
Page. Enter your login and password, followed by the name of your cloud account (also
known as your tenancy name). Your welcome email contains both your user name and cloud
account name.

1.2.7 APEX instance in Oracle Academy
Oracle Academy provides Institutional members and their students with access to Oracle Appli-
cation Express (APEX) for hands-on practice in the cloud. Oracle Application Express (APEX)
is made available by Oracle Academy to Institutional members and their students to experiment
using the cloud. In order to support labs and applied practice for curriculum, which includes
Database Foundations, Database Design and Programming with SQL, Programming with PL/SQL,
and Oracle Application Express—Application Development Foundations, Oracle Academy of-
fers educators a dedicated instance designed specifically for classroom use with up to 99 stu-
dents. To access Oracle APEX through Oracle Academy, users are required to log in to the
Member Hub. If they are not members, users should sign up as an Institutional Members for
free in order to access all material and receive other benefits. Please navigate your browser to
https://academy.oracle.com/en/oa-web-overview.html.

1.3 Questions
1. What are the stages of application development cycle and what are activities of the third

stage?
2. Which of the possibilities to start with Oracle Application Express is the best solution for

absolute beginner?
3. What are benefits of using APEX instance in Oracle Cloud Infrastructure?

1.4 Answers
1. Stages of application development cycle are: (i) planning (defining the problem and project),

(ii) application design, (iii) construction of the application, (iv) Implementation of the
application. Activities of the third phase (construction of the application) are: database
design, development (prototype) of the application and testing.

2. Recommendation for absolute beginner is to use on-premise instance or apex.oracle.com or
Oracle Academy.

3. Oracle Cloud Infrastructure (OCI) offers APEX low-code application development on the
Autonomous Infrastructure as a fully managed service that is pre-configured and ready to
use. OCI provides elastic scalability, security, high availability and global access via regional
cloud data centres.

https://signup.oraclecloud.com/
https://academy.oracle.com/en/oa-web-overview.html

2. How to prepare a database?

ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND SCHWINGER

Assume you work for Walmart and Database Systems (DBS) have not yet been invented. Assume
further, you are asked to implement a Web application that can store, retrieve, visualize and
further process every single sale in every of Walmart’s 10.500 stores along with information about
responsible departments, employees and their jobs which could be Petabytes of data. This task
becomes unmanageable due to numerous challenges:

• How many files and disks do you need for storage?
• How do you find and retrieve data?
• How do you ensure adequate response times?
• How do you allow modifications and concurrent access to the data?
• How do you prevent unauthorized access to the data?
If you would employ a DBS as the constituting backbone of your Web application (cf. Figure

2.1) those challenges get manageable since DBS provide the proper functionality to deal with them.

Figure 2.1: DBS as the Backbone of Web Applications.

A DBS comprises:

2.1 How to Model the Data 49

1. the software to assist in managing and processing large collections of data which can be used
by a Web application, called Database Management Systems (DBMS)

2. the actual storage of the data itself, called database, which provides the DB-layer where the
Web application builds upon.

In the following, the main concepts needed for building up the DB-layer, i.e., developing a
DB, are discussed in more detail. Although, ultimately the goal is “creating appropriate DB tables,
storing data, manipulating and querying it”, there are some important concepts which first have to
be introduced in order to achieve this goal.

In particular, we will start in Section 2.1 with the process of modeling the data to be stored
by introducing two different abstraction levels , comprising the logical model and the physical
model in terms of the relational model1. Further on, in Section 2.2, DBS-specific mechanisms and
tools for creating the data structure within the DBS are focused on, as prescribed by the modeling
process. Based on that, Section 2.3 deals with data storage and manipulation issues and Section
2.4 aims at discussing the querying of stored data. Finally, Section 2.5 provides a summary of all
options and the according tooling which is available in order to build up the DB-layer of a Web
application.

Throughout all these sections, a running example is employed, inspired by the Walmart use case
introduced above, emphasizing its Human Resource (HR) aspect in terms of employees, departments
and jobs - a standard example which has been used by ORACLE for demonstration purposes since
the first version of its DBS in 1979.

2.1 How to Model the Data
The first step when realizing the DB-Layer of a Web application is to focus on the real-world data
which should be stored. Since this data can be quite comprehensive as we saw in our Walmart
example above, it makes sense to deal with the data at a more abstract level first, not yet considering
all low-level implementation details of a certain DBS. This is the focus of the logical model as
discussed in Section 2.1.1. After that, Section 2.1.2 introduces the relational model at a more
concrete and thus DBS-specific level.

2.1.1 Logical Model
Motivation. A logical (data) model describes “things” of the real world (i.e., the problem domain)
about which, e.g., an organization like Walmart, wants to collect and process data. Logical models
are visually described using diagrams, in practice often in terms of so-called Entity-Relationship
(ER)-diagrams, without considering the specifics of a certain DBS. The benefits of this visual
representation are manifold, e.g., enhancing understandability and facilitating communication
within a development team and to the customer.

There are numerous different graphical formalisms and tools available for modeling ER-
diagrams. We will focus on ORACLE’s SQL Developer Data Modeler (ODM), only. Figure 2.2
shows an ER-diagram of our HR example which will be explained in more detail in the following.
The same example is shown in Figures 2.3, 2.4 and 2.5, this time, however within ORACLE’s
ODM. All concepts described are annotated in order to explicate the most important graphical
notations and symbols.

ER-Diagrams – Entities, Attributes, Relationships. ER-diagrams describe the concepts
of interest and consist of (i) entities (e.g., Departments, Employees, Jobs) (ii) attributes (e.g.,
“departmentName” and “locationName” of departments or “lastName” and “salary” of employees)
their characteristics, and (iii) relationships (e.g., a department “comprises” several employees)

1Note that for realizing the physical model, not only the relational model can be used which is the focus of this
Chapter, but also other data representation formats (aka. “data models”) are available, like the object-oriented data model
or NoSQL data models.

2.1 How to Model the Data 50

Figure 2.2: Logical Model of our Running HR Example using an ER-Diagram.

between entities .
Entities. An entity has a unique noun phrase assigned as its name and is visually represented

as a rounded rectangle. Plural and singular forms are used however recently singular forms are
preferable (and also standardized by ISO 11179-5) .

Attributes. Attributes are always associated with entities, i.e., they cannot exist independently.
In contrast to entities, an attribute is “atomic”, meaning that it cannot be further structured like an
entity, being represented as a singular noun phrase. For each attribute, a certain domain (aka. data
type) can be assigned, denoting the “nature” of the allowed values. The most common ones are
numerical (NUMERIC), character (VARCHAR) and date/time (DATE/TIME).

Besides characterizing an entity, certain attributes can serve to uniquely identify each instance
of an entity (e.g., a concrete employee or a concrete department). Such identifying attributes act
as a so-called “Primary Key (PK)”. For exampple, when descrining a department, some artificial
ID can be defined as PK (which should be numeric, e.g., a “departmentID”) or alternatively the
combination of existing attributes like “departmentName” and “location”, building up a so-called
“composite PK”. It is advisable to define a PK for each entity, since otherwise, entities with the
same name (e.g., employees or departments) cannot be easily distinguished when retrieving the
data. Thus, each value of a PK attribute has to be unique and of course, must exist.

Finally, it has to be mentioned that besides domains and PKs, also other so-called constraints
on data values can be specified for particular attributes, e.g., NOT NULL, i.e., “mandatory” in order
to require the existence of a value (e.g., for an attribute salary).

Relationship. Finally, a relationship associates (most commonly) two different entities, is
visually depicted by a line between the entities’ rectangles and named by a verb phrase above the
line. There are foremost three different kinds of relationships which are commonly used in practice,
distinguished by the number of entity instances which are allowed to be part in the relationship at
each end called its “cardinality” (thus representing another kind of constraint on data that can be
specified):

• One-to-Many (“1:N”): One entity instance can be related to many entity instances at the
“many-side” of the relationship (e.g., one department has many employees, i.e., a “haveEm-
ployees” relationship) and an entity on the “many-side” of the relationship (an employee)
can be related to one entity at the “one-side”(a department) only. Such a relationship is
called a “Source-Target” or “Parent-Child” relationship, the source entity at the “one-side”
acting as the “Parent” and the arbitrary number of target entities at the “many-side” acting as
its “Childs”. In the above example, department is the Parent and employees are the Child
entities.

• Many-to-Many (“M:N”): One source entity instance can be related to many target entity
instances and one target entity instance can be related to many source entity instances.
An example would be Employees having Jobs (i.e., a “haveJobs”-relationship), since an
employee can have more than one job over time and a certain job is probably held by many
employees. It should be noted that “M:N” relationship will always produce two “1:N”
relationships as we will progress in database modeling.

2.1 How to Model the Data 51

• One-to-One (“1:1”): Finally, one entity instance can also be related to a single entity
instance at the other end of the relationship, only and vice versa (e.g., a person “livesAt” a
particular address and this address is the address of this particular person, only). It has to
be noted, however, that this kind of relationship is being often favoured by a more compact
representation within one entity only (e.g., entity persons also cover address attributes like
“street” and “city”) and therefore not considered any further in this Chapter.

• Optionality: For each of these three different kinds of relationships, it is also possible to
specify, at each end for source and target, if the existence of at least 1 entity instance is
optional or not. For example, if a new department is founded, it could be that there are not yet
any employees hired for that department, i.e., the target of the “haveEmployees”-relationship
has to be defined as optional. This is also depicted by the dotted line in ODM.

Relationships are termed in ODM simply as “relations” which should not be confounded with
“relations” of the “relational model” which are in fact a synonym for “tables” (cf. Section 2.1.2).
Therefore, we further adhere to the more common term “relationship”.

GUI-Elements of ODM for Managing ER-Diagrams. The following Figures provide a first
impression of the most important GUI elements of the ODM. First, Figure 2.3 illustrates how
to define new entities and new relationships, as well as the visualization of the logical model in
form of a list view and a graphical view. Within the graphical view, the most important graphical
notations and symbols are annotated.

Figure 2.3: Managing the Logical Model with ODM.

Figure 2.4 shows the dialogue for the definition of attributes, which can be opened by simply
double clicking on a certain entity.

Figure 2.5 shows the dialogue for the definition of relationships, which can be started by simply
double clicking on a certain line, representing the relationship.

2.1.2 Relational Model
DB Schema. The logical model in terms of an ER-diagram being independent of a specific DBS is
the basis in order to derive the DBS-specific structure of the DB called a “DB-schema”. Within a
specific DBS, it is possible to create and store an arbitrary number of different schemes for different
users and/or domains, e.g., one for managing HR data and another schema for managing data about
product sales. A schema acts similar to a folder in a file system allowing to group data for specific
purpose.

Relational DB Schema. A DB-specific kind of schema is the so-called Relational DB (RDB)-
schema which uses the Relational Model (RM) as the basic formalism to describe the structure of
data. The RM is quite simple since it represents the DB schema as a collection of relations aka.
tables, which resemble the concept of entities. Tables are derived from entities in a straightforward

2.1 How to Model the Data 52

Figure 2.4: Managing Attributes with ODM.

way. Analogous to an entity, a table consists of a name, columns (resembling attributes), their data
types and further (optional) constraints. All tables make up the RDB-schema (cf. Figure 2.6). The
schema of a table is further on the “vehicle” in order to store the actual data, whereas each row
in a table is called “tuple” which consists of a collection of related data values stored within the
columns, thereby representing a real-world entity instance in terms of relational (tabular) data.

It is interesting to note that ODM allows you to automatically generate a RDB-Schema out
of the logical model in terms of tables, thus reflecting the entities of our logical model and all
attributes and constraints of each entity. This is done by using the “Engineer to Relational Model”
menu entry as depicted in Figure 2.7. The resulting RDB-Schema can be visualized graphically
using ER-diagram formalism, based on a more “table-oriented-notation” than the ER-diagram of
the logical model, showing now, e.g., also the data types of all attributes.

Now, let’s focus on our exemplary relational model depicted in Figure 2.8.
First of all, during the process of generating the relational model out of the logical model,

besides transforming existing entities and attributes into tables and corresponding columns, PK’s are
automatically added to each table and given a name (cf., e.g., “Departments_PK (departmentID)”.
In addition, the relationships between entities within the logical model are automatically represented
within the tables, using the so-called “Foreign-Key (FK)” concept in the following way:

• One-to-Many (1:N) Relationship: Within the table at the “Many-side” of the relationship
(i.e., the Child table), an additional attribute is introduced and declared as FK, acting as a kind
of reference to the values of the PK of the relation at the “One-side” (i.e., the Parent table). If
there is, e.g., an employee with PK ID 4711, then within the FK attribute of the associated
department, the value 4711 also has to be present. Consequently, the FK attribute is required
to have the same data type as the PK. In our example, a FK “Departments_departmentID”

2.1 How to Model the Data 53

Figure 2.5: Managing Relationships with ODM.

as well as a FK named “Employees_Departments_FK” is automatically generated. As a
consequence, each time data within these two relations is manipulated in the DBS, the FK
ensures consistency in-between these relations, i.e., correct relationship data. For instance, if
a new employee is inserted into the Employees table, the DBS ensures that it is also assigned
to an existing department. If you attempt to delete a department, then the DBS rejects this
operation by default in case there are still associated employees. Changing this default
behaviour is possible by using the so-called “Cascade-Delete Option”, when specifying the
FK, resulting in an automatic deletion (maybe “firing”) of all employees associated with the
deleted department.

• Many-to-Many (M:N) Relationship: A many-to-many relationship between two enti-
ties is realized by introducing another, third table, acting as some kind of “mapping ta-
ble” which mainly stores the references to each of the PKs of the associated entities in
terms of two FK attributes. Regarding our running example of Employees and Jobs, a
third relation is automatically generated named “haveJobs”, now responsible for man-
aging the correct associations between employees and their respective jobs. The PK of
this mapping table is a composite one, consisting of the PKs of the two associated ta-
bles, i.e., “haveJobs_PK(Employees_employeeID, Jobs_jobID)”. Each attribute of this
PK is also used for defining an appropriate FK each referencing the PK of the respective
associated table (i.e., “haveJobs_Employees_FK (Employees_employeeID)” and “have-
Jobs_Jobs_FK(Jobs_JobID)”). It has to be noted, that this mapping table can also have
an arbitrary number of additional attributes, further characterizing the relationship, e.g.,
“startDate” and “endDate” of a job.

• Optionality: Per default, for each of these relationships, the existence of at least a single
source and a single target instance is optional. Should it be mandatory, then a further
NOT NULL constraint has to be associated with the according FK-attribute. Considering

2.1 How to Model the Data 54

Figure 2.6: RDB-Schemata and Table Schemata.

our example, all three FKs need a NOT NULL constraint since (i) Employees have to be
associated to a certain Department (ii) as well as to at least one Job and (iii) a Job has to be
associated to at least one Employee.

GUI-Elements of ODM for Managing the RM. The following Figures give an overview of
the most important GUI elements of the ODM for managing the RDB-Schema which are quite
similar to those for managing the logical model. First, Figure 2.9 illustrates how to define new
tables and new FKs, as well as the visualization of the RM in form of a list view and a graphical
view. Within the graphical view, the most important graphical notations and symbols are annotated.

Figure 2.10 shows the dialogue for the definition of columns, which can be started by simply
double clicking on a certain table. Note that this dialogue largely resembles the dialogue for
managing attributes as already depicted in Figure 2.4.

RDB-Schema independent of Physical Storage Aspects. Although a RDB-schema based
on the relational model is already more concrete and DBS-specific than the logical model (e.g.,
“implementing” relationships based on the FK-concept) it has to be noted that it still hides the
complexity of the underlying storage mechanisms of the DBS (aka. “physical” level), e.g., how
many files are used in order to store the tables or on which servers the data is to be stored. Another
big benefit of this abstraction from the physical storage aspects is that new RDB-schemas can
be realized or existing ones changed without haven to care about the underlying physical data
organization.

2.1.3 Normalization of an RDB-Schema
An RDB-Schema which has been derived from a logical one can often be further improved in order
to better achieve certain quality criteria which are prevalent in DBS, being, on the one hand side
best suited for data read access in terms of DB-queries but, providing on the other hand side also
a proper basis for data manipulation in terms of inserting, updating and deleting data. Although

2.1 How to Model the Data 55

Figure 2.7: Process for RDB-Schema Generation out of the Logical Model.

these are, to some extent, conflicting goals, there is a well-known concept available for RDBS in
terms of the so-called “normalization theory” which describes a systematic process of three steps
named “first normal form”, “second normal form” and “third normal form”, leading to improved
RDB-Schemas (cf. Figure 2.11 for an overview). In the following, these three normal forms are
described in more detail, using slight variations of our running example.

First Normal Form. The first normal form requires that each attribute of a table is “atomic”
meaning that neither (i) sub-structures are allowed (e.g., if, instead of our simple attribute “lo-
cationName”, an alternative attribute “location” would contain values about street, postal code,
city and country) nor (ii) multi-values are allowed (e.g., attribute “location” could also contain
several addresses of a certain department. Sub-structures within values can be eliminated by simply
representing the sub-structure with dedicated attributes (e.g., for each part of the address) and
multi-values by simply using an own tuple for each of the values (i.e., putting each address in a
separate row).

One main benefit of the first normal form is, that data queries can be more specific, since now,
e.g., each part of the address as well as each address tuple can be separately accessed.

Second Normal Form. The second normal form requires (i) that a table is in the first normal
form and (ii) in case of a composite PK, i.e., consisting of two or more attributes, all other non-PK
attribute values are uniquely identified by the whole composite PK only. For example, assume
that the table Departments contains a composite PK with the attributes “departmentName” and
“locationName”. This PK correctly determines the value of a non-PK attribute “annualRevenue”,
since we naturally assume that the value of “annualRevenue” depends on both, the department

2.1 How to Model the Data 56

Figure 2.8: Automatically Generated RDB-Schema.

Figure 2.9: GUI-Elements for Managing Columns of the RM.

and its location. The values of another non-PK attribute “locationAddress”, however, would
already depend on a part of the PK, namely the location’s name. In order to eliminate this partial
dependency, we have to split up the table Departments, factoring out the location information into a
separate table “Locations” and connect both tables via a FK.

One main benefit of the second normal form is that it prevents redundant data storage, since in
our case, a certain address is stored only once and can be reused by different departments. This
reduces not only storage space but foremost also prevents incorrect data, so-called “anomalies” if,
e.g., certain data manipulations are not processed on any duplicate data (e.g., in case of several
departments moving to another address, the address has only to be changed once). Finally, the good
thing is that having tables with non-composite PKs only (e.g., a numerical ID for each table), the
RDB-Schema “automatically” fulfills the second normal form, since partial dependencies cannot
exist.

Third Normal Form. The third normal form requires (i) that a table is in the second normal
form and (ii) that each non-PK attribute is uniquely identified by the PK only and not by any
other non-PK attribute, leading to transitive dependencies. For example, if the table Departments
would contain besides the PK employeeID and the locationName also a locationAddress, then
locationAdress would already be uniquely identified by locationName (if we assume that each
locationName is associated with a different address) which is not allowed by the third normal form.

2.2 How to Manage the RDBS-Schema – SQL-DDL 57

Figure 2.10: GUI-Elements for Managing the RM.

In order to eliminate this situation, location information has to be factored out into a separate table
Locations and connected via a corresponding FK to the Departments table.

The benefit is the same as already discussed for the second normal form – reducing redundancy
and thus potential anomalies in case of data manipulations.

2.2 How to Manage the RDBS-Schema – SQL-DDL
In the previous Section, the RDB-Schema has been graphically modeled on different levels of
abstraction in a low-code development fashion. Now it is time to discuss, how these graphical
models can be implemented “programmatically” within a RDBS so that they really can be used in
order to manage the actual data of a Web application. The questions which will be answered in the
following are therefore:

• How to advise the DBS to create the required tables, ideally out of the graphical models and
do we have any other alternatives if no such graphical models exist?

• How does theDBS “Programming Language” look like which is capable of creating the
tables?

SQL = DDL | DML | DQL. In order to answer the second question first, the language which is
used for that and also for other purposes is the standardized Structured Query Language (SQL).
SQL provides a wide range of different “DBS programming statements” which can be, according
to their purpose, grouped into different categories (cf. Figure 2.12), the most important ones
being (i) statements for managing the RDB-Schema (e.g., creating, altering and dropping tables),
summarized as DDL (Data Definition Language), which is the focus of this Section, (ii) statements
for manipulating data within the schema (e.g., inserting, updating and deleting data within tables)

2.2 How to Manage the RDBS-Schema – SQL-DDL 58

Figure 2.11: Normalization Steps – Overview.

called DML (Data Manipulation Language) which will be discussed in Section 2.3 and finally (iii)
statements for querying the data called DQL (Data Query Language), further dealt with in Section
2.4.

Figure 2.12: Categories of SQL Statements.

Five Options for Creating the Tables. According to the tooling provided by ORACLE, there
are five different options for creating tables, i.e., implementing an RDB-Schema (cf. also Figure
2.45 for an overview):

1. Automatic Table Generation using ODM. This is the option with the least effort, since
simply initiating an automatic generation of the tables by some button-clicks using ODM
would suffice (cf. Section 2.2.1).

2. Automatic Table Generation using Quick SQL. Another alternative would be to use some
kind of “shorthand-notation” for SQL, provided by ORACLES Quick SQL tool (cf. Section
2.2.2). This is the perfect choice if there are no graphical (logical and / or relational) models
of the RDB-Schema available or if some quick testing is necessary.

3. Manual Table Creation using SQL-DDL. There is of course, also the possibility to
ideogrammatically specify the tables using plain SQL, providing the benefits that every
single detail concerning the table specification can be configured as needed and being not
dependent on, sometimes sub-optimal automatic generation processes (cf. Section 2.2.3).

4. Manual Table Creation using ORACLE Object Browser (OB). For those users having no
SQL knowledge, the Object Browser allows to create new tables and alter them if necessary
in a form-based manner (cf. Section 2.2.4).

2.2 How to Manage the RDBS-Schema – SQL-DDL 59

5. Automatic Table Creation using ORACLE Data Workshop. Finally, there is another
automatic table creation possibility which can be, however, used only if there is already some
data stored within external files (e.g., within EXCEL-files) using ORACLE Data Workshop.
This option is not further dealt with in this Chapter but rather described in more detail in
chapter 4.

In the following, the first four options are discussed in more detail.

2.2.1 Automatic Table Generation using ODM
ODM is abbreviation of the tool named Oracle SQL Developer Data Modeler. Being the table
generation option with the least effort, just two steps are necessary to create the required DB tables
in case that a RDB-Schema has been developed in ODM.

First, the modeled RDB-Schema has to be exported into a SQL-script (cf. Figure 2.13, steps
1 to 3), being in fact a simple text file which contains all the SQL-DDL-statements necessary to
create the tables within the RDBS. Please note that the syntax of the generated SQL-statements is
described in more detail in Section 2.2.3.

Second, the generated SQL-script has to be executed in order to advise the RDBS to actually
build-up all tables as empty ones within its storage space. For that, as illustrated in Figure 2.14, the
script has to be uploaded via ORACLE SQL Workshop (cf. 1-2) and simply executed (cf. 3).

2.2.2 Automatic Table Generation using Quick SQL
When building up the DB-layer of a Web application, it is highly advisable to follow the different
abstraction levels in terms of logical and relational models. Nevertheless, Quick SQL provides a
simple and intuitive alternative for creating tables, quite simpler than SQL, e.g., for quick testing
purposes. Quick SQL further on allows to automatically generate an according SQL-script. Once
the SQL-script is generated it can be tweaked and expanded upon and finally executed to create the
tables. It has to be emphasized again, that although Quick SQL is designed to reduce the effort
required to create tables, it is definitely not designed to be a replacement for data modeling (cf.
Section 2.1).

The ORACLE Quick SQL editor can be accessed via "Utilities" of SQL Workshop (cf. Figure
2.15.

Now let’s stick to the simple syntax provided by Quick SQL, which basically uses a couple of
formatting principles in order to specify the required table generations:

• Parent tables: Parent table names are entered without any indention. Table names are
automatically formatted, replacing any spaces with underscores.

• Attributes: Attribute names are entered with a uniform indention of two or more spaces. As
with table names, attribute names are automatically formatted, replacing any spaces with
underscores.

• Parent/child relationships: Parent child relationships are entered by indenting child tables
under parent tables. Child tables should be intended to the same level as the columns in the
parent table.

• Data Types: Based on the English text contained in the column name, and in the absence of
any data type specified, the RDBS automatically derives eventually appropriate data types. If
a column should have a dedicated data type, the following ones are possible: NUM, INT, VC
(for VARCHAR2) or DATE. The data type can be simply specified at the end of a column name,
separated by a space. If a specific VC length should be defined, VCn has to be entered, where
n is the length of the VARCHAR2. Overall, the available syntax is shown via the "Help"-menu.

Figure 2.16 shows an example of the Quick SQL notation, depicting our parent table “De-
partments” and the according child table “Employees on the left-hand side and the automatically
generated SQL-script in the SQL Output pane. SQL is immediately generated after each carriage
return. The final SQL-script can be saved for further usage and an eventual adaption as well as

2.3 How to Manipulate Data – SQL-DML 60

executed to finally generate the empty tables.
Quick SQL has also syntax to define constraints (foreign key and allowed values) for specific

data field as well as to generate test data.

2.2.3 Manual Table Creation using SQL-DDL
The programmatic way to create tables is to break away from any “low-code-fashioned” automatic
generation of SQL-scripts (as discussed in Section 2.2.1 and Section 2.2.2) and do the work on
your own. To be more concrete, one can of course also manually specify the SQL-scripts using the
SQL-DDL CREATE TABLE statement within the SQL-Command-Editor provided by ORACLEs
SQL-Workshop (cf. Figure 2.17). After manually defining the SQL-statements using plain SQL-
DDL (1), the resulting SQL-script can be saved and executed (2) in order to create the actual empty
tables (cf. Figure 2.17).

SQL-statements are more or less straightforward like plain English but with a specific syntax.
The CREATE TABLE statement consists of SQL-specific keywords like “CREATE” itself as well as
the constraint definitions (data types, primary key and foreign key). In Figure 2.18, all keywords as
well as other SQL-specific syntactic symbols (like parenthesis and comma) are written in uppercase
and colored in blue. It is important to note that SQL keywords are case-insensitive, meaning e.g.,
that “CREATE” means the same as “create”. The attribute definition is enclosed within parenthesis,
the attributes are separated by commas, each one ideally defined within a separate row (although
these are informal formatting conventions only, not part of the SQL syntax). Constraints can be be
defined using an explicit name (e.g., departments_pk), which is not obligatory (cf, e.g., NOT NULL
for departmentName) but serves better readability purposes only. Each SQL-statement is, at the
end, delimited by a semicolon.

Complementing the CREATE TABLE statement, there is of course also a SQL-statement for
deleting a table – it works properly, no matter if the table is empty or if it already contains some
data, which is then deleted too (cf. Figure 2.19).

And finally, the definition of already existing tablescan also be changed, e.g., adding additional
attributes or changing a data type (cf. Figure 2.20):

If the table which should be changed already contains data, then modifications are somewhat
restricted, since, e.g., changing a data type can lead to unintentional effects on this data. This issue,
is however, not further dealt with in this Section.

2.2.4 Manual Table Management using Object Browser
The Object Browser in SQL Workshop allows not only to view all generated tables, so-called
Objectsin ORACLE’s terminology, together with their according attributes and constraints, but also
to alter them and create new ones, all based on a simple GUI-Wizard (cf. Figure 2.21).

2.3 How to Manipulate Data – SQL-DML
The empty tables created in the previous Section, are now "waiting" to be fulfilled with according
data, which could be further on modified and eventually also deleted. This is exactly the responsi-
bility of the SQL-DML statements INSERT, UPDATE and DELETE, which will be briefly introduced
in the following Section 2.3.1 by means of our running example. Besides that, there is also a
no-code alternative available through ORACLE’s Object Browser (OB), which allows to manually
insert data into tables, being appropriate for users without any SQL-knowledge (cf. Section 2.3.2).
Finally, a quite limited data insertion alternative is provided by Quick SQL (cf. Section 2.3.3). All
these alternatives are also depicted in Figure 2.45.

2.4 How to Query Data – SQL-DQL 61

2.3.1 Data Manipulation using SQL-DML
For programmatic data manipulation using SQL-DML, the SQL Command Editor is used (cf.
Figure 2.17) the same which was used for creating tables. In the following, some examples are
illustrated in order to give a first impression about the syntax and the functionality provided by
SQL-DML.

INSERT is used to add new rows to a table as can be seen in the following example (cf. Figure
2.22):

It hast to be noted, that besides this programmatic option we mentioned, in Section 2.3.3 also
the possibility to use Quick SQL for inserting data, which is however, restricted to insert random
data only.

UPDATE is used to update one or more rows of data within a table. The following example is the
simplest form of an UPDATE statement, increasing the salary of all employees by 10% (cf. Figure
2.23):

A slight extension is shown in the next example, adding a so-called “WHERE-clause” in order to
apply the salary increase to the employee having “Miller” as last name (cf. Figure 2.24):

Finally, also more than one attribute of a table can be updated by means of a single statement as
can be seen in the following example (cf. Figure 2.25):

DELETE is used to remove one or more rows of data from a table. The following example is the
simplest form of a DELETE statement, deleting all data stored in the table storing employees (cf.
Figure 2.26).

Extending the previous statement with a “WHERE-clause” allows to selectively delete the em-
ployee with the jobID “4711” (cf. Figure 2.27).

2.3.2 Data Manipulation using ORACLE’s Object Browser (OB)
Besides this programmatic option to manipulate data, it would also be possible to manually insert
data into tables as well as to change or delete existing data using an editor provided by the Object
Browser, cf. Section 2.2.4, Figure 2.21, using the “Data” tab. It has to be noted that all data
manipulations which are done using the OB are again automatically translated by ORACLE into
according SQL-DML statements.

2.3.3 Data Manipulation using Quick SQL
Using Quick SQL, it is possible to automatically insert some data into the tables. An example is
shown in Figure 2.28 using the statements “/insert 2” and “/insert 1”. With these statements,
the number tuples having random values is defined which should be inserted into the tables.

2.4 How to Query Data – SQL-DQL
After discussing different possibilities for the creation of empty tables in Section 2.2 and the options
for manipulating data in Section 2.3, we now turn to the retrieval of data out of the tables by first
discussing query capabilities of SQL in terms of the “SELECT” statement (cf. in Section 2.4.1),
again by means of our running example, followed by a brief overview about the ORACLE tool
Query Builder (“QB”) providing a “low-code” querying alternative for users having little or no
SQL knowledge (cf. Section 2.4.2). These alternatives are also depicted in Figure 2.45.

2.4.1 Data Querying using SQL-DQL
First of all, it has to be noted that the expressiveness of SQL-DQL is immense, so that we will
focus on a quite small subset of concepts, only. Nevertheless, we aim to give a first impression
of the expressiveness and broad applicability of SQL-DQL, by introducing different querying
possibilities by example, ordered in the following by increasing complexity. Regarding tooling,

2.4 How to Query Data – SQL-DQL 62

again the SQL Command Editor is used (cf. Figure 2.17) the same which was used for creating
tables and manipulating data.

(1) Let’s start with the simplest query – “Retrieve all Employees” (cf. Figure 2.29).
The target table of the query (Employees) is specified within the FROM-clause, the required

result of the query is defined right after the SELECT-clause - in this example using the star as a joker
sign – meaning we would like to get the values of all columns of the table.

An excerpt of the result of this query looks as follows (cf. Figure 2.30):
If we would like to order the result, e.g., according to the employee’s salaries, we have to simply

add an ORDER BY-clause (cf. Figure 2.31):
The result of this query looks as follows (cf. Figure 2.32):
(2) What about querying certain columns and certain rows only – “Retrieve name, address

and salary of employees having a salary higher than 5.000, only”
First, in order to get back the values of certain attributes only, we just have to specify them

instead of the star, separated by commas. Second, to selectively retrieve certain rows only, we need
to introduce a WHERE-clause and specify a logical condition on the corresponding attribute (salary
in our case). Note that, there can be several such conditions on different attributes, separated by the
keywords AND / OR (cf. Figure 2.33).

The result of this query looks as follows (cf. Figure 2.34):
If we would like to get the values of the “hireDate” attribute in another format, the TO_CHAR()-

function” provided by ORACLE SQL can be used. This function takes a DATE value as first input,
and a desired format as second input. In the following, an extended version of the above example is
shown (cf. Figure 2.35), now using the TO_CHAR()-function for “hiredate” (a full list of possible
formatting options is, of course, available in the Oracle documentation):

The result of this query looks as follows (cf. Figure 2.36):
(3) Let’s focus on querying several tables – “Retrieve all employees and their departments”

Retrieving the data of two or more tables within a single SELECT-statement requires a quite
prominent SQL-concept, i.e., a “Join”. A join combines, in fact, the rows from two or more tables
which have to be specified in the FROM-clause. Additionally, we need a WHERE-clause which plays
the role of a matchmaker between these two tables – since we have to somehow define that the
DBS should, for each employee in the Employees table, take its Departments_ departmentID value
(which is the FK), go further on to the Departments table, match this value with the according
PK value of departmentID and give back the departments data together with the employees data.
More formally, this matchmaking is specified by a so-called “join-condition” as can be seen in the
following example (cf. Figure 2.37):

The result of this query looks as follows (cf. Figure 2.38):
Note that the according join-attributes are also "qualified" using the according table names

(separated by a "dot"), thus striving for better readability and - in case the name of the FK would be
the same as the name of the PK - ensuring a unique identification.

(4) Let’s stick to aggregating values – “Retrieve the number of employees and the sum of their
salaries”

To retieve the number of all employees in the Table Employees we can use the SQL COUNT-
function over different employeeIDs. For building a sum of all values we can employ the SUM-
function over an attribute, in our case, as we want to calculate the sum of all salaries, the attribute
salary (cf. Figure 2.39):

The result of this query looks as follows (cf. Figure 2.40):
(5) Finally, what about grouping certain rows – “Retrieve the number of employees grouped

by their salaries in descending order”
To group same data together we can use the GROUP BY-function in an SELECT-statement.

Combined with a SQL COUNT-function over different employeeIDs we are now able to determine
the number of rows for each group. For sorting the result we can employ the ORDER BY-function

2.5 Building up the DB-Layer – The Big Picture 63

stating which attribute should be used for ordering. Thereby, ASC declares ascending order whereas
DESC declares a descending order (cf. Figure 2.41):

The result of this query looks as follows (cf. Figure 2.42):

2.4.2 Data Querying using ORACLE’s Query Builder (“QB”)
As already mentioned, ORACLE Utilities in form of the so-called Query Builder (“QB”) allows
users with little or even no SQL knowledge to query DB tables and to save the queries for further
usage. The QB can be accessed in the following way (cf. Figure 2.43):

Overall, the steps which are necessary in order to build queries are exemplary depicted in Figure
2.44, using our "Join-example" shown in Figure 2.37 and briefly described in the following:

• Select the target of the query in terms of one or more DB tables (called „objects“ in the
QB) from the „Object Selection pane“ (cf. Figure 2.43). This forms the “FROM”-part of
SQL-DQL.

• Add the selected objects to the “Design pane” and further select desired columns. This makes
up the “SELECT”-part of SQL-DQL.

• Optional: Create query conditions, i.e., the “WHERE”-part of SQL-DQL.
• Execute the query and view results (click the “Run”-button).
• Optional: View the SQL-DQL code which is automatically generated (click on the “SQL-

tab”).
• Optional: Save the query for further usage (click the “Save-button”).
Finally, it has to be noted that the queries defined using QB are again automatically translated

by the RDBS into proper SQL-DQL statements.

2.5 Building up the DB-Layer – The Big Picture
After reading the previous sections, one is maybe completely puzzled by all those different options
and alternatives which are provided by ORACLE’s tooling landscape in order to manage the DB-
layer of Web applications. Therefore, in order to cut a path through this tooling jungle, Figure 2.45
provides a summarizing overview, illustrating all options and according tooling which is available
in order to finally manage the DB-layer for a Web application.

Overall, at the left hand side, two different tooling environments are shown, the ODM and the
APEX SQL Workshop. The ultimate goal of creating the RDB Schema in terms of tables (Step 1)
can be reached through different paths. All of them, however, leading to the generation of SQL
scripts which are finally executed to generate empty tables. From there it is possible to insert data
into the tables, to update, to delete (Step 2) or to query data (Step 3) using the tooling of the SQL
Workshop workbench as described in this chapter.

The Web application could be generated on empty tables. This process, however, is discussed
in detail in the following Chapter 3.

2.6 Questions
1. What is the difference between a logical model and a relational model? What are the elements

of the two models?
2. What is the normalization of an RDB-Schema?
3. Describe the options for creating tables using the Oracle toolset.

2.7 Answers
1. The logical model is more abstract. The elements of the logical model are entities, attributes,

and relationships. The relational model represents a more concrete and therefore DBS-
specific level. The elements of the relational model are tables, table columns (data fields)

2.7 Answers 64

and relationships.
2. The normalization of a RDB-Schema is a systematic process with three steps called "first

normal form", "second normal form" and "third normal form", leading to improved RDB-
Schemas.

3. There are at least five ways to create the tables: automatic table generation with Oracle Data
Modeler, automatic table generation with Quick SQL in Oracle APEX, manual table creation
with SQL-DDL in Oracle APEX SQL Commands, manual table creation with Oracle APEX
Object Browser, and automatic table creation with Oracle APEX Data Workshop.

2.7 Answers 65

Figure 2.13: Export of the RDB-Schema into a DDL-script.

2.7 Answers 66

Figure 2.14: Upload and Execution of a SQL-Script.

2.7 Answers 67

Figure 2.15: Accessing Quick SQL via SQL Workshop

Figure 2.16: Generated SQL-Script based on Quick SQL.

2.7 Answers 68

Figure 2.17: SQL Command Editor.

Figure 2.18: SQL Statement for Creating Table Departments.

Figure 2.19: SQL Statement for Dropping Table Departments.

Figure 2.20: SQL Statement for Altering Table Departments

2.7 Answers 69

Figure 2.21: Table Management with ORACLE’s Object Browser.

Figure 2.22: SQL Statement for Inserting new Data into Table Departments.

Figure 2.23: SQL Statement for Updating the Salary of all Employees in Table Employees.

Figure 2.24: SQL Statement for Updating the Salary of Employee "Miller", only.

Figure 2.25: SQL Statement for Updating more than one attribute in Table Employees.

2.7 Answers 70

Figure 2.26: SQL Statement for Deleting all Data from Table Employees.

Figure 2.27: SQL Statement for Deleting some Data from Table Employees.

Figure 2.28: Random Data Insertion with Quick SQL.

Figure 2.29: SQL Statement for Retrieving all Data from Table Employees.

2.7 Answers 71

Figure 2.30: Excerpt from Retrieving all Data from Table EMPLOYEES.

Figure 2.31: SQL Statement for Retrieving all Data from Table Employees ordered by Salary.

Figure 2.32: Excerpt from Retrieving all Data from Table Employees ordered by their Salary.

Figure 2.33: SQL Statement for Retrieving certain Data from Table Employees only.

2.7 Answers 72

Figure 2.34: Excerpt from Retrieving certain Data from Table Employees only.

Figure 2.35: SQL Statement for Retrieving Data from Table Employees using TO_CHAR().

Figure 2.36: Excerpt from Retrieving Data from Table Employees using TO_CHAR()-Function.

Figure 2.37: SQL Statement for Joining Data from Table Employees and Table Departments.

2.7 Answers 73

Figure 2.38: Excerpt from Retrieving Data from Table Employees and Table Departments.

Figure 2.39: SQL Statement for Counting the number of Employees and Building the Sum of their
Salaries from Table Employees.

Figure 2.40: Excerpt from Retrieving the Number of Employees and Building the Sum of their
Salaries from Table Employees.

Figure 2.41: SQL Statement for Grouping the Data by Their Salary and Ordering the Result by the
Number of Employees with that Salary from Table Employees.

Figure 2.42: Excerpt from Grouping the Data by Their Salary and Ordering the Result by the
Number of Employees with that Salary from Table Employees

2.7 Answers 74

Figure 2.43: Overview of the ORACLE Query Builder (“QB”).

2.7 Answers 75

Figure 2.44: Using the Query Builder to build a Join.

2.7 Answers 76

Figure 2.45: Overview on the Options to Manage thee DB-Layer.

3. How to Navigate in APEX?

ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND SCHWINGER

What is Oracle APEX? Oracle Application Express (Oracle APEX) is a Web browser-based
low-code development environment for Oracle DB-driven Web applications. “Low-code” means
that only few programming skills are required for building-up a full-fledged Web application – for
a first, simple Web application prototype, programming skills are not even necessary at all.

For Which Purposes can APEX be Used? Overall, APEX allows not only to build-up the
DB-layer of Web applications using APEX “SQL Workshop”, as has been discussed in Chapter
2, but also to build-up desktop or mobile Web applications using APEX “App Builder”. APEX
is employed by large and small customers alike, across a broad number of application domains,
coping with a wide spectrum of business needs. These business needs may range from a simple
transformation of a local spreadsheet into a Web-based one, to the realization of a full-fledged Web
application (cf. the running example introduced in Chapter 2) allowing to store, retrieve, visualize
and further process every single sale in every of Walmart’s 10.500 stores together with responsible
departments, employees, and information about their job.

What is the Rationale Behind this Chapter? The rationale behind this chapter is to first
discuss the overall Web application development process followed by Oracle APEXs “App Builder”.
This process forms the basis for the navigation possibilities between the different App Builder
tools called “development components” in order to build up a Web application. Second, a rather
high-level overview of these different development components is given, whereas details will be
discussed in the further chapters.

3.1 Web Application Development Process followed by APEX
Before going into details regarding the different development components of APEXs’ “App Builder”,
it is useful to take a look into the Web application development process followed by APEX.

APEX Follows a Multi-Step and Cyclic Development Process. The overall development
process supported by APEX, which is illustrated in Figure 3.1, is organized in a multi-step,
partly cyclic manner allowing for incremental development, i.e., a stepwise refinement of the Web
application and eventually the DB-layer. Each of the development steps is supported by appropriate
Wizards of the development components. This means that from menu options at the top-level, one
is guided deeper into the functionality of App Builder in order to specify each detail of a Web
application, stepping back and forth in order to perform incremental refinements if needed.

APEX Follows a “DB-Layer First” Development Process. It has to be emphasized that, as

3.2 The Start Menu of APEX 78

Figure 3.1: Overall Development Process in APEX.

APEX focuses on the development of DB-driven Web applications, it is necessary to always start by
developing the DB-layer first (cf. Figure 3.1 "STEP 1: REUSE APP | TABLES | DATA") . This can
be done either as described in Chapter 2 or directly within the App Builder, if, e.g., some external
data files already exist, which can be reused for creating the DB tables (cf. Figure 3.1 “From a
File”). In case that the DB tables already exist, the development process can either be started (i)
from within the App Builder, thereby eventually reusing (and adapting) an existing application
together with its DB tables (cf. Figure 3.1 "Starter App") or by creating a new application from
scratch, again based on existing DB tables (cf. Figure 3.1 "New Application") or (ii) from within
SQL Workshop, by simply selecting a DB table within the Object Browser (cf. Figure 3.1 "Select
TABLE") and starting the application development process on basis of this table.

APEX Follows a “Page-Driven” Development Process. As soon as the DB tables for storing
the data of the Web application exist, they can be used for creating a new Web application, following
a page-driven process (cf. Figure 3.1 "STEP 2: SPECIFY PAGES"). This means that one or more
Web pages can be defined, making up the HTML-pages of the final Web application. Each of
these pages can be based on one or more DB tables, allowing to visualize their data in terms of
different page types comprising, e.g., interactive reports, forms, lists, charts or calendars, but also
to interactively “play” with the data (e.g., zoom into details), and even to manipulate them, and
store the changes back into the DB. These pages can be linked together using navigation menus,
tabs, buttons, or hypertext links.

As soon as one or more pages have been created, it is necessary to create the overall application
(cf. Figure 3.1 "STEP 3: CREATE APP"), thereby further specifying some overall properties of the
whole Web application (e.g., appearance of the App) or just using the default settings. Finally, the
App and/or each of the specified pages has to be rendered in order to generate the final HTML-pages
(Figure 3.1 "STEP: 4 RUN"), which can further on be interactively tested, occasionally stepping
back to further refine the Web application.

3.2 The Start Menu of APEX
When you sign in to Oracle APEX, the so-called “Workspace Homepage” appears. This Workspace
Homepage provides access to four different development components (cf. Figure 3.2):

•“App Builder” is mainly used for building up the Web pages and will be the focus of this
Chapter.

•“SQL Workshop” is used for building up the DB-layer and has been already described in
Chapter 2.

3.3 Overview of the App Builder – Create and Manage your Apps 79

•“Team Development” is used, e.g., to interact with other developers via a ticketing system to
set milestones, etc.

•“Gallery” is used to simply install pre-built demo applications, which can then be further
modified and adapted towards own needs, again using the “App Builder”.

Figure 3.2: Oracle APEX Workspace Homepage.

At the bottom of the Workspace Homepage (cf. Figure 3.2), the regions “Top Apps”, “Top
Users”, and “Summary” offer real time information about development activities in the current DB
workspace, whereas at the right-hand side further APEX learning resources are referenced.

3.3 Overview of the App Builder – Create and Manage your Apps
When navigating to the App Builder Homepage, one has the following options (cf. Figure 3.3):

• Create a new Web application.
• Import previously exported Web applications.
• View the "Dashboard" providing statistics on already developed Web applications.
• Access "Workspace Utilities" providing a wide range of services like remote data access or

backup functionality.
In the bottom half of the window (cf. Figure 3.3), already existing Web applications are listed
which can be selected for further editing or rendering (cf. forthcoming sections).

3.4 Create Application – Three Use Cases
When choosing “Create” in the App Builder, the “Create Application Wizard” brings up three
further options (cf. Figure 3.4), supporting in fact real-world use cases which take into account the
possible reuse potential regarding the data and the application itself:

•“New Application” should be selected if the DB-layer (or part of it) already exists or if the
DB-layer should be developed “on-the-fly” during application development.

• “From a File” is the option of choice, if the DB-layer should be automatically generated
from an external file, e.g., an EXCEL-file.

•“Starter App” finally allows to reuse (and probably further modify) an already existing
application together with its DB-layer from the “Gallery” of applications already mentioned
above.

3.5 Create Application – Properties, Pages, Features and Settings 80

Figure 3.3: Overview of the App Builder.

In the following, the focus will be on the first option “New Application”, the second option “From
a File” will be described in more detail in Chapter 4, the third option "Starter App" will not be
further dealt with.

3.5 Create Application – Properties, Pages, Features and Settings
When creating a new Web application, some common properties have to be defined, the pages have
to be created, and some additional quite useful features and settings can be chosen. In the following,
all these definitions are discussed in more detail, wheres Figure 3.5) shows the upper part of the
GUI and Figure 3.6) shows its lower part.

Common Properties – Icon, Name and Appearance of the Application. Regarding the
common properties, as illustrated in Figure 3.5, (1) an arbitrary icon can be chosen or uploaded,
used as the Favicon and the icon for PWA, Apple touch or App Builder, (2) a name has to be entered
and (3) the appearance of the Web application can be chosen from some pre-defined options,
determining its “look and feel” in terms of a theme style (e.g., color, font size, etc.) and the kind
of navigation menu (e.g., side menu or top menu), whereby also a default appearance is available.
Page Creation for the Application. The main task, however, is to incrementally build-up the
Web application by successively adding new pages using the “Create Page Wizard” (started by

“Add Page”, cf. (4) in Figure 3.5. Once a page is created, one can, at any time during application
development, edit the composition of the page, alter the page order, and delete them (cf. (5) in
Figure 3.5). At the bottom part of Figure 3.5, an already created page “Home” is shown. Further
details about the “Create Page Wizard” are given in Section 3.6.

Features and Settings of the Application. Finally, the application can be enhanced by certain
quite useful features (cf. (1) in Figure 3.6) such as an “About Page”, a page for automatic “Access
Control” or a page for "User Feedback” as well as by some common settings, e.g., the name of
the schema holding all DB-tables and thus forming the DB-layer for the application or the used
language (cf. (2) in Figure 3.6). After clicking the "Create Application" button the "App Builder
Homepage" appears showing the newly created application with its pages (cf. Figure 3.7).

3.6 Specify Pages 81

Figure 3.4: Create Application Wizard: Three Use Cases when Creating an Application.

3.6 Specify Pages
What makes up a Page? As already mentioned, a page is the basic building block of a Web
application, i.e., every application consists of at least one or multiple pages. Each page can have
buttons and fields (called “items”) which are grouped into containers called “regions”. Pages can
also include application logic, e.g., perform calculations (called “computations”) , and perform
validations such as correctness checks during data manipulation.

Choose from 18 Different Page Types. A page can display data of DB tables in various
different forms determined by so-called "page types", comprising, e.g., interactive reports , lists ,
calendars or charts . A page type has to be selected, whenever a new page is created, either by using
the "Add Page" button from within the "Create Application" dialogue (cf. Figure 3.5) or by using
the "Create Page" button from within the developer’s Application Homepage (cf. 3.8). Overall,
18 different page types are provided as illustrated in Figure 3.8. A certain page type determines
contents, composition, and layout of a page as can be recognized by taking a look at the page type
icons in Figure 3.8. Details about each of these page types are given in the forthcoming chapters.
Page Specification Dialogue – Table-to-Page Mapping. When deciding for a certain page type,
the concrete dialogue for page specification which is presented by the "Page Creation Wizard" is
naturally dependent on the selected page type. Nevertheless, since nearly all of the available page
types are based on DB-tables, the main task is commonly to map appropriate DB-tables to the
page, providing the source for data visualization and the target for data manipulation. Figure 3.8
shows an example dialogue for the quite common page type “Classic Report”. It can be seen that,
besides some basic information like “Name”, also the mapping to the DB-layer has to be specified
by selecting the “Data Source” in terms of the DB table which should be the source for this report
(in Figure 3.8 we select the "Employees" table of our running example). It has to be noted that in
order to display the data from the underlying DB table, APEX inherently utilizes SQL-DQL in the
background as soon as an HTML-page is rendered.

As soon as a new page is added, the “Page Designer” component of APEX (cf. Section 3.7) is
automatically opened for this page, allowing to view and edit the page specification. At the same
time, the page can also be immediately and automatically rendered into a HTML-page, e.g., for
testing and incremental development purposes, using the “Run” button (cf. Section 3.8).

3.7 Maintain and Modify a Page – Page Designer 82

Figure 3.5: Properties and Pages.

3.7 Maintain and Modify a Page – Page Designer
Already created pages may, of course, also be further maintained and enhanced using the so-called
“Page Designer”. The Page Designer is a full featured Integrated Development Environment (IDE)
that includes a toolbar and multiple panes (cf. Figure 3.9). The functionality provided by Page
Designer is huge, allowing, among others, to fully modify the composition/layout of a page and its
components (cf. (1), (2) and (5)), including items, buttons and regions (cf. (3)) but also to modify
the rendering of the page (cf. (or application logic in terms of computations and validations (cf.
(4)). Details about the functionality provided by Page Designer can be found in the forthcoming
chapters.

3.8 Run Application or Page
To view a rendered version of an application or an individual page, it has to be submitted to the
so-called Oracle APEX engine by clicking the “Run” button at the application home page (cf.
Figure 3.10 and Figure 3.11). The APEX engine dynamically renders and processes pages into
viewable HTML pages based on data about the application which is stored in “internal” DB tables.
There are two different options available on the Application Homepage, depending on if you would
like to run the entire application, i.e, all pages, or just a single page for, e.g., testing purposes.

• Run the Entire Application, i.e., all pages: This option is available on the Application
Homepage as can be seen in Figure 3.10.

• Run Individual Pages. As you create new pages, it is also possible to run each page
individually to get an immediate impression of the look and feel of the actual page. The "Run
Page" button resembles a small, black play icon and displays at the right-hand side of each of
the pages of your application as can be seen in Figure 3.11. It has to be noted, however, that
even if one just runs an individual page, also all other pages are available.

Note that the other options which are provided at the Application Homepage besides “Run Applica-
tion” (e.g., Supporting Objects) are dealt with in forthcoming chapters.

3.9 Questions
1. What options does the application creation wizard provide and what are they used for?

3.10 Answers 83

Figure 3.6: Features and Settings.

2. What features does the "New Application" wizard provide?
3. What kind of pages can APEX generate?

3.10 Answers
1. There are three options: a) "New Application" allows the developer to add pages for existing

data, select application features, set the theme and configure it, b) "From a File" allows the
developer to upload files in formats such as CSV, XLSX, XML and JSON or copy/paste data
and initiate the creation of the application and c) "Starter App" allows the developer to install
one or many Sample and Starter Apps from Gallery.

2. There are several useful features such as automatic creation of an "About Page", providing
application administrator a page to grant privileges to users in the "Access Control" feature,
automatic creation of a "User Feedback" page, activity reporting, theme style selection,
configuration options, and the choice of installing a progressive web application.

3. APEX can generate a wide range of pages: form, report (interactive grid, interactive report,
classic report, master detail), blank page, calendar, cards, chart, dashboard, faceted search,
smart filter, map, search page, plug-in page, tree, data loading, wizard and unified task list.

3.10 Answers 84

Figure 3.7: Application Homepage - Developer’s view.

3.10 Answers 85

Figure 3.8: Creating a Page.

3.10 Answers 86

Figure 3.9: Page Designer.

3.10 Answers 87

Figure 3.10: Running Entire Application.

3.10 Answers 88

Figure 3.11: Running Individual Pages.

4. How to exchange data in APEX?

ELISABETH KAPSAMMER, WERNER RETSCHITZEGGER AND WIELAND SCHWINGER

The major task when building up the DB-layer for a Web application is the creation of the DB-tables
and the insertion of appropriate data (see Chapter 2). This can, however, not only be done manually
if the data does not yet exist. In the case there is already existing data available within external files
it can simply be reused and imported into the Oracle DB. At the same time, it could be desirable
to export already existing data into a file from time to time, so that it can be reused in a second
step by some other, external application. And finally, in case that some external clients (e.g., other
Web/mobile/legacy applications or cloud-based services) should be provided with online access to
the data within our DB, instead of just exchanging data files from time to time, there is also the
possibility of providing indirect online access to our DB data.

These three use cases for data exchange are illustrated in Figure 4.1, providing a summary of
the different options Oracle APEX provides for importing, exporting and indirectly accessing DB
data. This chapter is intended to give an overview about these different options.

4.1 Importing and Exporting Data Using “Data Workshop”
Application Scenario for Data Workshop. Data Workshop is an easy-to-use tool, providing a
“Wizard” in order to simplify the task of importing/exporting data from/to external files. Data
Workshop is especially suited for application scenarios dealing with data of a moderate size (fewer
than 10 tables) having simple standard data types only (e.g., no multi-valued fields or nested
structures). It has to be noted that for reusing and importing huge and complex data sets, Oracle
provides other appropriate tooling, e.g., in terms of the the so-called “SQL*Loader Utility”. In the
following, first of all, Section 4.1.1 and Section 4.1.2 deal with the import of data, while Section
4.1.3 describes the export of data.

4.1.1 Importing Data
File Formats. Overall, Data Workshop allows to load data from external files adhering to the
following formats:

1. Any standard delimited format being tab-delimited or comma-delimited (“CSV” – Comma
Separated Values).

2. XLSX files (i.e., Excel workbooks). Note that, if the uploaded XLSX file contains multiple
worksheets, the first sheet is picked by default. To load another sheet, it can be picked from

4.1 Importing and Exporting Data Using “Data Workshop” 90

Figure 4.1: Data Exchange Options in APEX.

the “Select Sheet” select list.
3. JSON files (Java Script Object Notation). Note that only one nesting level is supported.
4. XML files (eXtended Markup Language). Note that similar to JSON-files, only one nesting

level is supported.
Accessing Data Workshop for Imports. Data Workshop can be accessed in two alternative

ways:
1. Start Data Workshop out of SQL Workshop as illustrated in Figure 4.2.
2. Alternatively, Data Workshop can also be accessed from within the APEX App Builder when

creating an application as already mentioned in Chapter 3 (cf. Figure 4.3), using the “From a
File” option (cf. Figure 4.1).

4.1.2 Importing Steps
In the following, the steps necessary to import data are briefly discussed, together with some
important issues useful in order to understand how to use the “Load Wizard”:

Provision of the Data Source. The first, quite natural step is to provide the data source which
can be done either by uploading (drag/drop or choose file) delimited files, XLSX, JSON or XML
files or by a simple copy/paste of delimited data, only (cf. Figure 4.4). Note that this dialog appears
when either clicking the “Load Data-button” (cf. Figure 4.2) or via the “From a File-button” (cf.
Figure 4.12).

Configuration of the Data-to-Table Mapping. The central step of the Load Wizard is the
configuration of the Data-to-Table Mapping, which is visualized in Figure 4.5 and 4.6, where the
most important configuration options are annotated by numbers (1)-(4) and (1)-(8), being described
in the following.

1. Load Data into Existing or New Table. First of all, it has to be decided if the data should
be stored in an already existing DB table or if a new DB table should be used (cf. Figure 4.5
(1) and Figure 4.6 (1) respectively).

2. Specify Table Owner and Name. For both cases, table owner and table name have to be
specified (cf. Figure 4.5 (2) and Figure 4.6 (2) respectively).

4.1 Importing and Exporting Data Using “Data Workshop” 91

Figure 4.2: Using Data Workshop to Load Data - Access through SQL Workshop.

3. Settings for Delimited Files. The setting section (cf. Figure 4.5 (3)) allows for three
different important configurations specific to delimited (“CSV”) files. The configuration
option “Column Headers” allows to specify if the first row of the data contains the column
names. The “Column Delimiter” can be freely chosen as can be seen in the “Settings”-section
of Figure 4.5 (3) enabling Oracle to extract the structure out of the external file – a process
which is called ”parsing”, being the prerequisite to map the data into the table. Through the
setting “Enclosed by”, the starting and ending boundary of a data value can be delineated. If
you specify a delimiter character, Data Workshop ignores white-space occurring before the
starting and ending boundary of a data value. You can also use this option to enclose a data
value with the specified delimiter character.

4. Sample Preview for Parsed Data. Oracle automatically parses the data, as already men-
tioned, in order to extract the structure of the data, thereby also detecting, e.g., appropriate
data types. At the bottom of Figure 4.5 (4), a small sample (up to 10 columns and 5 rows) of
the result of this parsing process is shown.

4.1 Importing and Exporting Data Using “Data Workshop” 92

Figure 4.3: Using Data Workshop to Load Data - Access through App Builder.

5. Extended Preview and Further Configurations. When clicking the “Preview”-button, a
maximum of 100 columns and 100 rows is shown and further configuration possibilities are
offered, allowing now also to change the automatically suggested datatypes and to choose,
which of the columns should be actually loaded. In case that in step (1) one has decided to
load the data into an existing table, the table has to be selected out of the list of available ones
(cf. Figure 4.6 (2) and (3). Afterwards, by clicking on the "Configure-button" (cf. Figure 4.6
(4), it is possible to determine the column mapping, i.e., which of the automatically identified
columns of the loaded data should be mapped to the which columns within the DB table.
As can be seen in Figure 4.6 (5) and (6), the column DEPARTMENTNAME having the datatype
VARCHAR2 which has been automatically extracted out of the external data file during parsing
is now mapped to the DB-table column named “DEPARTMENTNAME” having the same
data type.

6. Load Data. Finally, when clicking the “Load Data”-button (cf. Figure 4.6 (8)), a new
DB-table is generated (in case this option has been selected in (1)) and the data is loaded

4.2 Importing and Exporting Data Using “Object Browser” 93

Figure 4.4: Provision of Data Source.

into the new or the existing table, whereby the loading dialog informs how many rows have
been loaded. The process of data loading runs in the background which is beneficial if a
larger file is being uploaded, since the dialog can be dismissed. During this loading process,
it could also be the case, that there are some erroneous rows encountered, which cannot be
inserted into the target table, since, e.g., the one or the other value is conflicting with some
data type. In this case, these erroneous rows are automatically saved in an error table and
can be post-processed manually. One gets also informed by the loading dialog about eventual
erroneous rows. The resulting table (and an eventual error table) can now be viewed by
navigating to the “Object Browser” or it can be immediately continued with the development
of the Web application.

4.1.3 Exporting Data
The “Export Wizard” of Data Workshop can be accessed the same way as described in Section
4.1.1 for the “Load Wizard” (cf. Figure 4.7). In a first step, the file format has to be selected,
whereby Data Workshop allows to export data into external files being formatted in terms of CSV
or XML (cf. Figure 4.8 (1)). The next step is to select the table as well as the corresponding
columns whose data should be exported (cf. Figure 4.8 (2) and (3) respectively). In case that XML
has been selected as export format, now the actual export can be started. In case of CSV, some
further options can be selected, determining the delimiter between the different rows, if the row
names should be included within the output file and if the data format should be DOS or UNIX (cf.
Figure 4.8 (4)), before finally activate "Unload Data" to save the data export (cf. Figure 4.8 (5)).
Regarding DOS vs. UNIX, please note that there is a subtle difference between these two options:
DOS files have different line endings than files created on Unix/Linux. DOS uses carriage return
and line feed ("\r\n") as a line ending, whereas Unix uses just line feed ("\n"). Thus, you need to
be careful when transferring files between Windows machines and Unix machines to make sure the
line endings are set properly.

4.2 Importing and Exporting Data Using “Object Browser”
Another alternative is to use SQL Workshop’s “Object Browser” for importing data from and
exporting data to a file, whereby this can be done in a table-wise manner. Thus, first of all, the

4.3 Exporting the Result of a SQL-Command 94

Figure 4.5: Loading Data into New Table.

respective table has to be selected (cf. Figure 4.9 (1)). If now data should be imported, after clicking
the "Load Data-button", the same dialog appears as when selecting "Load Data" (cf. Figure 4.9 (2),
(3)) as already described in Section 4.1.1 - also the same file formats are supported. At the other
hand-side, the export of data can be simply done by clicking the “Download-button" at the bottom
of the page, leading to the immediate generation of a CSV file containing the data of the DB-table.

4.3 Exporting the Result of a SQL-Command
Similar to exporting the whole data stored in a table, also a certain subset of this data – or even
the data stored within several tables - can be exported at once. Simply stating, the result set of an
arbitrary complex SQL-Query can be exported (cf. Figure 4.10 (1)) For this, after the query has
been executed within the “SQL command”-tool of SQL Workshop and the result set is shown (cf.
Figure 4.10 (2)), this result set can be downloaded by just clicking on the “Download”-button (cf.
Figure 4.10 (3)).

4.4 Exporting Data from an Application Report
As we discussed in Chapter 3, developing a Web application using the APEX’ App Builder requires
to select a certain page type for each page which is added to the Web application. In case that
one has selected, e.g., the page type “Interactive Report”, the data displayed by this report during
runtime can be exported. This is illustrated in Figure 4.11, showing a sample Interactive Report
Page “DepartmentsReport”. Possible file formats are CSV, HTML, PDF and Excel, also sending
the data via eMail is an option.

4.5 Enabling Data Exchange with RESTful Services 95

4.5 Enabling Data Exchange with RESTful Services
Exchanging data of the DB-layer of our Web application by enabling external clients like other Web
applications, mobile applications, legacy applications or cloud systems online access to our data
can be easily realized using so-called RESTful services. REST (Representational State Transfer)
is in fact an architectural pattern proposed by Roy Fielding and Richard Taylor in 2000 [2] for
providing interoperability between arbitrary systems over the Internet. It enables the querying
and manipulation of data without the need for direct access to the underlying DB-tables. Figure
4.12 gives a high-level overview of the basic architectural pattern of REST. For realizing such an
indirect access according to the REST architectural pattern, RESTful services have to be created in
terms of a set of APIs (Application Programming Interfaces) on top of your DB-tables. Without
connecting directly to the underlying DB, these APIs enable external systems to interact securely
with the data by querying, inserting, updating, or deleting data. The definitions of RESTful services
created within Oracle APEX are stored in the Oracle REST Data Services (ORDS) repository , and
are referred to as ORDS-based REST Services.

4.5.1 REST Architectural Pattern
As already mentioned, a service is described as RESTful when it conforms to the tenets of REST.
Although a full discussion of REST is outside the scope of this Chapter, a RESTful service has the
following characteristics (Note, that the general characteristics of REST as described in [2] have
been slightly adapted to our DB context):

1. DB-tables provided as Resources for Services. A RESTful Service is modeled as a set of
resources, in our case on top of your DB-tables. These resources are identified by URLs and
accessed over the HTTP or HTTPS Web protocols.

2. Operations sent via HTTP-Requests. A small set of operations is used to deal with these
resources in terms of a HTTP-request comprising POST, GET, PUT, DELETE, thereby resembling
the CRUD-operations (Create, Read, Update, Delete).

3. Services are stateless. RESTful Services are stateless, i.e., no client context is stored at the
server between requests – session state is kept entirely on the client. This means that each
request from client to server must contain all of the information necessary for the server to
understand the request and cannot take advantage of any stored context on the server. The
main benefit is that reusable and scalable services can be created that can be managed and
updated without affecting the system, even during runtime. The disadvantage is that it may
decrease network performance by increasing the repetitive data (per-interaction overhead)
sent in a series of requests, since that data cannot be left on the server in a shared context.

4. HTTP-Responses. Requests to a RESTful Service always elicit a response. This response is
in the form of XML, JSON, HTML, or some other defined format. Responses provide details
of some sort of alteration to the underlying data, error messages, and hypertext links to other
related resources depending upon the operation.

4.5.2 Enabling a DB Schema for RESTful Access
In order to enable a DB schema for RESTful access, it has to be first registered with ORDS . This
can be simply done as illustrated in Figure 4.13 by accessing the RESTful services tool within SQL
Workshop (1), then clicking the “Register Schema with ORDS”-Button (2), entering an arbitrary
alias used in the formation of the URL referencing any RESTful service within the schema (3)
and finally, after clicking the "Save Schema Attributes-button" (4) the ORDS RESTful Services
Dashboard appears, used for managing all RESTful services.

In case that in step (3) the “Install Sample Service” option was enabled, the sample module
oracle.example.hr is installed too, providing example resource templates and resource handlers
(cf. Section 4.5.3) that implement several different operations to retrieve and display employee

4.5 Enabling Data Exchange with RESTful Services 96

information from the Employees-table as can be seen in Figure 4.15.

4.5.3 Resource Modules | Templates | Handlers
In ORDS, RESTful services can be created by using three basic components, comprising Resource
Modules, Resource Templates, and Resource Handlers (cf. Figure 4.15 for some examples). The
overall relationships between these basic building blocks are illustrated by an ER-diagram in Figure
4.14.

• Resource Modules. A Resource Module is nothing else but a container that groups a set
of related RESTful services together, based on a certain REST-enabled DB Schema. The
DB Schema can contain several resource modules. A Resource Module not only provides a
way to identify the group uniquely, but also defines the unique Base Path used on a URI to
access the set of services defined within the module. For example, a Resource Module that
enables you to access information about employees is named oracle.example.hr and the
base path value for the service is /hr/, cf. Figure 4.15.

• Resource Templates. A Resource Template defines an individual service that can be called,
e.g., employees/:id, Figure 4.15. Resource Templates are contained in Resource Modules.
Each Resource Template defines a URI Pattern where it can be reached, e.g., "empinfo/"
(Figure 4.15) and contains at least one Resource Handler (cf. below).

• Resource Handlers. Each Resource Handler implements one (and only one) of four different
HTTP operations, which resemble traditional CRUD-operations (Create, Read, Update,
Delete) .

– POST creates a new resource or adds a resource to a collection, equivalent to a SQL
INSERT statement.

– GET retrieves a representation of a resource, equivalent to a SQL SELECT statement.
– PUT updates the values an existing resource, equivalent to a SQL UPDATE statement.
– DELETE deletes an existing resource, equivalent to a SQL DELETE statement.

You must define a Resource Handler for each operation associated with the same Resource
Template. For example, to providean operation to return data and another operation to store data,
you must define a Resource Handler for each operation (cf. Fig. 4.15 – for the Resource Template
employees/:id. two operations GET (1) and PUT (2) have been defined).

Summarizing, Figure 4.15, gives an exemplary overview of the different ingredients of a
RESTful service in terms of Resource Modules, Templates and Handlers, including also the
selection of the desired response format (CSV) and the SQL query implementing the operation type
of the Resource Handler. After you create a RESTful Service, you can test it by simply entering the
generated access URL in your browser (cf. Fig. 4.15 (3) and (4) respectively).

4.5.4 Using “AutoREST” instead of Manually Defining Resources
As could be seen in the previous section, for each kind of DB operation which should be offered to
external clients as RESTful service for indirectly accessing our DB, several steps are necessary. For
the simplest form of a query, i.e., a full table scan, there is however, also some kind of “shortcut”
provided by APEX in terms of the so-called “AutoREST”-facility. AutoREST is a quick and easy
way to expose DB tables as REST resources. You lose some flexibility and customizability if you
use the AutoREST feature, but it reduces your time and effort to a significant extent. AutoRest lets
you quickly expose data but allows only to query the whole table (i.e., a full-table scan), having a
fixed output format in terms of JSON only.

AutoREST can be simply used the following way: After having enabled your schema for
RESTful access (cf. Section 4.5.2), each DB table can be individually defined as a resource using
the Object Browser of SQL Workshop as can be seen in Figure 4.16.

After selecting the respective DB table (1), clicking on the REST-tab (2), selecting the autho-
rization as required (3) and applying all these settings (5), REST has been activated for the table

4.6 Questions 97

and the automatically generated access URL appears (4). Again, this REST-service can be simply
tested by entering the URL in a Web browser (6).

4.6 Questions
1. What are the use cases for importing data via SQL Workshop and App Builder?
2. What are the different ways to export data?
3. What is REST for ? What is its purpose or benefit?

4.7 Answers
1. Data Workshop allows importing data from external files via a "Wizard" and importing data

into a table via the "Object Browser". Data import from Data Workshop can also be initiated
via App Builder.

2. Exporting data to a file in a table-wise manner is supported by SQL Workshop’s "Object
Browser". Data Workshop provides an "Export Wizard" that allows to select the file format
and the tables as well as the corresponding columns whose data should be exported.

3. RESTful services provide interoperability between any systems over the Internet by allowing
data to be queried and manipulated.

4.7 Answers 98

Figure 4.6: Loading Data into Existing Table.

4.7 Answers 99

Figure 4.7: Exporting ("Unloading") Data.

4.7 Answers 100

Figure 4.8: Unload Data Wizard.

4.7 Answers 101

Figure 4.9: Import/Export of Table Data Using the Object Browser.

4.7 Answers 102

Figure 4.10: Data Export of the Result of a SQL-Query.

Figure 4.11: Export of Data From an Application Report.

4.7 Answers 103

Figure 4.12: RESTful Services for Data Exchange – Basic Architecture.

4.7 Answers 104

Figure 4.13: Enabling a DB Schema for RESTful Access.

Figure 4.14: Relationships Between the Different Components of ORDS RESTful Services.

4.7 Answers 105

Figure 4.15: Example RESTful Services for Table Employees.

4.7 Answers 106

Figure 4.16: Enabling REST Service in the Object Browser.

5. How to generate a first draft of the
application?

ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIMPIRIS AND DIM-
ITRIOS VARSAMIS

5.1 Why business need applications?
In today’s rapidly evolving business landscape, applications have become a critical tool for com-
panies to stay competitive and meet the ever-changing demands of their customers. Building
applications allows businesses to streamline their operations, increase efficiency, and enhance their
customer experience, all of which can ultimately lead to greater profitability.

One of the primary reasons businesses build applications is to automate processes that are
currently being done manually. For example, an e-commerce company may develop an application
that automates their inventory management and order fulfillment processes. By doing so, they can
reduce the likelihood of human error and improve the speed and accuracy of their operations.

Another key reason businesses build applications is to enhance their customer experience.
Applications can be developed to provide customers with self-service options, such as the ability to
track their orders or update their account information. This can help reduce customer wait times
and increase customer satisfaction.

In addition, applications can help businesses gather valuable data about their customers, which
can be used to improve their marketing strategies and develop targeted advertising campaigns. For
example, a retailer may develop an application that tracks customer purchasing patterns, allowing
them to send personalized recommendations and promotions to their customers.

Overall, building applications has become a strong business need because it allows companies to
operate more efficiently, provide better customer experiences, and gain insights into their customers’
behavior. As the business world continues to become more digital, the importance of building
applications will only continue to grow.

5.2 Setting up the ORACLE APEX Environment
The aim of this example is to acquaint you with the ORACLE APEX environment, by guiding
you through the setup of the APEX environment, demonstrating an SQL workshop example of the
employees-departments-projects database, and illustrating how to build an APEX web application
based on the data model.

To implement this example, the following steps will be followed:
Step 1: Open a web browser and type in “https://apex.oracle.com/en/”. Click on the Sign In

5.3 SQL workshop example development 108

button, as shown in Figure 5.1.

Figure 5.1: Type in APEX link and sign in.

Step 2: Click on the Request a Workspace button. In the pop-up window that appears, fill in
the required fields for identification and click on Next. Then, respond to the survey questions in the
next pop-up window and click on Next, as shown in Figure 5.2.

Step 3: Reply to the information requested for the justification and click on Next. In the next
pop-up, read the terms of the agreement and then proceed to accept them by clicking on Next. In
the following pop-up, check the details you have entered for any errors, and then click on Submit
request as shown in Figure 5.3.

Step 4: Once you have submitted the request, a pop-up window will appear, confirming that
your workspace has been requested and an activation email will be sent to the email address you
have provided, as shown in Figure 5.4.

Step 5: Check your email for a message from APEX. Your request needs to be approved before
you can proceed. Once approved, click on Create Workspace as shown in Figure 5.5.

Step 6: Wait until the Workspace creation process is completed. Once completed, a pop-up
window will inform you that the Workspace has been successfully created. Click on Continue to
Sign-in Screen. A new pop-up window will appear, asking you to change your password before
logging in. Set a new password, confirm it, and click on Change Password, as shown in Figure 5.6.

Step 7: The Oracle APEX environment is now ready to be used, as shown in Figure 5.7.

5.3 SQL workshop example development
To create a database in the APEX environment, there are multiple approaches available. One
option is to utilize the Object Browser, a graphical tool that enables users to create tables and their
respective fields by completing a pre-designed template.

Another alternative is to employ SQL commands, which empower users to create tables and
other database objects by executing SQL statements. This method offers greater flexibility and
control over the database structure, although it requires more advanced knowledge.

On the other hand, Quick SQL is a tool provided by Oracle APEX that facilitates the rapid
generation of SQL scripts for creating database tables, constraints, and sample data. Quick SQL
simplifies the process of creating database objects without the need for manually writing intricate
SQL scripts.

In the present example, we will utilize the Quick SQL method. The script has been generated
based on the logical model displayed in Figure 5.8.

5.3 SQL workshop example development 109

Figure 5.2: Request an Oracle APEX Workspace initial steps.

According to the relational model derived from the logical model using Oracle Data Modeler
(ODM), as depicted in Figure 5.9, we can proceed with implementing the following structure in the
database.

5.3.1 Quick SQL
The provided code appears to be a set of instructions for generating sample data using the Quick
SQL tool. Each section begins with a table name followed by the "/insert" keyword and a number
indicating the desired number of rows to be inserted into the table.

ch05_departments /insert 5
dept_name vc100

ch05_projects /insert 15
proj_name vc100
budget num
begin_date date
end_date date

ch05_employees /insert 50
first_name vc20
last_name vc20
father_name vc20
birth_date date
hire_date date
id_card vc10
address vc100

5.3 SQL workshop example development 110

Figure 5.3: Request an Oracle APEX Workspace completion.

Figure 5.4: Oracle APEX Workspace approved.

city vc20
vat_no vc10
telephone vc20
mobile vc20
salary num
dept num /fk ch05_departments
manager num /fk ch05_employees

ch05_emp_proj /insert 500
emp num /fk ch05_employees
proj num /fk ch05_projects
start_date date
end_date date
earnings num

These instructions provide a schema and sample data generation plan for a database, related to
departments, projects, employees, and their associations.

5.3 SQL workshop example development 111

Figure 5.5: Activation email from APEX.

Figure 5.6: Set up a new password for Workspace APEX.

As depicted in Figure 5.10, follow the steps below:
1. Navigate to the SQL Workshop section.
2. Select SQL Scripts from the options.
3. Click on Quick SQL.
4. Insert the provided Quick SQL code into the designated area.
5. Click on Generate SQL. The generated SQL will be displayed in the Oracle SQL Output

pane.
6. Click on Save SQL Script.
7. Enter a script name.
8. Click on Save script.
9. Proceed by clicking on Review and Run.

5.3 SQL workshop example development 112

Figure 5.7: Workspace APEX environment.

5.3.2 SQL Script
As previously mentioned, the following is the SQL script generated from Quick SQL, which creates
a database schema for a sample HR management system. The schema encompasses tables for
departments, employees, projects, and employee-project relationships. Additionally, it incorporates
indexes and constraints to guarantee data consistency and referential integrity.

-- create tables
create table ch05_departments (

id number generated by default on null as identity
constraint ch05_departments_id_pk primary key,

dept_name varchar2(100 char)
)
;

create table ch05_projects (
id number generated by default on null as identity

constraint ch05_projects_id_pk primary key,
proj_name varchar2(100 char),
budget number,
begin_date date,
end_date date

)
;

create table ch05_employees (
id number generated by default on null as identity

constraint ch05_employees_id_pk primary key,
first_name varchar2(20 char),
last_name varchar2(20 char),
father_name varchar2(20 char),
birth_date date,
hire_date date,

5.3 SQL workshop example development 113

id_card varchar2(10 char),
address varchar2(100 char),
city varchar2(20 char),
vat_no varchar2(10 char),
telephone varchar2(20 char),
mobile varchar2(20 char),
salary number,
dept number

constraint ch05_employees_dept_fk
references ch05_departments on delete cascade,

manager number
constraint ch05_employees_manager_fk
references ch05_employees on delete cascade

)
;

-- table index
create index ch05_employees_i1 on ch05_employees (dept);
create index ch05_employees_i62 on ch05_employees (manager);

create table ch05_emp_proj (
id number generated by default on null as identity

constraint ch05_emp_proj_id_pk primary key,
emp number

constraint ch05_emp_proj_emp_fk
references ch05_employees on delete cascade,

proj number
constraint ch05_emp_proj_proj_fk
references ch05_projects on delete cascade,

start_date date,
end_date date,
earnings number

)
;

-- table index
create index ch05_emp_proj_i1 on ch05_emp_proj (emp);
create index ch05_emp_proj_i112 on ch05_emp_proj (proj);

The ch05_departments table stores information about departments, including a unique identifier
(id) and a name (dept_name). The ch05_employees table stores information about employees, in-
cluding a unique identifier (id), first_name, last_name, father_name, birth_date, hire_date, ID_card
number, address, city, VAT_number, telephone number, mobile number, salary, and department
(dept) and manager (manager) IDs. The ch05_projects table stores information about projects,
including a unique identifier (id), name, budget, start_date, and end_ date. The ch05_emp_proj
table stores information about employee project relationships, including a unique identifier (id),
employee (emp) and project (proj) IDs, start_date, end_date, and earnings.

Indexes are created on the ch05_emp_proj table for the employee and project columns to
improve performance when querying the table based on those columns. Indexes are also created on
the ch05_employee table for the department and manager columns for the same reason.

5.4 Data driven part of application 114

Finally, constraints are added to ensure data consistency and referential integrity between
the tables. The ch05_emp_proj_emp_fk and ch05_emp_proj_proj_fk constraints ensure that
the employee and project columns in the ch05_emp_proj table reference valid id values in the
ch05_employees and ch05_project tables respectively.

The ch05_employees_dept_fk and ch05_employee_manager_fk constraints ensure that the
departure and manager columns in the ch05_employee table reference valid id values in the
ch05_departments and ch05_employees tables, respectively.

Additionally, the ON DELETE CASCADE clause specifies that if a row in the referenced table
is deleted, all related rows in the referencing table will be deleted as well, to maintain referential
integrity.

Step 2: To initiate the desired action, please refer to Figure 5.11 and click on the Run Now
button.

Step 3: Once all statements have been processed successfully without encountering any errors,
please proceed to Figure 5.12 and click on the Create App button.

5.4 Data driven part of application
The data-driven section of the application focuses on harnessing the power of data to drive insights,
decision-making, and user interactions. In this section, data takes center stage, enabling users to
explore, analyze, and interact with information in a dynamic and intuitive manner.

The primary goal of this section is to provide users with a comprehensive view of the data,
empowering them to gain valuable insights and make informed decisions. Through various data
visualization techniques, such as charts, graphs, and interactive dashboards, users can easily
comprehend complex datasets and identify patterns, trends, and outliers.

Additionally, the data-driven section incorporates robust data management capabilities, allowing
users to filter, sort, and search for specific data points or segments. Advanced features such as data
aggregation, drill-down, and data export functionality further enhance the user experience, enabling
deeper exploration and analysis.

The section also emphasizes the importance of data integrity and data quality. It includes
mechanisms for data validation, error handling, and data cleansing to ensure that the information
presented is accurate, reliable, and consistent.

With the data-driven section, users can explore data from multiple angles, customize views
based on their preferences, and leverage the power of data to drive meaningful insights. It serves as a
powerful tool for data analysis, reporting, and decision support within the application, empowering
users to make data-informed choices and drive successful outcomes.

Step 1: When the pop-up window labeled Create App from the Script appears, in accordance
with Figure 5.13,verify that the tables have been created and will be used in your new application,
click on the Create Application button.

Step 2: Enter a name in your application, verify that reports and form pages from the tables
have been added and will be used in your new application and then click on the Create Application,
as shown in Figure 5.14

Step 3: The app builder environment has been created for your app, as depicted in Figure 5.15.
It is important to note that within this environment, you have the ability to customize your app
extensively. You can add, remove, or modify form fields, adjust the layout, define validation rules,
and perform numerous other actions to tailor the app to your specific needs.

Step 4: Click on the Run Application icon in the App builder environment to run the application
as shown in Figure 5.16. This will open a new browser page with a dedicated link from APEX for
your app. Enter your credentials, which are the same as those in the WORKSPACE, and then click
Sign in. You will be directed to your home page of your app.

Step 5: You can easily navigate through your app using the side menu, as illustrated in Figure
5.17. The app provides a user-friendly environment that enables you to seamlessly add, modify,

5.5 Administration of application 115

and present your data according to your specific needs and preferences.

5.5 Administration of application
Regarding Application Accounts Authentication, it is a built-in authentication method in Oracle
Application Express that allows for the creation and management of user accounts in the Application
Express user repository. This method is especially useful if your application uses Application
Express Accounts authentication.

In the application Workspace environment, click on Administration and select Manage Users
and Groups. The initial account created can be used as an administrator for the built-in application.
Oracle APEX User maintains accounts for authentication schemes that authenticate against the
username and password stored in these accounts.

Workspace administrators have the authority to create and modify applications and database
objects, as well as manage user accounts, groups, and development services. Developers can create
and modify applications and database objects, while end-users have no development privileges and
can only access applications that do not use an external authentication scheme, as shown in Figure
5.18.

5.6 Access control
Next, as shown in Figure 5.19, we will provide an example of access control for users who are
using the application, following the logic depicted in the figure below.

Oracle APEX provides three built-in privileges that allow for access control to an application
or its components. These privileges are administration, edit, and view, and each corresponds
to an access role. Administration corresponds to the administrator role, edit corresponds to the
Contributor role, and View corresponds to the Reader role.

Initially in order to add new users and define their roles is to navigate to Manage Users and
Groups from the APEX display environment. Click on Administration, and select Manage Users
and Groups. Then, choose Create User, enter the user identification and password, and click on
Create User, as illustrated in Figure 5.20.

Next, you will need to define the roles for your users. In our example, we demonstrate how this
can be done within the app itself.

Step 1: Log in to the app with administrator credentials, go to side menu and click on Admin-
istration, click on Add User, enter user identification and role and click on Add User in Figure
5.21.

Step 2: Go to the application workspace environment and click on the employees-Form.
In the page designer of the Form, select the Create button, and in the Security option, choose
Contribution Rights as the authorization scheme. Click on Save. Now, only users with a
contribution role will be able to create and add new Employees, as shown in Figure 5.22.

Step 3: This step is for verifying the access control configurations made for Contributor role.
• Log in to the app with the credentials of user Dimitris, who has the Contributor role assigned.
• Open the menu and verify that the administration option is missing, as expected.
• Try to create and add a new employee as a contributor, as shown in Figure 5.23.
• Verify that you can view the existing Employees’ information, and you can make changes.
• Verify that you can create a new employee entity.
Step 4: This step is for verifying the access control configurations made for Reader role.
• Log in to the application with the credentials of user Kostas, who has a Reader role assigned.
• Open the side menu and verify that the administration option is missing, as expected.
• Click on the Employees-Form in the application workplace environment.
• Try to create or add a new worker. You will receive an "access denied" message, as shown in

Figure 5.24.

5.7 Supplementary learning material 116

• Verify that you can view the existing Employees’ information, but you cannot make any
changes.

These steps confirm that the access control configurations have been successfully applied to the
users.

5.7 Supplementary learning material
You can find the following supplementary learning material:

• scripts
• application
• video guides
All supplementary learning material is available on public BeeAPEX project page. Login as

a guest user (no password is required). Find textbook in Books section, scripts in folder Part 1 >
Chapter 5 in the Scripts section and video guides in Collection of video guides. Material for short
courses is in Short courses section.

5.7.1 Exported applications
Exported application is packaged. Installation create tables, index, function, procedure and trigger
as well it populate data. De-installation removes all data base objects used in this application.

5.7.2 Video guides
Video guide show every step in application development.

5.8 Questions
1. How many ways are there to create a new application in ORACLE APEX application Builder?
2. How can you add users to the application
3. How many built-in user privileges are there in ORACLE APEX for access control to an

application or its components?

5.9 Answers
1. There are 3 ways

• New Application
• From a File
• Starter app

2. Navigate to application workspace environment and choose Manage Users and Group
3. There are three

• Administrator
• Contributor
• Reader

https://beeapex.eu/course/view.php?id=12

5.9 Answers 117

Figure 5.8: Logical Model of our Running HR Example.

5.9 Answers 118

Figure 5.9: Relational Model of our Running HR Example.

5.9 Answers 119

Figure 5.10: Insert Quick SQL code to APEX workspace.

Figure 5.11: Run SQL script.

Figure 5.12: Create App starting process.

5.9 Answers 120

Figure 5.13: Create App from Script.

Figure 5.14: Web application created.

Figure 5.15: App builder environment.

5.9 Answers 121

Figure 5.16: App Login Page.

Figure 5.17: Your new App environment.

5.9 Answers 122

Figure 5.18: Manage users and groups environment.

Figure 5.19: Access control example.

5.9 Answers 123

Figure 5.20: Add new users.

5.9 Answers 124

Figure 5.21: Add roles to users.

5.9 Answers 125

Figure 5.22: Create button configuration.

5.9 Answers 126

Figure 5.23: Contributor access and rights.

5.9 Answers 127

Figure 5.24: Reader access and rights.

6. How to manage reports?

ZUZANA ŽILLOVÁ, ERIK MALINA, MATEJ GROCHAL, ANDREJ STANÍK, ANDREA

MELEKOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

The data in the databases are often meaningless if we do not get outputs from them that told us
more about their real information that they contain. To represent the results, observe and find out,
we just use reports, which we will deal with in the following chapter. We will learn how to easily
create such a report in the APEX environment and how to edit it. We will deal with different types
of reports such as interactive reports, classic reports, Column Toggle Report or reports with graphs
visualizations.

6.1 Report
Report is a region which simplifies data browsing and displays data in rows. It can figure as one
unit or it can be used to divide pages into logical units. It can be static, with only title and formatting,
but without any additional functionality. Or it can be a dynamic region, having specific functionality
like calendar, report or list. These regions are pre-programmed with its basic functionality that can
be also edited easily by users.

As you can see in Figure 6.1 when creating a page, users can select from pre-built page types
which already contain reports, so it is not necessary to insert a region by individual user. An
example of the form for report creation is shown in Figure 6.2. When creating a page containing a
report, it is necessary to fill in name of the page and data source of the page. Data can be loaded
from local database, REST enabled SQL or REST source. When selecting a local database option,
it is necessary to select what exactly would be used as a reports source - the user can not only use
the database table itself but also existing views or own SQL query statements.

When the page is created, a section similar to the one in Figure 6.3 appears on the left side. In
the side navbar you can see page, its name and all its components. After clicking on one of the
components it gets highlighted. After that you can see columns it contains, and also its sub-regions
or items. With the right click you can create a new empty region.

In the Figure 6.4 you can see the region and its attribute details. Identification defines page the
title and type of report (e.g., classic report). Figure 6.5 depicts several examples of source section in
which the source of data for our report as well as information about data origin (as mentioned above:
table, view, function or SQL query) are defined. Where Clause speaks about which condition will
be applied for data filtering.

In Figure 6.6 you can see Layout where you can specify region location within the page. Parent

6.1 Report 129

Figure 6.1: Selection of page type.

Region is to specify which region would contain our report. You can also adjust this via Position.
Positions are defined by the specific page template. After creating the page, it is built with specific
theme and layout depending on chosen template. Default template for theme Universal is called
Standard.

Regions are organized in a grid - so, every region has its own location defined by row and
column. These regions are organized by its sequence number. First region is in first row and first
column of the grid. Every next region is then organized by one of these patterns: in same row and
column as previous region, and it is displayed under the previous region. Attributes Start New
Row and New Column are used for specifying the way of organization for these regions.

Size and location are calculated after assignment of row and column. This is accomplished by
calculating occupation and width for every part of the row by values of parameters Column and
Column Span.

Indentation of area in its row is defined by attribute Column. Value of this column is in range 1
- 12 which refers to 1 of 12 points of the grid which split the width. Value 1 stands for the most left
part and 7 is for middle of the page.

In Figure 6.7 you can see the Appearance section which is used to edit the template for
specified region. Figure 6.8 shows pre-defined templates which the user can select from. Every
template can be customized by clicking on template options or by writing your own CSS statements.
In template options you can define multiple rules like body height, header visibility or even distance
between items.

Figure 6.9 shows a section named Advanced, where you can choose from four options. Static
ID is dedicated for setting up identifier of report. This Static ID is used as ID for HTML element
within the page for situations when user wants to configure the page appearance using CSS. Custom
Attributes are for additional information for HTML element. Custom attributes are stored as
name/value, for example: name = ”MY _REPORT ”

Region Display Selector is a component of region which provides navigation controls for other
regions within the page. Exclude Title from Translation avoids the title from translation in case

6.1 Report 130

Figure 6.2: Creation of page with report.

that page has defined translations.
Header and Footer shown in Figure 6.10 are used for editing content of these parts of a report.

It is important to mention that the footer and header are related to the report and not to the entire
page.

Types of Server-side Conditions are listed in Figure 6.11. In an application developed by
Oracle APEX, Server-side Conditions are resolved in initialization phase of website loading. The
report is not displayed if server-side conditions are not met. There is a variety of types of conditions.
To give an example you can compare the values of items or there are conditions for checking
requests.

The Read Only item depicted in Figure 6.12 has the same options as Server-side Condition
item displayed in Figure 6.11. Naturally, it is not possible to change view of selected region, while
it is read-only. In case of basic report, it is not possible to sort column values.

In Figure 6.13, you can see last three sections that will be explained. These are Security,
Server Cache, and Customization. The Security section contains options for restrictions in terms
of displaying the website - e.g. public website, only for authorized users. Server Cache section
includes settings about cache management. In Customization window you can adjust access to
modify report.

Another group of sections is Attributes. Here, you can set up things like number of displayed
rows, if it is possible to list over report results and in which way you will list throughout the report.

Another interesting feature is to set maximal number of loaded rows. You can also define what
to display when there is no data found. It is possible to download your reports as .csv file or print
them. Everything mentioned in this paragraph can be found in Attributes.

Very important part is the center of the application. In Figure 6.17 you can see the Layout
which shows us how all components will be organized on our page. Entire page is structured into
the grid, so it is more intuitive to imagine where components will be placed. To be user friendly
as much as possible, you can select region/item and drag & drop it to the desired place. For each

6.2 Classic Report 131

Figure 6.3: Rendering.

region exists its default template, which is provided when you put it in. All necessary settings are
already set up.

As you can see on the left side of the page in Figure 6.17, APEX creates some components for
report by default. Each component represents one column, and it is possible to alter it in the same
way as you do with report.

Column settings are shown in Figure 6.19. In the Identification you can see two features -
Type and Name of Column. It is unable to change Name of Column, because its value is obtained
from the SQL query. Type of Column shown in Figure 6.18 determines how the column will be
displayed - to point out some of them: Hidden (nothing is displayed), Plain Text, Display Image,
Percent Graph and so on. By default, all columns are marked as Plain Text.

Heading consists of two options about header. Contrary to column name, the Heading (name)
can be edited. Header can also contain HTML code. The Alignment option speaks about itself.
Layout section offers Sequence, which determines in which order columns will be provided and
also Alignment option, same as in the previous section.

Last crucial part is Appearance, which should be edited, when you want to treat a number as a
string in some special format. As you can see in Figure 6.20, you can choose from plenty of basic
formats when you click on Format Mask. These formats are offered by APEX itself, but you can
express your own format if you want.

6.2 Classic Report
A Classic Report is a type of report that allows only a basic display of data, without possibility for
users to modify displaying options. The only thing that is available for the user is sorting data by
individual columns, this also needs to be set.

If you want to see how the page will look like, you can click on the green arrow in the circle.
As you can see in Figure 6.23, the arrow is located in the upper right corner. In Figure 6.24 we can
see how the classic report is displayed. It has columns with names and data. No interaction, except
sorting by columns is allowed for user.

6.3 Column Toggle Report 132

Figure 6.4: Properties of region.

Figure 6.5: Various data sources.

6.3 Column Toggle Report
Column Toggle Report is almost the same as a classic report, with only one extra feature to specify
which column should be visible and which should not. This is displayed in the right upper corner
of Figure 6.25.

6.4 Interactive Report
an example of an Interactive Report is depicted in Figure 6.26. This allows users to make
some customizations of the report whilst viewing the page without having access to the core of
the application. An interactive report is created just like any other and does not differ much in
appearance. Now we will take a closer look at the individual functions and customizations that the
user can adjust in the interactive report.

The search panel shown in Figure 6.27 consists of four items:
• Magnifying Glass,
• Text Box,
• Go Button,
• Actions button.
The first three items allow the user to filter report lines. We enter a search string in the field,

6.4 Interactive Report 133

Figure 6.6: Layout.

Figure 6.7: Appearance.

click on the Magnifying Glass, which is where we select which columns should be displayed, and
then click on the Go Button. We will see those records that contain the search string.

For example, we want to search for records that contain the number "730123/9403" in any
column. This filter will be displayed, and it can be turned off by clicking on the X Button. The
situation is shown in Figure 6.28. We can have multiple filters active at the same time on different
columns.

The Actions Button offers more possibilities to adjust display of the report. After clicking, a
sub-menu containing several items will appear. The listed items are shown in Figure 6.29.

Button Columns will show us a box that you can see in Figure 6.30. Here, the user can choose
which columns will be displayed in the report and also the order in which they should be displayed.
Users can achieve this by moving columns between two sections Do not Display and Display in
Report. There are helpful arrows, that easify work with moving of columns.

As another option, we have a Filter shown in Figure 6.31. We can filter values in column by
expressions like to be equal to, not equal, is null, etc. You can define expression by choosing from
predefined, or by writing your own.

In case of filtering rows, we have a choice of countless operations and expressions that we can

6.4 Interactive Report 134

Figure 6.8: Templates.

Figure 6.9: Advanced.

compose. This filter appears in the Filter Expression window depicted in Figure 6.32.
After clicking on the Data button, the menu shown in Figure 6.33 will appear. The menu

contains another four possibilities:
• sort,
• aggregate,
• compute,
• flashback.
In Figure 6.34 you can see Sort option which can be applied on each column and user can

determine how to work with null values.
With Aggregate we can perform an aggregation function above one of the columns of our

report. The aggregation functions that we can choose from are shown in Figure 6.35.
Flashback function depicted in Figure 6.36 allows us to return to state of displayed report

before changes a few minutes ago.
Control Break shown in Figure 6.37 allows us to divide the report into several smaller units,

as if they were separate reports. These small units are divided depending on column values. Each
unit shares the same data in the selected column.

Figure 6.38 shows us control break applied on the First Name column.
In Figure 6.39 you can see the Highlight function that easily makes the records in the report

transparent, without filtering out the others. We can highlight either one cell or the entire row with
the colors we choose. Comparing the column value works the same as with the Filter, except that
unfiltered records do not disappear from the report.

In Figure 6.40 we can see the report with highlighted rows, with first name equal to "Aaban".
Figure 6.41 show Rows Per Page which is an attribute, where the user can choose how many

6.5 Questions 135

Figure 6.10: Header and Footer.

Figure 6.11: Server-side Condition.

records will be displayed on the page. It’s a similar setting to Pagination.
If the display of data in the report is insufficient, there is also the option of projecting this data

into a graph via the Chart item depicted in Figure 6.42. There is a choice of four basic graphs. We
can also choose an aggregation function that is applied to the given column.

Also, very important functionality of the interactive report is Group By shown in Figure 6.43.
It works in the same way as in SQL query.

Save Report depicted in Figure 6.44 saves the report in its current state. However, this report
can only be seen by the developer after logging into the application and not by the user.

We can also reset the report to its original state or download it in the selected format. You can
see this option in Figure 6.45.

6.5 Questions
1. What category does the report type belong to? Regions, items or buttons?
2. What can be the data source for a Report?
3. What source types can be used for specifying Classic Report?
4. What is the main feature of the Classic Report?
5. Which technology allows user getting the data image as it existed in the past using Interactive

Report?

6.6 Answers 136

Figure 6.12: Read Only.

Figure 6.13: Security, Server Cache and Customization.

6.6 Answers
1. Report is a region simplifying data browsing and searching.
2. Data can be loaded from local database, REST enabled SQL or REST source.
3. Available source types are Table or SQL query.
4. The main feature of the Classic Report is the read-only mode, disallowing user to modify the

displaying options or data.
5. Flashback functions allow user to construct data image as it existed at defined timepoint.

6.6 Answers 137

Figure 6.14: Pagination.

Figure 6.15: Number of rows to load.

Figure 6.16: Download and Printing.

6.6 Answers 138

Figure 6.17: Center of page designer.

Figure 6.18: Type of column.

Figure 6.19: Column settings.

6.6 Answers 139

Figure 6.20: Format Mask.

Figure 6.21: Customization.

Figure 6.22: Option for sorting by column.

Figure 6.23: Location of green arrow for page showcase.

6.6 Answers 140

Figure 6.24: Classic report example.

Figure 6.25: Possibility to change visibility of column in Column Toggle Report.

Figure 6.26: Interactive Report.

6.6 Answers 141

Figure 6.27: Search panel.

Figure 6.28: Searching.

Figure 6.29: Actions Button.

6.6 Answers 142

Figure 6.30: Selection of columns to display.

Figure 6.31: Column Filter.

6.6 Answers 143

Figure 6.32: Row Filter.

Figure 6.33: After clicking on Data button.

Figure 6.34: Sort.

6.6 Answers 144

Figure 6.35: Aggregate.

Figure 6.36: Flashback.

Figure 6.37: Control Break.

Figure 6.38: Control Break result.

6.6 Answers 145

Figure 6.39: Highlight.

Figure 6.40: Highlight result.

Figure 6.41: Row Per Page.

6.6 Answers 146

Figure 6.42: Chart in the interactive report.

Figure 6.43: Group By.

Figure 6.44: Save Report.

6.6 Answers 147

Figure 6.45: Download.

7. How to manage forms?

VERONIKA ŠALGOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

7.1 Types of forms
In Oracle APEX, we can use three basic form types:

• an editable interactive grid,
• a form on a table,
• a master detail form.

7.2 Editable Interactive Grid
In the editable interactive report, can add, modify, delete and search data. It is a feature-rich
component with data editing capabilities available directly on the page. In addition, this report can
be customized and rearranged interactively using the mouse, directly updating a grid´s structure and
contents. It is possible to create an editable interactive grid as a conversion of a read-only interactive
grid, which was created by selecting Report and then Interactive Grid. Another possibility is to
create Report and Form and select the Report Type to be Interactive Grid, which will also be
created as a read-only version but can be converted to editable form.

Figure 7.1: Interactive Grid with Customers

Data can be searched using the text in the search bar at the top of the page. Other actions
available with this interactive grid are shown in Figure 7.2.

7.3 Form on a Table 149

Figure 7.2: Actions of Interactive Grid

It is possible to resize a grid column by clicking and holding the edge of a column heading and
adjusting it with the mouse. You can also hide a column by selecting the header and clicking the
Hide icon, as shown in Figure 7.3.

Figure 7.3: Hide icon of the Phone column

After hiding the column, it is no longer displayed in the grid. To view the column again, you
have to click on the Actions, choose the Columns option, and click on the columns to be displayed.

A column can be frozen after clicking the Freeze icon, as shown in Figure 7.5. Freezing a
column excludes it from the scrollable area.

Data can be sorted according to a column by selecting the Sort Ascending or Sort Descending
icon, as shown in Figure 7.6.

Using the Aggregate icon of the column, as shown in Figure 7.7, it is possible to choose from
Count, Count Distinct, Minimum and Maximum functions on the selected column.

Data from the grid can be used to create charts, choosing Actions and then Charts options. There
are various types of charts, as shown in Figure 7.8. You can choose from a variety of aggregation
functions provided with the charts.

7.3 Form on a Table
Oracle APEX provides us with basic forms to insert a single row in a table, as shown in Figure
7.9. After clicking the Create a Page button, you need to choose a Form option. You need to select
the table connected to the created form, or you can write your SQL Query and also a primary key

7.4 Master Detail Form 150

Figure 7.4: Displayed columns

Figure 7.5: Freeze icon of the Address column

column of the table.

7.4 Master Detail Form
It is possible to query, insert, update, and delete values from two related tables or views. After
clicking the Create a Page button, you need to choose a Master Detail option. In the following
detail, you choose a master-detail style, such as Stacked, Side by Side, or Drill Down. A master
detail form usually displays a master row and multiple detail rows. It means you need to choose
a table or a view to being a master data source and another one to be a detail data source. After
selecting the primary key of each table, it is necessary to choose the master detail foreign key.

Figure 7.10 shows a Stacked master detail form. It contains editable interactive grids. Users
can select a row in the master grid to update the detail grids.

In Figure 7.11, there is a Side by Side master detail form containing a single page master detail
utilizing a side-by-side layout and report regions with modal edit windows. On the left side, you
can choose from a master list to navigate to the master record. The right side contains the selected
master record and the associated detail reports.

A Drill Down master detail contains two pages. The first page includes an interactive report for
the master table, as shown in Figure 7.12. On the second page, as shown in Figure 7.13, there is a
standard form for the master and editable interactive grids for the detail.

7.5 Questions 151

Figure 7.6: Sorting the Address column

Figure 7.7: Aggregate icon of the Address column

7.5 Questions
1. Is it possible to arrange the data using Editable Interactive Grid?
2. Which table component definition must be selected, when creating a Form?
3. Which option excludes a column from a scrollable area?

7.6 Answers
1. Yes, the reports can be customized and rearranged interactively using the mouse, directly

updating a grid´s structure and contents.
2. Primary key attributes must be specified.
3. A column can be frozen after clicking the Freeze icon. Freezing a column excludes it from

the scrollable area.

7.6 Answers 152

Figure 7.8: Types of charts

Figure 7.9: Form for inserting customers

7.6 Answers 153

Figure 7.10: Stacked master detail form of Customer Flat Rates

Figure 7.11: Side by Side master detail form of Customer Flat Rates

7.6 Answers 154

Figure 7.12: Drill Down master detail form – first page

Figure 7.13: Drill Down master detail form – second page

8. How to transform text reports into charts?

IVAN PASTIERIK, MICHAL KVET AND MIROSLAV POTOČÁR

8.1 Chart
Chart regions in Oracle APEX are versatile components that empower developers and users alike to
gain deeper insights from data through visual representation. These dynamic charts, ranging from
bar charts and line charts to pie charts and more, serve as important assets in enhancing the user
experience and facilitating data-driven decision-making.

In this chapter, you will learn how to create a simple chart with filtering and sorting capabilities.
Filtering and sorting can dramatically improve interactivity and the readability of charts. For
this purpose, we have created a simple data model as shown in Figure 8.1. The data model
consists of two entities: “product” and “sale_transaction”. The entity “product” represents a
single product, with its primary key attribute as “product_id”, and the product’s name stored in
the “product_name” attribute. The entity “sale_transaction” stores information about all our
sold products with the primary key “sale_id”. The “product_id” attribute is a foreign key that
references the “product_id” attribute in the “product” entity. The “sell_date” attribute contains
the date the product was sold.

Figure 8.1: Data model used in example application.

To begin, it is necessary to create a new application, which we will call “Chart Showcase”.
This application will contain the “Global Page”, “Home” and “Login Page”. We will be creating
charts on the home page. Detailed instructions for creating applications were described in Chapter
5. After creating the application, enter the Page Designer for the “Home” page within our newly
created application.

8.2 Creating Bar Chart 156

8.2 Creating Bar Chart
To place graph region, highlighted in Figure 8.2, into our application, we need to drag and drop it
into the layout section of Page Designer.

Figure 8.2: Selecting and placing Chart region.

We will place the Chart region in the body section of our page because we want our graph to
be the main content of the page. We will set the title of our newly placed Chart region to “Sales
Chart”. In Figure 8.3, you can see how our layout body section looks after placing and changing
the title of our Chart region.

Figure 8.3: Layout body section after placing Chart region.

In the left part of Page Designer, you can see the tree overview of all of our placed components.
If you look closely at our Sales Chart component, inside “Series”, it shows an error. This error, as
seen in Figure 8.4, is caused because we haven’t defined the source for our data that we want to
display in our graph.

When you click on the series labelled as “New” from the tree overview, the settings menu
for the series will open on the right side of Page Designer. Inside this settings menu, we will
change the name of the series to “sales” because we want to show the sales count of our individual
products in our Sales Chart. Next, we need to define the series source. To do that, we will change
the source type to “SQL Query” and inside the SQL Query, we will place a SELECT statement

8.3 Adding Filtering to Bar Chart 157

Figure 8.4: Tree overview showing error in chart series.

as shown in Figure 8.5. This SELECT statement will return the total count of sales grouped by
product names. Now that we have defined the source for our data that we want to show in the chart,
we need to map the columns selected by the SELECT statement to axes Label (X) and Value (Y).
The final configuration of our series is shown in Figure 8.5 with the important changes highlighted.

If we take SQL Query from Figure 8.5 and execute it, it returns data as shown in Figure 8.6.
Now, we can save our page and run it. Don’t forget to set the page’s authentication to “Page

Is Public” so that it doesn’t require logging in. When you run the page, you should get results like
those shown in Figure 8.7. However, you may notice that our chart doesn’t have labelled X and Y
axes, making it harder to read.

To address this, we can label our axes similarly to how we labelled our series. By clicking on
individual axes from the left tree overview and changing their Title attribute, as shown in Figure
8.8, we can name the X axis “Products” and the Y axis “Sales Count”.

Once we label both axes of our chart, the result should resemble the chart shown in Figure 8.9.

8.3 Adding Filtering to Bar Chart
Now, let’s add filtering for products to our chart, allowing us to choose which products to display.
To achieve this, we will add a Checkbox Group item from the bottom toolbar of Page Designer,
placing it just above our Sales Chart region within the body.

We will name the Checkbox Group item “P1_PRODUCTS_CHOICE” and set it’s label to
“Products Choice”. Additionally, we can adjust the layout to display it in three columns, which is
shown in Figure 8.11.

To populate our Checkbox Group with products, we need to define a list of values. In the
“List of Values” section of the Page Item settings, we will change the “Type” attribute to “SQL
Query” and write a SELECT statement as shown in Figure 8.12. This statement should select
exactly two columns: the first column containing display values (with an alias “d”), and the second
column containing return values (with an alias “r”).

By default, Checkbox Group item typically have all checkboxes unchecked when you run the
application. However, for better user-friendliness when used with charts, it’s preferable for users
to see all products displayed in the chart by default. To achieve this, we will go to the “Default”
section of the Checkbox Group item settings and change the “Type” attribute to “SQL Query
returning Colon Delimited List”. This type of SQL Query allows us to define which values are
selected by default. Regular SQL Query cannot be used with Checkbox Group item because it can
define only one default value, not multiple default values. Inside the “SQL Query Colon”, we

8.3 Adding Filtering to Bar Chart 158

Figure 8.5: Final configuration of sales series

will write a SELECT statement as shown in Figure 8.13. This SELECT statement should return
exactly one column, which will be internally converted to a Colon Delimited List, which might
look like this: “1:5:7:2:3”.

Now, with the Checkbox Group item configured to our liking, we can link it to our Sales
Chart region. To do that, we will add the name of our Checkbox Group item to the “Page Items
to Submit” field in the “Source” section of our sales series inside the Sales Chart region. It is
required to add every item used in the SQL Query into “Page Items to Submit”. The return value
of “P1_PRODUCTS_CHOICE” is a Colon Delimited List, which consists of products that are
checked. Therefore, we need to use the INSTR function, which returns the index of the first occur-
rence of a substring defined in the second parameter of the function within the string defined in the
first parameter of the function. INSTR function will return 0, if there is no occurrence in string. We
will use the INSTR function to check if each product’s “product_id” is present within the selected
list of product IDs in the “P1_PRODUCTS_CHOICE”. The INSTR function searches for the oc-
currence of ’:’||product_id||’:’ within the concatenated string ’:’||:P1_PRODUCTS_CHOICE||’:’.
If it finds a match, it means that the product is among the selected products. We need to concatenate
’:’ to both “product_id” and “:P1_PRODUCTS_CHOICE” because we want to perform a
precise match between individual product IDs. By doing so, we ensure that, for example, “:1: ” is
matched with “:1:2:3:8:9:11: ”. This ensures that we’re looking for exact matches, ensuring that
each selected product ID is considered independently.

If we were to match “1” with “1:2:3:8:9:11”, we could potentially display a product with the
ID "1" when checkboxes for products with IDs “1”, “11” or any other IDs containing the value “1”
are checked. In other words, if we check product with ID “11”, not only the selected product would
be displayed, but also product with ID “1” would be displayed. This leads to undesired results and
inaccurate data representation.

By adding ’:’ to both sides of the IDs, we create a consistent delimiter pattern, making sure that

8.3 Adding Filtering to Bar Chart 159

Figure 8.6: Data returned by executing SQL query.

Figure 8.7: Chart shown when launching the application.

the selected product IDs are compared precisely and eliminating any ambiguity in the matching
process. This ensures that the chart displays the data accurately based on the user’s selections.

The last configuration step is to set up the refresh of our Sales Chart region when there’s a
change in the selection of the Checkbox Group item. To achieve this, we need to create a Dynamic
Action on our “P1_PRODUCTS_CHOICE” Checkbox Group item, as shown in Figure 8.15.

We can set the “Name” attribute of this Dynamic Action to “PRODUCTS_CHOICE_REFRESH”
as seen in Figure 8.16. We also need to make sure that “Event” attribute inside “When” sec-
tion is set to “Change” and that “Selection Type” attribute is set to “Item(s)” and “Item(s)”
attribute is set to our current item name, so this Dynamic Action will be fired when the value of
“P1_PRODUCTS_CHOICE” changes.

Within the tree overview on the left side of the Page Designer, click on the action that executes
when the Dynamic Action condition is true, which happens when our Checkbox Group item
changes. When you create a new Dynamic Action, you will see the “Show” action with an error,
so click on it. In the settings of this action, set the “Action” attribute inside the “Identification”
section to “Refresh”. In the “Affected Elements” section, change the “Selection Type” to

8.4 Adding Sorting to Bar Chart 160

Figure 8.8: Changing title attribute for x axis.

“Region” and then set the “Region” to “Sales Chart”, as seen in Figure 8.17.
Figure 8.18 shows how your tree overview in the left part of Page Designer should look if

you’ve followed all the steps correctly.
When we run and test our application, the filtering and refreshing of our graph should be fully

functional, and the application should resemble the one shown in Figure 8.19.

8.4 Adding Sorting to Bar Chart
We can enhance the user experience by adding the ability for users to sort values shown in the chart
by various criteria. To choose sorting criteria, we will use a Select List item, as shown in Figure
8.20.

We will place the Select List item inside our Sales Chart region under the “Sort Order”
section and name it “P1_CHART_SORTING”, as shown in Figure 8.21.

Now, we need to define a list of values for the Select List item that we’ve placed. In the settings
of the “P1_CHART_SORTING” item, we need to change the “Type” attribute inside the “List
of Values” section to “Static Values”. Then, we need to press the button showing default values
“Display1, Display2” right next to the “Static Values” attribute.

Now you can see that a new window has opened with the title “Static Values.” Inside this
window, we need to define display and return values. Under display values, we will write sorting
descriptions, and under return values, we will write numbers beginning with 1, as seen in Figure
8.23. If we want these display values to be ordered as we entered them from top to bottom, then we
need to disable the “Sort at Runtime” option.

We need to add the Sales Chart refresh Dynamic Action in the same way as we set it up for
the “P1_PRODUCTS_CHOICE” item. The result of that can be seen in Figure 8.24.

Now that we have configured the Select List item, we need to link it with the Sales Chart

8.5 Creating Different Types of Charts 161

Figure 8.9: Sales Chart after labelling axes.

Figure 8.10: Selecting and placing Checkbox Group item.

region. We can do that by pressing the button right next to the “Order By Item” attribute, which
by default says “No Order By Item”, as highlighted in Figure 8.25.

After pressing the button, you should see that a new window has opened with the title “Order
By Item.” Inside this window, we first need to set the attribute “Name” inside the “Item” section
to “P1_CHART_SORTING”. Then, we need to fill the “Clause” column as seen in Figure 8.26.
These clauses are practically “ORDER BY” clauses used in SELECT statements but without
using the “ORDER BY” keyword.

If you have followed all these steps closely, chart sorting and refreshing should be working
when you save the page and run the application.

8.5 Creating Different Types of Charts
In case you want to implement a different type of graph, you can do that by selecting the chart
region and going into the “Attributes” tab on the right side of Page Designer, and then changing
the value of the “Type” attribute. We will create one more Line with Area graph showing monthly
sales count, which we will name “Monthly Sales Chart”, and we will be able to filter it by year.

The next step is adding a Select List item that we will use to filter the chart by year. We will
place this item inside the “Monthly Sales Chart” region under the “Edit” section. The SQL Query
used for getting the list of values is shown in Figure 8.29.

After preparing the Select List item that we will use for filtering, we can write the source

8.6 Questions 162

Figure 8.11: Setting basic attributes of Checkbox Group item.

SQL Query for the series in the “Monthly Sales Chart” region. The SQL Query that we will
use is shown in Figure 8.30. We will also map “Label” to “SELL_MONTH” and “Value” to
“COUNT”. We are also ordering values by month number ascending and displaying the full month
name on the X axis. We will also set the label of the X axis to “Month” and the Y axis to “Sales
Count”.

If you’ve configured everything correctly, your chart should resemble the one shown in Figure
8.31.

8.6 Questions
1. What is the primary purpose of Oracle APEX chart regions?
2. Which types of charts can you create using Oracle APEX chart regions?
3. How can you refresh a chart region in Oracle APEX when user interactions, such as filtering

or sorting, occur?
4. What does the INSTR function do, and why is it used in Oracle APEX chart regions?

8.7 Answers
1. The primary purpose of Oracle APEX chart regions is to visually represent data, allowing

users to gain insights and make data-driven decisions.
2. Oracle APEX chart regions support various chart types, including bar charts, line charts, pie

charts, and more.
3. You can configure a Dynamic Action to refresh a chart region in Oracle APEX when user

interactions change the data, such as filtering or sorting.

8.7 Answers 163

Figure 8.12: Setting list of values for Checkbox Group item.

Figure 8.13: Setting default values for Checkbox Group item.

4. The INSTR function is used to find the index of the first occurrence of a substring in a string.
In Oracle APEX chart regions, it’s used to check if specific values match selected criteria,
like product IDs in a list.

8.7 Answers 164

Figure 8.14: Linking Sales Chart region with Checkbox Group item.

Figure 8.15: Creating Dynamic Action for P1_PRODUCTS_CHOICE item.

8.7 Answers 165

Figure 8.16: Setting basic attributes of on change Dynamic Action.

Figure 8.17: Setting attributes of Refresh action.

8.7 Answers 166

Figure 8.18: Dynamic Action to refresh Sales Chart in tree overview.

Figure 8.19: Application after implementing product filtering.

Figure 8.20: Selecting and placing Select List item.

8.7 Answers 167

Figure 8.21: Sales Chart region after placing and renaming Select List item.

Figure 8.22: Setting list of values for Select List item.

Figure 8.23: Setting static values for Select List item.

8.7 Answers 168

Figure 8.24: Adding refresh Dynamic Action for Select List item.

Figure 8.25: Setting Order By Item for Sales Chart region.

Figure 8.26: Setting Order By clauses for Select List item used for sorting.

8.7 Answers 169

Figure 8.27: Application after implementing chart sorting.

Figure 8.28: Changing the type of graph to Line with Area.

8.7 Answers 170

Figure 8.29: List of Values for Select List item used for filtering product sales by year.

Figure 8.30: Setting source SQL Query and column mapping for Monthly Sales Chart region.

Figure 8.31: Monthly Sales Chart.

9. How to manage menus?

VERONIKA ŠALGOVÁ, MICHAL KVET AND MIROSLAV POTOČÁR

9.1 How to manage menus
A navigation menu is automatically created after creating an application. It consists of list entries
linking to the application pages. It is possible to change how and where a navigation menu displays
by editing Navigation Menu attributes on the User Interface page. Types of navigation menus
available in Oracle APEX are:

• Side Menu,
• Top Menu,
• Mega Menu.

9.2 Side Menu
This type of menu can be expanded or collapsed by clicking on the menu icon from the header. The
navigation items are displayed using a tree component. Sub-items can be expanded or collapsed as
well. We can see a full menu or collapse it to a narrow icon bar.

Figure 9.1: Expanded Side Navigation Menu

It is also possible to configure a navigation menu to be completely hidden, which is a default
option. A narrow icon bar can be displayed when collapsed using Template Options.

9.3 Top Menu 172

9.3 Top Menu
A Top Navigation Menu is displayed at the top of the application. Oracle APEX provides two
templates to display the menu, such as the Top Navigation Tabs and the Top Navigation Menu. The
first type is suitable for simple applications with a few tabs. It is shown in Figure 9.2.

Figure 9.2: Top Navigation Tabs

The Top Navigation Menu provides a menu bar. It is ideal for more complex applications with
several layers of hierarchy within the navigation. It is shown in Figure 9.3.

Figure 9.3: Top Navigation Menu

The Top Navigation Tabs template automatically positions to the bottom of the screen for small
screen or mobile devices. The Top Navigation Menu resembles the most desktop applications.

9.4 Mega Menu
This type of menu is displayed as a pop-up panel that can be opened or closed from the icon from
the header. Mega menus are helpful for displaying all navigation items at once.

Figure 9.4: Top Navigation Mega Menu

In addition, it is possible to choose the number of columns in the menu.

9.5 Editing Menu Lists
Individual menu items form a list that can be created and edited similarly to any other list. It can
be accessed in Shared Components under the Navigation region. You can choose a Navigation
Menu or a List option. It is possible to change the position and way of displaying the menu by
editing the Navigation menu attributes on the User Interface page. You get there by clicking on
Shared Components and User Interface Attributes. Under the Navigation menu tab, you can edit
the attributes, which are shown in Figure 9.5.

9.6 Questions 173

Figure 9.5: Navigation menu attributes

• Display Navigation – to turn the navigation on or off.
• Navigation Menu List – to choose the list utilized for the navigation menu.
• Position – to select the Top or Side position of the navigation menu.
• List Template – to choose from various templates to render the navigation menu.
• Template Options – to set the template options used for the navigation menu list.
After clicking on Apply changes button you can run the application and see the changes.

9.6 Questions
1. The menu used in the Oracle APEX applications is commonly placed in the left part of the

screen. Which type does it refer to?
2. Where can you find the definition of the menu items to be edited?
3. Which menu type allows you to show all the items simultaneously without the necessity to

expand sub menu?

9.7 Answers
1. Side Menu.
2. Individual menu items form a list that can be created and edited similarly to any other list. It

can be accessed in Shared Components under the Navigation region.
3. Mega menu allows you to show all the items simultaneously just in one click with no necessity

to expand sub menus.

10. How to collaborate in a team?

PRZEMYSŁAW STANISZEWSKI, MONIKA SOŃTA AND ADAM KIERZKOWSKI

10.1 Collaborative knowledge production is the essence of low-
code development
"Being collaborative distinguishes us as humans even more than our opposable thumbs" as we are
naturally programmed to cooperate as a preferential approach (see i.e. [1]; [3]), and networked
platforms are equipped with features to encourage collective and collective knowledge sharing.

The benefits of smart collaboration on digital platforms are twofold:
• the productivity aspect when the individuals use collective intelligence to develop a better

product and
• the motivational aspect when the process activates the creative energies and community-

driven approach to knowledge development.

10.2 Being online together
Oracle’s APEX is one platform created to network and interact while working on the apps, and this
approach fulfills the definition of a collaborative activism platform. Yet, this type of collaborative
experience demands "a particular way of being together" ([3]). One part of the collaborative experi-
ence is the option to view, comment and co-create the content to produce knowledge collectively,
whilst boosting creativity and spirit through shaping social relations is another dimension of the
collaborative use of APEX’s story. The Oracle’s APEX community with more than ten regional
community events per year, among many others:

• Oracle User Group in Netherlands
• APEX Alpe Adria, Austria/Croatia/Slovenia
• APEX Connect in Germany
• APEX Community within Oracle Developer and Technology User in USA

gained the stage of development to develop the commercial platform that has been promised to
stay free for the users forever in a collaborative open-source way and the ambition to follow the
directions of energizing community spirit.

With the number of interactions and projects, the way of community development is getting
even more immersive, which brings opportunities "[. . .] modes of being together online, particularly
in very immersive environments, may have an additional cognitive and perceptive layer that is yet
unexplored" ([3]) with the ambition to reach the maturity of digital activism and inviting various

https://www.nloug.nl/
https://www.aaapeks.info/home/
https://apex.doag.org/
https://www.odtug.com/

10.3 Tech savviness through collaboration 175

non-IT trained audiences.

10.3 Tech savviness through collaboration
If we search for academic articles about APEX, most of the papers cover business use cases, cases
of of interdepartmental efforts to create a team which involves human resources, corporate social
responsibility, communication with various stakeholders and similar.

This approach, accessibility to the platform, and wide range of educational content about APEX
make this tool a chance to enter the world of low-coding and practice business awareness about
the practical app applications. With this mindset, APEX opens an opportunity for non-IT business
professionals to collaborate on IT projects and enables space to raise the level of tech savviness.
Those competencies and attitudes create better employability environments for all the stakeholders
involved in the software development process.

Ways of collaboration are usually related to the methodology of the project. Even if low-code
platforms like APEX are designed to achieve goals very quickly, we typically need more than one
developer to realize a project in the assumed time and budget. In such a situation, we need the right
tool to help developers cooperate and address challenges and opportunities typical for coworking in
IT projects. Depending on the scale and/or organization’s requirements, it might be connected with
aspects like:

• Standardization – when we want to ensure that all application elements are consistent. It is
related to the UI standards, naming conventions, programming techniques, coding style, and
all other standards typical for selected technology. For example, in the APEX world, you
can just think about different ways of naming items, processes, or validations, or consider
standards in selecting page numbers.

• Training – developing application with other developers helps increase skills. Other team
members might be more advanced in aspects we are not very keen on. Even when using a low-
code platform like APEX, which theoretically allows every user to be a “full-stack” developer,
we can find specializations. For example, some people feel much more comfortable with
the database side, others with pure APEX, and others with front-end features and languages.
Having a bigger team helps the rest to develop skills they didn’t have and increase the general
quality of the application.

• Time – it’s natural that more developers can deliver applications faster, resulting in better
performance of the team or department responsible for a particular system or platform.

• Quality – the bigger team can implement a code review process and check the quality of
elements delivered by team members. It increases the quality of the final product and limits
the number of errors.

• Feedback – collaboration also means communication between developers and users. It is
beneficial to have information from users about the quality of the application, reported bugs,
or change requests.

Oracle APEX, as a mature platform, covers different collaboration strategies with built-in
features, but also with options to be extended by external tools like collaboration suites, task
management applications, or code verification tools.

Even if we have just started our journey with APEX, it is essential to know how we can
collaborate with other users with native features to make such work more productive and be sure
how to address typical problems like task assignments, working on the exact pages/features or
controlling the status of planned work.

The most important part at the very beginning is communication. If the team is more than
one person, you should have ways to plan work for the following days, inform about status, and
control time and deadlines. Nothing is more important than regular meetings and communication if
something is unclear. It’s good to think about daily meetings, weekly planning, or other regular
events. You can also implement one of the well-known methodologies, like Scrum, to have such

10.4 Features description 176

habits written in one place. Just start doing it, and you will find out the best collaboration way for
your team.

In the beginning, when you think about some collaboration tools, you can consider basic
spreadsheets to monitor who is doing what. Of course, at the market, there are plenty of dedicated
applications for task management like Jira, Monday, ClickUp, Redmine, etc., and of course, with
the team and scale growing, you can consider using one of them as well. However, most of those
actions can be covered with features included in the Oracle Application Express platform.

10.4 Features description
10.4.1 Page locking

Page locking is a useful feature that prevents multiple developers from editing the same page
simultaneously. When a developer is editing a page, the Page Blocking feature prevents other
developers from making changes to the same page until the first developer finishes their work and
releases the page. This helps prevent conflicts and ensures that changes are made orderly and
controlled (see Figure 10.1).

Figure 10.1: Page Blocking feature in APEX.

You can lock a specific page by clicking the lock icon on the page lists in the Application
Builder or do it at the level of the page view.(see Figure 10.2). While locking or unlocking the page,
you can add a comment so you or other developers can see more information about the reason of
changes, or documenting work progress.

10.4.2 Comments
Oracle APEX allows developers to add comments to pages, regions, items, and many other
application elements. Comments can be used to provide context for other developers, explain the
reasoning behind a design decision, or simply document changes made to an application. By using
comments, developers can better communicate with each other and ensure that everyone is on the
same page (see Figure 10.3). Documenting your code for other team members or future developers
that will take care of app development or maintenance is important. Even if using a low-code
platform can self-define how a particular feature has been done, adding some information is still a
good practice if a specific element is created uniquely.

10.4.3 Build options
Build options are another feature that can help teams collaborate more effectively in Oracle APEX.
Build options allow developers to specify different build settings for different environments, such as

10.4 Features description 177

Figure 10.2: Locking a specific page.

development, testing, and production. This makes managing changes across different environments
easier and ensures that the correct settings are applied when an application is deployed (see Figure
10.4). You can treat them as information if a particular feature (page, item, process) should
be included in the next release that will be exported/imported to another environment. While
exporting/importing your application, you can select if a particular "build" is included. Just imagine
the situation when one developer works on some feature and cannot make it before the deadline.
Instead of deleting this page from the application, you can just create a dedicated "build" for it and
exclude it during application export.

Using this feature can be a first step in defining CI/CD process for your application, which is
essential in professional software development.

10.4.4 Team development
Oracle APEX’s Team Development feature enables teams to work together on the same application
in a controlled and collaborative environment. With this feature, team members can manage
projects, in particular:

• Define milestones and project stages;
• Create, assign, and monitor tasks/issues;
• Apply classifications using Label Groups and Labels;
• Create issues templates, to make task creation or reporting consistent;
• Link Issues to an Application and Page;
• Comment and discuss existing issues. Change their status and monitor the progress of the

project stage;
• Subscribe for a different types of issues;
• Monitor feedback provided by application users and decide what to do with it.
Team Development is one of four main sections available in APEX IDE. Its availability depends

on your version of APEX. It has been introduced in APEX 19.2, but in the latest versions it is
not available out of the box, but requires additional actions to make it available (see Figure 10.5).
To turn it on, you need to select the "Team Development" option in the main menu. Then, you
will be moved to the dedicated installation page. If you want, you can include examples of Issues,
Milestones, Templates, and Labels, but you can also skip this part and activate the feature without
it (see Figure 10.6).

If your team would like to start using “Team Development” you should first configure it’s
dictionary for your work style. Then, go to the Utilities section and define the types of your issues,

10.4 Features description 178

Figure 10.3: Adding comments.

project stages, and milestones, or templates for typical communication at the project (see Figure
10.7).

The most important part of this feature is the Issue section, where you can find all reported
issues, categorize them, and assign them to particular persons. Every issue can be set to more than
one developer, allowing each to add comments, discuss it within its context and change its status. If
required, users can upload files and basically run all issue-related communication inside "Team
Development". It is also important that all issues can be connected to a particular application and
page, so it’s straightforward to start an investigation and monitor which problems are related to
which part of the application. Issue status is a simple version of issue workflow that can be found in
many task management systems – users can report them, mark them as “in progress”, return to the
reporter, and close with information about the success or different reasons for closing (see Figure
10.8). Developers can also subscribe to issues assigned to them, which provides e-mail information
when there is any action at the level of the issue. The application allows users to limit the number
of e-mails by sending them as hourly or daily summaries.

We strongly recommend to start utilizing "Team Development" if your team does not have
another task management system implemented, or you use very basic tools like spreadsheets to
manage the project.

10.4.5 Feedback
Feedback Pages are a built-in feature in Oracle APEX that allows end-users to provide feedback
on the application’s functionality and performance. Feedback Pages can be customized to fit the
application’s needs and can include various types of feedback, such as bug reports, feature requests,
and general feedback.

It is crucial to get information from end-users and treat them as an extension of the development
team. The more closely we collaborate not only internally, but also with actual users of the
application, the better quality of the application we will have. It also allows the team to adapt the
application to real needs and helps build trust between the development team and users (see Figure

10.4 Features description 179

Figure 10.4: Build options.

Figure 10.5: Team Development feature.

10.9). To turn it on, you need to select an option during application creation. If the application
already exists, go to "Edit Application Definition" and mark the "Allow Feedback" option in the
Properties section.

After activation, it adds a dedicated icon in the application menu. After clicking it, the end user
can submit feedback (see Figure 10.10).

The look of the Feedback page can be adjusted as it’s a standard APEX page. All information
the end-user provides is available in the Team Development section and can be analyzed by the team
(it is also possible to track it at the level of a particular application in its Administration section). In
addition, developers receive detailed information related to reported feedback (application ID, page
number, user’s data, information about its environment, etc.) and can transform it into an issue.

10.4.6 Standardization
While developing applications in the team, it is also very important to keep consistency between
the development standards of different team members. As in every aspect of collaboration, commu-

10.4 Features description 180

Figure 10.6: Activation of Team Development feature.

Figure 10.7: Customization of Team Development feature.

nication is the key to success – at the beginning of the project, the team should agree on the way of
development and utilization of APEX components. The most important aspects of that include:

• Naming convention (for items, processes, validations, dynamic actions, etc.);
• Page numbering and naming (alias);
• Allowed elements (e.g., for dictionaries we use just Interactive grids, every form must be

displayed as a modal page);
• UX/UI standards (e.g., look and feel of typical pages, alignment policy for different data

time, consistent formats of data, recommended icons for particular actions, etc.);
• Data consistency (e.g. having common dictionaries defined in one place the shared compo-

nents).
APEX gives a couple of solutions to help teams with standardization management. Most of them
can be found in the "Utilities" section at the level of the selected application (see Figure 10.11).

The most important at the beginning of development include:
• Cross-page reports (Page Specific Utilities) – allow developers to compare different APEX

elements (page attributes, reports, buttons, items, etc.) in the application to check consistency
and update them at once without manually changing attributes in multiple places.

• Change history/Recently updated pages – allows tracking actions taken by developers.
• Defaults definition (Attribute Dictionary) – allows the creation of a common dictionary to

10.5 Conclusions 181

Figure 10.8: Issue-related communication inside Team Development feature.

keep naming consistent, formatting, data type, etc., for elements that repeat in many places
in the application. For example, "Update date" can exist on different reports or items in the
application, but we always want to have the same label and date format for every occurrence.

Of course, APEX gives many additional features and strategies to keep consistency at the
database and application level. For those who would like to extend their knowledge, please read
the APEX documentation, and check more advanced options like Global Page, Blueprints, User
Interface Defaults, Master Theme Application and Subscribe mechanism, APEX Views, or Plug-ins.

10.5 Conclusions
As a mature development platform, Oracle APEX provides many features to help with collaboration.
As low-code developers, we can utilize them and professionally create and maintain APEX-based
applications without extending the platform or integrating it with external tools. If you are new to
APEX and new to cooperation strategies in programming, start with the most fundamental steps
described in this chapter:

• Communication and regular meetings with the Team (live or remote – use tools like Google
Meet, Zoom, or MS Teams for video/voice, and Slack, Google Chat, or MS Teams for fast
messaging);

• Start using collaboration tools, e.g. APEX Team Development, to plan the development and
verify the progress;

• Start documenting your code and standards. And verify them!
Collaboration in low-code development sometimes might sound exaggerated, but it is worth trying
and gives just as much profit as in standard programming. What’s more, most of the typical
collaboration strategies like "code review", "pair programming", or "mob programming" can be
used as well with the low-code platform, even if sometimes the reviewed element is not pure code
but a process, page, or configuration.

Depending on the scale of the project, or standards implemented in the organization, at some
point in time, you may need to extend your collaboration process. For example, in large projects,
you will need to start using code repositories, automated building, and deploying tools, or software
dedicated to the testing and verification of the quality of your code. Utilizing elements of profes-
sional CI/CD processes like Git, Docker, Flyway, Liquibase, Jenkins, Gradle, SonarQube, Selenium,

10.6 Questions 182

Figure 10.9: Allowing feedback in Application definition.

Cypress, and many others is also possible with the APEX-based application. However, in many
situations, elements included in the platform are enough to create a game-changing application
with a team of fellow developers.

10.6 Questions
1. What is page locking feature and why does it matter?
2. How can developers communicate during the development with APEX?
3. What can team members utilize by using Team Development feature?

10.7 Answers
1. Page locking is a useful feature that prevents multiple developers from editing the same page

simultaneously and therefore preventing conflicts.
2. Developers can add comments to pages, regions, items, and many other application elements.

Comments can be used to provide context for other developers, explain the reasons behind a
design decision, or simply document changes made to an application. By using comments,
developers can better communicate with each other and ensure overall quality of software.

3. Team Development feature enable team members to manage development projects, in partic-
ular: to define milestones and project stages; create, assign, and monitor tasks/issues; apply
classifications using Label Groups and Labels; create issues templates, to make task creation
or reporting consistent; link Issues to an Application and Page; comment and discuss existing
issues; change their status and monitor the progress of the project stage and subscribe for a
different types of issues.

10.7 Answers 183

Figure 10.10: Submitting feedback in application.

Figure 10.11: Utilities menu.

11. How to benefit from a gallery of
applications and plug-ins?

VJERAN STRAHONJA AND DIJANA OREŠKI

This chapter explores starter apps, sample apps and plug-ins available in Oracle APEX. All Oracle
APEX workspaces come with Sample Apps and Starter Apps (see Figure 11.1) and plug-ins. Starter

Figure 11.1: Oracle APEX workspaces come with Sample Apps and Starter Apps.

apps are stand-alone point-solutions that meet simple requirements and do not require complex
solution. On the other hand, sample apps are focused on the specific functionality and provide a
guide on how to make use of a particular feature. Plug-ins enable users to extend applications with
custom functionality.

11.1 How to install sample and starter apps?
Users can download sample and starter Apps from the Gallery. If enabled by the instance adminis-
trator, apps can be installed using the Gallery.

To install apps from the Gallery:
1. Go to the Workspace home page.
2. Select Gallery. The sample apps, starter apps, and custom apps by means of cards are

displayed when the Gallery page first loads.

11.2 Starter Apps 185

3. Select Sample Apps or Starter Apps. Cards are used to list the apps. Unless the program
has previously been installed, each card contains an Install button. The Run and Remove
App icons are present if the application has already been installed.

4. Select Install App to do the installation of the app
5. Expand the Advanced Settings section. (Not obligatory)

a. Indicate whether the Application ID will be assigned manually or automatically (the
default).

b. Change the Parsing Schema.
6. Click Install Application to finish the installation.
By selecting the Remove App icon from the Gallery, users can uninstall apps that have been

installed from there. Applications that were imported from GitHub and downloaded do not have
an uninstall icon, so they must be deleted in order to be uninstalled from the workspace. Steps to
uninstall apps from the Gallery are as follows:

1. Go to the Workspace home page.
2. Select the Gallery icon. The Sample Apps, Starter Apps, and Custom Apps cards are

displayed when the Gallery page first loads.
3. Select Starter Apps or Sample Apps. Directly downloaded programs from the Gallery will

have a Remove icon and a Run icon visible.
4. To remove the app, click Remove.

11.2 Starter Apps
Starter apps are useful apps that offer standalone point solutions, created to satisfy straightforward
requirements that don’t call for a substantial and unnecessary complex answer. These apps can
be used “out of the box” or can be enhanced with your own unique features (see Figure 11.2).
Examples of starter apps are:

Figure 11.2: Starter Apps in Gallery.

• Customers – By providing a consolidated database of client data, Customers app enables
users to enhance customer interactions. Each customer has the potential to be connected to
several contacts and items. Customers allows you to set your own criteria for features like
categories, status, customer kinds, activity types, and goods so you may design a special

11.3 Sample Apps 186

version of Customers to suit your requirements.
• Opportunities – This application provides sales management with a quick and simple

solution for both, seeing the present condition of the sales pipeline and analyzing histor-
ical sales performances. It helps you track your sales opportunities throughout their life
cycle. You may define leads and opportunities by combining accounts, contacts, regions,
goods, and rivals. Opportunities offers a comprehensive collection of information on oppor-
tunities, pipeline research, significant accounts, anticipated closing dates, and other sales
representative snapshots.

• Poll – Users can use this application to create a quick survey or test. The poll or quiz’s results
can be seen immediately. This tool can be used to facilitate discussions and gain immediate
feedback during meetings or presentations.

• Team Calendar - With the help of the Team Calendar app, users can easily list all of events
on a Web-based calendar that is simple to use. The Team Calendar’s home page lists events
in a monthly, weekly, or daily style along with integrated links to more specific details for
each event. Additionally, you can design unique reports on events. Each event is categorized
according to its category, and the corresponding color is automatically shown. Users can
develop new event types or change the attributes of already existing event types. Users have
the option to build their own groups to better serve their needs, and they may send emails to
individuals or groups informing them of upcoming meetings.

Here is an example of application installation for Team Calendar (see Figure 11.3).

Figure 11.3: Installation of starter app Team Calendar.

Click Install.

11.3 Sample Apps
Sample apps are created to highlight specific capabilities and act as a developer’s manual for
utilizing a specific feature (see Figure 11.4). Among others we can choose:

• APEX PWA Reference - To provide a more native app experience, developers can create
Progressive Web Apps (PWAs) using Oracle APEX, which can be deployed on any desktop
or mobile device. The main PWA capabilities in APEX and how to apply them in your own
apps are included in this application.

11.3 Sample Apps 187

Figure 11.4: Sample Apps.

• Sample Approvals - This application showcases Oracle APEX’s native Approval Compo-
nents’ capabilities. The Oracle APEX Consent components are highlighted, allowing users to
manage changes to employees’ payments and jobs after receiving the right person’s approval.

• Sample Calendar - This application showcases Oracle APEX’s built-in calendaring features.
A monthly calendar with styled daily tasks is included. Drag and drop, which is completely
declarative and quickly generated using native APEX wizards, may be used to update the
dates.

• Sample Cards – In Oracle APEX, this application highlights the Cards regions. Regions
with cards are a form of native region. They give developers a strong and adaptable new
method to present data in bite-sized bits, which is perfect for usage in faceted search or
presenting information quickly.

• Sample Charts – This application showcases Oracle APEX’s charting features. It explains
how you can use declarative and plug-in based charting tools to improve your applications so
that they visually portray your data.

• Sample Collections – This application provides users to store rows of data in Sample
Collections for usage in an Oracle APEX session. This database application demonstrates
the creation and management of collection-based session state using PL/SQL.

• Sample Data Loading - This application is constructed using straightforward EMP and
DEPT tables to demonstrate how developers may design pages that let users add spreadsheet
data into a table that already exists.

• Sample Dynamic Actions – This application showcases a variety of dynamic actions that
can be added to applications. These declarative client-side behaviors include straightforward
examples for modifying how components are displayed, style examples for customizing how
components look, and server-side examples for interacting with databases.

• Sample File Upload and Download – Learn how to build Oracle APEX apps with file
upload and download functionality. Utilize both, dedicated pages and dialog boxes to upload
files. Check out the process for downloading files from Oracle database BLOB columns in
database tables. See how to make file download links in forms, interactive reports, traditional
reports, and dynamic HTML content.

11.4 Plug-ins 188

• Sample Interactive Grids – The Oracle APEX Interactive Grid’s features and functionality
are highlighted in this application. Those features are highlighted on the interactive grid
sample sites.

• Sample Maps – Numerous examples of viewing coordinate data on a map are provided in
this application. Use the heat map feature, lines, polygons, or map markers. The Oracle
Spatial capabilities (available in every Oracle Database) may be readily integrated with the
APEX Map Region to carry out a "Within Distance Search," "Nearest Neighbor Search," or
other spatial analyses.

• Sample Master Detail – This application showcases Oracle APEX’s native master detail
capabilities. There are four possible master detail page layouts in the application. The first
two layouts use editable Interactive Grids to display master detail on a single page. The
final two layouts present the master detail on two pages, using a combination of editable
Interactive Grids, form inputs, vintage reports, and modal popups.

• Sample Reporting – This application showcases Oracle APEX’s reporting features. Using
SQL, users are able to declaratively construct Interactive Reports, Interactive Grids, Faceted
Search Reports, Cards Reports, and Classic Reports.

• Sample REST Services – This application demonstrates how to use Oracle APEX to connect
to external REST services. Oracle.example.hr, a prototype RESTful Service, is used by the
app. Examples in this application demonstrate how to filter, how to add pagination, and how
to produce a straightforward tabular report on REST service data.

• Sample Trees – Find out how to use a SQL query to construct a tree control. The Oracle
APEX application in this example demonstrates several ways to incorporate tree controls.

• Universal Theme Reference - By giving you a simple way to navigate through the numerous
templates, template choices, and theme styles, this app introduces users to Universal Theme.
The examples show how users may quickly manage your page layout to produce a stunning
application.

11.4 Plug-ins
Plug-ins allow for the Application Express framework to be readily extended with custom item
types, region types, processes and Dynamic Actions. Once defined, plug-in based components are
created and maintained very much like standard Application Express components. Plug-ins enable
developers to create highly customized components to enhance the functionality, appearance and
user friendliness of their applications. Plug-Ins allow users to add additional functionality to APEX
apps with plug-ins that is not built-in to the platform. The APEX Community has developed a large
range of different plug-ins useful for expanding existing features or adding new features. There are
hundreds of plugins for Oracle APEX categorized into five types:

• Dynamic action
• Region
• Item
• Process
• Authentication

Oracle Application Express offers various plugins within each category. Plug-ins give you the
option to add new features to your application declarative, thereby enhancing the built-in types.
Because plug-ins are intended to be reused, developers can share them with the Oracle Application
Express Plug-in community by using the Plug-in Repository as well as export and import them to
different workspaces. The steps involved in implementing a plug-in are as follows:

• Add a plug-in to your application workspace or create one from scratch.
• To utilize the plug-in, edit or create a dynamic action type, item, region, process, or autho-

rization scheme.
• Launch your application to check the functionality of the plug-in.

11.4 Plug-ins 189

A central location for developers to share and download plug-ins is the Plug-in Repository. On the
Oracle Technology Network, the repository can be found.

• To see the repository for plug-ins, go to the page for Shared Components:
– Click App Builder on the Workspace main page.
– Decide on an application.
– Choose Shared Components on the application’s home page.

• The page for shared components appears.
• Select Plug-ins from the Other Components menu.
• Press the View Plug-in Repository button.

The repository for Oracle Application Express Plug-ins is displayed. To access the Plug-ins page:
• Go to the Shared Components page.

– Click App Builder on the Workspace main page.
– Select an application.
– Choose Shared Components on the application’s home page.

• Select Plug-ins from the Other Components menu. The Plug-ins tab is automatically selected
when the Plug-ins page loads. The whole list of plug-ins is displayed.

To create a plug-in:
• Go to the Shared Components page.

– Click App Builder on the Workspace main page.
– Select an application.
– Choose Shared Components on the application’s home page. The Shared Components

page appears.
• Select Plug-ins under Other Components,
• Click Create. The Create Plug-in wizard appears.
• Click Next after choosing the method for creating a plug-in under Create Plug-in.
• Within Name:

– Name – Fill in the name of the plug-in.
– Internal Name - Fill in the internal name of the plug-in. Name should be unique within

the application.
– Type - Decide which kind of component can make use of this plug-in. The options

under Callbacks and Standard Attributes vary depending on the plug-in type you choose.
See field-level Help for more information.

– Category - only appears if Dynamic Action is the specified kind. On the user interface,
choose the category the plug-in is listed under.

• Within Source:
– PL/SQL Code - Enter a PL/SQL anonymous block of code containing the steps required

to render, validate, run, and execute this plug-in’s callbacks. You can alternatively store
this code in a PL/SQL package in the database for performance reasons.

– Do not validate PL/SQL code - To only parse the PL/SQL code at runtime, choose this
option. If not, the plug-in is built once the code has been parsed.

• Within Callbacks, configure the attributes. The plug-in type determines the attributes that are
displayed. Check out the field-level help to examine samples and learn more about attribute.

• Within User Interfaces, choose which displays the App Builder must be able to support for
this plug-in. Options include:

– Desktop
– Mobile

• For Standard Attributes, select the attributes that apply to this plug-in. Standard Attributes
dispense with certain plug-ins.

• Within Information:
– Version - To specify the plug-in version, enter a string.

11.4 Plug-ins 190

– About URL - Enter a URL leading to the homepage of the plug-in-author in’s or to
more details about the plug-in.

• Click Create Plug-in.
Please note that the above applies to APEX version 22.1. Newer version 23.1 delivers an even
better way to create a Plug-in. To import a plug-in:

• Go to the Shared Components page:
– Choose App Builder on the Workspace home page.
– Choose an application.
– Select Shared Components on the Application home page.

• Select Plug-ins within Other Components
• Select Import. The import Plug-in page appears.
• For Specify File:

– Import file - Enter or navigate to the import file’s name.
– File Type - Choose Plug-in.
– File Character Set - Choose the character set encoding for import files.
– Click Next.

• For File Import Confirmation, select Next.
• For Install, select Install Plug-in.

To export a plug-in from the Plug-in page:
• Go to the Shared Components page:

– On the Workspace home page, click App Builder.
– Select an application.
– On the Application home page, click Shared Components.

• Within Other Components, select Plug-ins.
• Under Tasks, select Export Plug-in.
• On the Export Plug-in page:

– Application - Choose the application to export the plug-in from.
– Plug-in - Choose plug-in.
– File Format - Choose file format of the export.
– Choose Export

• Choose Export.
In the next few lines one example of plug-ins is provided. The example refers to the updated sample
calendar app and dynamic action plugin. This example plug-in can be used to format days in the
new date picker item. Users can disable it, add tooltips or classes to each day in the day grid of the
date picker. There are no prerequisites for using this plugin. How to use it:

• Create an application
• Import the Plug-in in Shared Components - Plug-ins
• Add a new date picker
• Add a Dynamic Action on Page Load and select as action the imported plug-in
• Set an URL of a iCalendar standard file format or enter a SQL Query that should format the

calendar days
• Select as Affected Element the desired date picker and run the page
This chapter demonstrated that plugins can offer several benefits. No matter how strong it may

be, no single piece of software can provide every function for every user. The gap between form
and function is filled by plugins. They make it simpler to add particular functionality to software
and apps. As such, plugins are time-saving. The biggest benefit of using plugins is that they reduce
the amount of time required for development, which lowers the overall cost. Furthermore, plugins
allow users to customize the features and functionality. Most plugins enable to turn on and off
particular settings. It is a simple process to remove a plugin, if there is a need for that.

11.5 Questions 191

11.5 Questions
1. What are sample apps and what are their benefits?
2. What are starter apps and what are their benefits?
3. What are benefits of plugins?

11.6 Answers
1. Sample apps are created to highlight particular capabilities and act as a developer’s manual

for utilizing a specific feature.
2. Starter Apps are useful apps that offer standalone point solutions, created to satisfy straight-

forward requirements that don’t call for a substantial and unnecessary complex answer.
3. Plug-ins enable developers to create highly customized components to enhance the func-

tionality, appearance and user friendliness of their applications. Plug-Ins allow users to add
additional functionality to APEX apps which are not not built-in.

12. How to manage packaged and
multilingual applications?

ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

12.1 Application and packaged application
This section will teach you how to utilize the potential of the Quick SQL feature to generate appli-
cation with almost no knowledge of DDL and completely within Oracle APEX. After generating
the application out of Quick SQL we will prepare packaged application and migrate it to new
workspace (i.e. “production site”).

In Chapter 11 we presented applications that are supplied in APEX by Oracle. These appli-
cations are classified into two groups: a) productivity and b) sample applications. Productivity
applications address specific business needs. The embedded features more or less completely satisfy
requirements imposed by business situation. Sample applications demonstrate different function-
alities. Both can inspire developers to tailor them to fulfill business needs. These applications
are examples of packaged applications. When you install (APEX term is import) these packaged
applications, notice that database objects (tables, sequences, triggers, functions, procedures and
packages) are created and data is populated in tables.

The shortest definition of packaged application says that it is a pre-built application that can
be installed and configured in an Oracle APEX workspace. APEX uses two important concepts
closely related to application migration (export and import): a) supporting objects and b) shared
components. Supporting object control installation, upgrade and de-installation by defining pre-
requisites, substitution strings, build options, pre-installation validations, scripts and messages.
Shared components define application logic, security, navigation and search, user interface, files and
reports, data sources, workflows (if installed), globalization and other components. So packaged
applications are the one with defined supporting objects. At this moment you might ask yourself:
"Why and how can developers create custom packaged application?".

Answer to "why": developers would create custom packaged application if there is a requirement
to migrate application to new workspace with supporting objects and shared components. Data
base object definitions (with DDL statements) and operations on these objects (DML statements)
are executed during installation, update and de-installation. Simplified: during installation, tables
could be created and populated with data, during upgrade, tables could be modified and during
de-installation, tables could be truncated or dropped. The similar could be forced for other database
objects such as triggers, sequences, stored procedures, functions and packages. The key benefit of
packaged application is that it is ready to run with data definitions and data itself.

Answer to "how" include the following steps:

12.1 Application and packaged application 193

• define the scope of application
• define the scope of application
• create and execute script to define tables
• create and execute script to insert sample data
• generate application
• make adjustments in application
• prepare packaged application and test it in new workspace
Before going step-by-step let’s look at the application import and export wizard in APEX. To

move the application into new workspace, the application needs to be exported and then imported.
The export wizard in APEX writes a text file (PL/SQL statements) on: a) developer’s computer or
b) to remote workspace via REST service (see Figure 12.1).

Figure 12.1: Application import and export wizard.

There are several options in export like splitting into multiple files, choosing file character
set, opt in or opt out public or private reports and similar. In most cases, the beginner simply
allows APEX to apply default settings. Whilst the developer logs into a new workspace and
launches import wizard which loads the exported text file. Definitions of tables, views, triggers,
sequences, functions, procedures and packages are not migrated with application if we do not
prepare supporting objects. If a target workspace already contains database object definitions and
data in the tables then we should prepare supporting objects to handle such situations.

The first part of this chapter will use APEX wizards as much as possible. Then simple SQL
INSERT statements not supported by wizard in APEX will be presented. To generate INSERT
statements the reader can import data in spreadsheet and then export INSERT statements with
other tools (i.e. SQL Developer or TOAD). The application in this chapter will introduce a page
component called lists of values (LOV). It belongs to shared components. List of values have two
purposes: to allow the user to fill the form field on the the web page easily (drop-down, radio
button) and with just prescribed values to avoid typing mistakes. Two types of list of values are
available: dynamic are based on SQL query while static offers fixed set of values. The benefit of
dynamic list of values is that the domain depends on table or view. The end user can change the
domain by inserting, updating and deleting rows in the table. The drawback is that a table must be
created and maintained. If the domain does not change and the number of rows in the table is small
then a static list of value could be applied. In that case only the developer can change the domain
(it is "hard-coded").

The second part will demonstrate the creation of packaged application, exporting it, and
importing it in new workspace.

The third part of the chapter will provide instruction to create a multilingual application. As a
supplementary study material, three exported applications are provided as well as video clip which
shows the development process in detail.

https://www.oracle.com/database/sqldeveloper/technologies/download/
https://www.toadworld.com/downloads

12.2 Application 194

12.2 Application
12.2.1 Scope of application

The application aims to manage jobs and competences for a HR department. There can be a
few hundred jobs in one company. One job may include a specific subset of all known compe-
tences. Required level of competence is prescribed by HR department for each job. The levels
of competence describe the ability to: assist, use, master, tailor and innovate. So, the idea is to
develop an application to prepare and manage job profiles. The application uses three tables: JOB,
COMPETENCE and JOB_COMPETENCE with minimal number of data fields (for the sake of
simplicity and conciseness). Each table has a primary key and table JOB_COMPETENCE has two
foreign keys to relate each row with rows JOB and COMPETENCE table. Foreign keys ensure data
consistency: namely a row in the JOB_COMPETENCE table can only exist if rows with the same
primary keys exist in tables JOB and COMPETENCE. Table names in this chapter will be prefixed
with "CH12_" to assure uniqueness and to prevent interference with tables used in other chapters.

12.2.2 Create tables
We can create tables in APEX:

• with no knowledge of data description language by clicking in Object browser. But illustrating
this process with a lot of figures would take too much space in this book.

• with knowledge of DDL in SQL Workshop > SQL Commands by entering syntactically
correct commands.

• with basic knowledge of data modeling (see Chapter 2) and Quick SQL.
To ensure broad understanding and conciseness, Quick SQL will be used (find Quick SQL

under SQL Workshop > Utilities > Quick SQL). The following text will be inserted:

CH12_JOB
job_description vc100

CH12_COMPETENCE
competence_description vc100

CH12_JOB_COMPETENCE
id_job num /fk CH12_JOB
id_competence num /fk CH12_COMPETENCE
required_level vc10 /check ’assist’,’use’,’master’, ’tailor’,’innovate’

After entering the above text and pressing Generate SQL button the following screen appears
(see Figure 12.2): Then click Save SQL Script button and name the script as CH12CREATE.
We can now execute the script. Return to Scripts, and find the Run icon in the row where script
CH12CREATE is shown. Click Run icon. Three tables and three indexes should be successfully
created. You can check the tables in Object browser.

12.2.3 Insert data
In APEX select SQL Workshop > SQL Scripts > Create. Now it is time to write some SQL INSERT
commands to fill data into tables. Table CH12_JOB will have seven rows each describing a distinct
job. Table CH12_COMPETENCE will have eleven rows describing eleven digital competencies
defined by McKinsey’s DELTAs (distinct elements of talent). And we will instruct it to insert five
competences to job “Junior APEX developer”. Let’s name script CH12INSERT and write the script
(see Figure 12.3). Click the Create button. Now execute script CH12INSERT. Return to Scripts,
click on the Run icon in the row where script CH12INSERT is shown. Click the Run now button.

https://www.mckinsey.com/industries/public-and-social-sector/our-insights/defining-the-skills-citizens-will-need-in-the-future-world-of-work

12.2 Application 195

Figure 12.2: Transforming Quick SQL to SQL commands.

Figure 12.3: Script CH12INSERT insert data in three tables and commit transactions.

Twenty-four rows should be successfully created. You can check the content of tables in Object
browser too.

12.2.4 Generate application
After populating the tables with test data navigate to SQL Workshop > Scripts and edit script
CH12CREATE. Click on the Create App button (see Figure 12.4). You can notice that three
tables are listed. Click the Create Application button. Enter the name of the application (i.e.CH12
Application), click Check all features and then the Create Application button (see Figure 12.5).

After generation is finished, we could run the application. In newer versions of APEX, the
generator also creates two list of values (CH12_COMPETENCE.COMPETENCE_DESCRIPTION
and CH12_JOB.JOB_DESCRIPTION), abbreviated as LOV. List of values are components on
the page where one value is displayed and understood by user while the page actually uses
corresponding key or code for insert, update or delete. For example: on the page form the last
name of the employee is displayed and corresponding employee identification number is stored
when the confirmation button is pressed. The generated LOVs are based on tables and no prior
knowledge of SQL is needed. In APEX terminology they are called dynamic since change in the
table would produce a new list of values. You can find generated LOVs in Shared Components >
List of Values and determine how they are set. In this chapter, we learn how to create dynamic list
of values (based on simple SQL query) and static ones based on fixed set of values. By applying

12.3 Packaged application 196

Figure 12.4: Create application from script.

list of values (LOV) in application pages we will make the application more error resistant and also
more user-friendly. That means that the user can not fill arbitrary values into the form field thus we
mitigate typing errors. Navigate to Shared components (see Figure 12.6). In shared components
select List of values (in Other Components) and click Create. We will create list of values from
scratch (see Figure 12.7).

Name LOV as CH12_LOV_COMPETENCE_DESCRIPTION and select Dynamic type (see
Figure 12.8) Select SQL Query as source type and enter query "select competence_description as d,
id as r from ch12_competence" as SQL select statement (see Figure 12.9). This list of values will
display description of competence (display column) on the form page while returning ID (return
column). Next LOV will be static, named CH12_LOV_COMPETENCE_LEVEL and created as
shown in Figure 12.10 and Figure 12.11.

Navigate to application pages (see Figure 12.12). Select page 7 (Ch12 Job Competences).
Modify page item P7_ID_COMPETENCE:

• type is "Select list" in Identification
• type is "Shared components" in List of values
• list of values is CH12_LOV_COMPETENCE_DESCRIPTION List of values

Modify page item P7_REQUIRED_LEVEL:
• type is "Select list" in Identification
• type is "Shared components" in List of values
• list of values is CH12_LOV_COMPETENCE_LEVEL List of values

Save the page 7, navigate to page 6 and run application. You should see Figure 12.13. Now edit
first entry. Both select lists provide expected data.

12.3 Packaged application
Since we have already created some scripts (CH12CREATE, CH12INSERT), we are able to build
packaged application very quickly. Navigate to application and select Supporting Objects (see
Figure 12.14). Now we can set installation (prerequisites, application substitution strings, build
options, pre-installation validations, installation scripts and messages), upgrade (upgrade scripts,
upgrade message), de-installation (deinstallation script, deinstallation message). See Figure 12.15.

To protect the user from accidentally deleting existing data we will apply check on existence of
three tables (see Figure 12.16). Click Apply changes button.

In Application Substitution String we will ask if the name should be "BeeAPEX Chapter 12
App" (see Figure 12.17). Click Apply changes button.

For this packaged application we will also apply the following setting in Supporting Objects:
• prerequisites (see Figure 12.16)

12.4 Multilingual application 197

Figure 12.5: Selecting application name and all features.

• application substitution substrings (see Figure 12.17)
• installation scripts: since we already prepared scripts CH12CREATE and CH12INSERT we

will use their content (see Figure 12.18)
• deinstallation scripts (see Figure 12.19)
• set messages: wellcome message to "Chapter 12: ...", licence message to "CC BY", installa-

tion success message to "Success!", installation failure message to "Failure", deinstallation
message to "Application CH12 deinstalled"

Now export the packaged application with wizard (see Figure 12.1). You can accept all export
settings proposed by APEX. Save exported application on your computer and remember filename.
Log into new workspace. Click import wizard in new workspace and drag filename into drag and
drop zone (see Figure 12.20). Proceed with click on Next button (also to confirm file import) and
click Install application button. Confirm installation of supporting objects with Next button, accept
licence (see Figure 12.21), rename application to "Imported CH12 Application" (see Figure 12.22)
and click Install button. Do not run the application yet because you have to set permissions for a new
user separately. Users and user permissions are not exported for security reasons. Just one remark:
to migrate users and permissions we could deep dive into APEX API and write installation and
deinstallation scripts. Navigate to shared components in imported application. Select application
access control and give currently logged in user appropriate permissions. In our case we will add
APEX user GFP administrator, contributor, and reader role (see Figure 12.23). Confirm with click
on Add Assignment button. Now run application as user with given permissions.

12.4 Multilingual application
This topic will cover only one aspect of multilingual applications - strings in application pages such
as reports and forms. The primary reasons for adapting an application to a specific language are: a)
users are fluent in other languages only and b) there are requirements imposed by organizations or

12.4 Multilingual application 198

Figure 12.6: Selecting Shared components.

Figure 12.7: Creating list of values from scratch.

states to support more than one language. The scale of adaptation may be limited to translation
of page item labels, application messages, APEX internal messages, number and date formats
or as complex as translating the text stored in database tables (i.e., status, level, grade). Specific
cultural and linguistic context may cause pure string translation to generate funny, offensive or
non-competent content. So, localization of the application means much more than just translation.
APEX has a lot of possibilities to apply translation (based on primary application language, browser,
application preference, item, session). The following part provides the simplest instructions to
implement multiple languages in application by changing application primary language. The steps
are:

• Navigate to Shared components > Globalization > Application Translations > Define applica-
tion languages: click Create button; for each language set unique integer and value (i.e. add
two digits to application number like 10801 for sl; 10802 for hr; 10803 for de-at; 10804 for
el; 10805 for sk; 10806 for pl). Figure 12.24 shows all languages set.

• Navigate to Shared components > Globalization > Application translations > Seed translatable
text. Select all languages as shown in Figure 12.25. Click Seed button and wait until seeding
is finished.

• navigate to Shared components > Globalization > Application Translations > Download
XLIFF translation files; we can choose to download all translatable elements or only those
elements requiring translation. Example in Figure 12.26 shows export of Page 2, Slovenian
language and elements requiring translation.

• edit exported file in preferred editor (Notepad++, Kate, Sublime etc.). For demonstration
purposes we changed only a few "target" tagged strings: in lines 48, 52, 56, 60, 72 and 76
(see Figure 12.27). Save changes.

12.5 Supplementary learning material 199

Figure 12.8: Name and type of CH12_LOV_COMPETENCE_DESCRIPTION.

Figure 12.9: Entering SQL SELECT command.

• navigate to Shared components > Globalization > Translate application > Apply XLDIFF
translation files > Upload Files. Select the file (see Figure 12.28) and click Upload. Choose
the proper language in "Apply to Translation" (see Figure 12.29). Click Apply checked.
Click Publish.

• navigate to Shared components > Globalization > Translate application > Publish translations.
Select all languages that you translated and click Publish (see Figure 12.30). Wait until you
receive message that application is successfully published.

• navigate to Shared components > Globalization > Globalization attributes. Change Applica-
tion Primary Language to new translation (see Figure 12.31). Click Apply changes.

Now check Page 2 in translated application (see see Figure 12.32).
Concluding remarks

Development usually takes place in a test environment. When migrating the approved application to
a new workspace, packaged applications are very convenient since they reduce time for migration.
For security reasons eventual users and their roles are not migrated. The authorization of users in
a new workspace is a serious task. This chapter also provided basic instructions for multilingual
applications. It should be noted that for large and critical mission applications the translation
process must be supported by capable automatic translation tools as well as language and culture
human specialists.

12.5 Supplementary learning material
You can find the following supplementary learning material:

• exported applications

12.5 Supplementary learning material 200

Figure 12.10: Name and type of CH12_LOV_COMPETENCE_LEVEL.

• video guides
All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 1 > Chapter12
in the Scripts section and video guides in Collection of video guides. Material for short courses in
in Short courses section.

12.5.1 Exported applications
There are three related applications:

• initial application. Check if tables starting with CH12 exist. If tables exist you can drop
them with CH12DROP script. Then import application in file CH12_Application_initial.sql.
After you import application you must define tables. Execute script CH12CREATE and
optionally populate tables with CH12INSERT script. Navigate to imported application >
Shared Components > Application Access Control. Add User Role Assignment for currently
logged user. Allow all actions with Administrator role, select, insert, update and delete with
Contributor role and select only with Reader role.

• packaged application. Check if tables starting with CH12 exist. If tables exist you must them
with CH12DROP script. Then import application in file CH12_Application_packaged.sql.
Navigate to imported application > Shared Components > Application Access Control. Add
User Role Assignment for currently logged user. Allow all actions with Administrator role,
select, insert, update and delete with Contributor role and select only with Reader role.

• packaged multilingual application. Check if tables starting with CH12 exist. If tables exist
you must drop them with CH12DROP script. Then import application in file:
CH12_Application_packaged.sql. Navigate to imported application > Shared Components >
Application Access Control. Add User Role Assignment for currently logged user. Allow all
actions with Administrator role, select, insert, update and delete with Contributor role and
select only with Reader role.

https://beeapex.eu/course/view.php?id=12

12.6 Questions 201

Figure 12.11: Display and return values for CH12_LOV_COMPETENCE_.

12.5.2 Video guides
The following video guides are provided:

• create initial application
• import initial application
• copy initial application to packaged and creating packaged application
• import packaged application
• import packaged multilingual application

12.6 Questions
1. What is packaged application and what is their benefit?
2. How do you export packaged application to include database object definition and data for

tables?
3. What is the role of XLDIFF file in creating multilingual application?

12.7 Answers
1. Packaged application is a pre-built application that can be installed and configured in an

Oracle APEX workspace. The main benefit of a packaged application is the easy and smooth
migration as well as immediate availability of prepared data.

2. Packaged application is to be exported with wizard. One can include scripts which define
database objects (like tables) and instruct inserting data into tables. The list of scripts and the
order of execution of these scripts is set in wizard. Packaged application can also contain
de-installation scripts.

3. XLDIFF file is tagged and therefore provide easy access to target values for translation strings.
These files can contain an entire application or just a specific page in a selected language.
File with translated target strings is imported into application. Translation repository needs
to be published to be available to end-user.

12.7 Answers 202

Figure 12.12: Page 7 in application (Ch12 Job Competences).

Figure 12.13: Page 7 report (Ch12 Job Competences).

Figure 12.14: Select Supporting Objects.

12.7 Answers 203

Figure 12.15: Setting prerequisites.

Figure 12.16: Set check on existence of three tables.

Figure 12.17: Set prompt to rename application.

Figure 12.18: Set installation scripts.

Figure 12.19: Set deinstallation scripts.

12.7 Answers 204

Figure 12.20: Import the application into another workspace.

Figure 12.21: Licence agreement.

Figure 12.22: Rename imported application.

12.7 Answers 205

Figure 12.23: Adding a role to user.

Figure 12.24: Defined languages for translation.

Figure 12.25: Seed translatable text.

Figure 12.26: Export strings for particular language and page.

12.7 Answers 206

Figure 12.27: Translation of "target" tagged strings in lines 48, 52, 56, 60, 72 and 76.

Figure 12.28: Uploading XLDIFF translation files.

Figure 12.29: Applying changes and publishing.

12.7 Answers 207

Figure 12.30: Final publishing of the application translation.

Figure 12.31: Setting application primary language.

Figure 12.32: Translated page.

IIConstructing application in APEX
IIConstructing application in APEX 208

13 Intranet news for employees 209
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA . .

14 GreenDi - Catalog of plants 219
VJERAN STRAHONJA, DIJANA OREŠKI, DARKO ANDROČEC AND

ANA KUTNJAK .

15 GreenDi - User Authorisation and Manage-
ment . 226

VJERAN STRAHONJA, DARKO ANDROČEC, ANA KUTNJAK AND

LARISA HRUSTEK .

16 Small Innovation System 232
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA . .

17 Business process management 242
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA . .

18 GreenDi – Exchange of Plants and Seeds
271

VJERAN STRAHONJA, DIJANA OREŠKI, DARKO ANDROČEC AND

ANA KUTNJAK .

19 Book review management system . . . 277
ANA KUTNJAK, LARISA HRUSTEK, ALENKA BAGGIA AND ROBERT

LESKOVAR .

20 Bill-of-material and cost calculation . 288
ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA . .

21 Nutrition and diet management 302
ROBERT LESKOVAR, ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS,

ALKIVIADIS TSIMPIRIS AND DIMITRIOS VARSAMIS

22 Office Hours Scheduling 331
JACEK MAŃKO, MONIKA SOŃTA AND ROBERT LESKOVAR . . .

23 Telco case . 348
VERONIKA ŠALGOVÁ, JOZEF KOSTOLNÝ, MICHAL MRENA, MICHAL

KVET AND MIROSLAV POTOČÁR .

24 Car rental case . 366
ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIM-

PIRIS AND DIMITRIOS VARSAMIS .

13. Intranet news for employees

ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

13.1 Business view of the case
A medium sized company with seven hundred employees is an established player in a global
industry of top sports and leisure equipment, and advanced composites. The headquarters are in
Slovenia with subsidiaries are in the USA, Canada, Germany, and Japan. Their annual revenue is
around 90 million euros. The majority of employees are located in Slovenia in one location. The
company had four divisions, and each division has several departments. In the past they used an
internal semi-annual bulletin to communicate various achievements, success stories, announcement
of new products and similar. Then they built a static (pure HTML) intranet page to disseminate
important news. But this opportunity to empower employees and strengthen their commitment to
the company was short lived the idyllic garden has turned into problem.

13.2 Problem definition
The process of publishing was loosely defined. IT employee received the request to publish news
from the issuers - department and division managers. The request was communicated by mail,
phone or personally, loosely and often with scarce material (text, pictures, video). The start and
stop date of the news was not determined. The frequency of requests to publish news increased
to approximately one hundred news items per month and some requests overlapped (two or more
department managers had similar or the same topics). An IT administrator had to resolve the issues
between and with managers. Start and stop dates for news appearance was so often left on the
IT administrator’s shoulders, that it became a source of tensions for IT employees an managers
alike. Also the managing of the static page became time consuming and extremely error prune. The
solution required both, process modification and a new publishing platform.
Process modification and a new publishing platform . A low code application develop-
ment environment was selected to develop the new publishing platform. The company already uses
Oracle database, therefore Oracle APEX is selected as the development environment. Three types
of platform users are identified. First the administrator, who has access to all data and privileges to
manage users and roles. In addition to the basic employee data, we also track their employments
in the departments and their locations. Each employee has a specific role defined, which can
change over time. The second type of a user is publisher, who does not have the right to manage
employee data and define privileges, but has the privilege to publish news. The third type of user is

13.3 Use cases 210

viewer/reader of the news, who has the privilege to read internet news.
Requirement specification Based on the modified process, the platform will enable users to:

• Reader/Viewer: login, access the dashboard, view news and attachments to news
• Publisher: login, access the dashboard, view and publish news and add attachments to

published news
• Administrator: login, access the dashboard, view and publish news, view and manage

departments, roles, employees, employee roles, manage application

13.3 Use cases
13.3.1 Narrative description of use case

The publishing platform enables access to three different types of employees: administrator,
reader/viewer, and contributor/publisher, each having different privileges on the intranet portal.
Publisher can publish news, reader can read news and administrator can manage the platform. Each
one of these use cases requires a user to sign-in to the intranet platform. See Tables 13.1, 13.2 and
13.3,

13.3.2 Semi-structured description
We can summarize three distinct user stories or use cases: publishing, reading and managing.

Adding an attachment to the news is actually an extension to UC described above and we could
describe it as new use case. For the sake of readability we proceed with other two main use cases,
however the application will have a feature to add attachments to the news.

13.3.3 Use case diagram
The above story is depicted on use case diagram Figure 13.1.

Figure 13.1: Use case diagram.

13.3 Use cases 211

Table 13.1: Use case description: publishing internet news.
Keyword Value
ID: Ch13-01
Title: Publish news on intranet portal
Description: Responsible person from HR department, with a publisher role defined,

uses intranet APEX portal to publish news. Each news has start and end
date. Default start date is the day of publishing.

Primary Actor: Employee with publishing role
Preconditions: The employee has to be listed in the employees table and the user has to be

added to the CH13 Publisher role. Access to the web application has to be
enabled.

Postconditions: After successful publishing of news, the news and its attachment are avail-
able to other intranet portal users.

Main: Scenarios
Success Scenario:

1. Open the web browser and sign-in to the intranet application
2. Select Publish news
3. Enter the news Title, description and end-date
4. Confirm creation of the news
5. Add attachment(s)
6. Enter attachment details
7. Confirm adding the attachment
8. Review the published news

Extensions:
• 1a. Sign-in fails
• 1a* Extend:
• 1a1. Show error message
• 1a2. Open sign-in window
• 4a. Datatype error
• 4a* Extend:
• 4a1. Show error message
• 7a. Datatype error
• 7a* Extend:
• 7a1. Show error message

Frequency of Use: The publishers publish approximately 1000 news per year, average 5 per
day

Status: Finished
Owner: Employee with publishing role
Priority: moderate

13.3 Use cases 212

Table 13.2: Use case description: reading intranet news
Keyword Value
ID: Ch13-02
Title: Read news on intranet portal
Description: Intranet user reads news
Primary Actor: Intranet user
Preconditions: The employee has to be listed in the employees table and the user has to be

added to the CH13 Viewer role. Access to the web application has to be
enabled.

Postconditions: -
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the intranet application
2. Select View news
3. Select Download to view the attachment

Extensions:
• 1a. Sign-in fails
• 1a* Extend:
• 1a1. Show error message

Frequency of Use: Employees read news on daily basis.
Status: Finished
Owner: Intranet user
Priority: low

13.3 Use cases 213

Table 13.3: Use case description: managing the intranet portal.
Keyword Value
ID: Ch13-03
Title: Managing the intranet portal
Description: Manage the intranet portal
Primary Actor: Intranet portal administrator
Preconditions: The employee has to be listed in the employees table and the user has to be

added to the Administrator role. Access to the web application has to be
enabled.

Postconditions: Users, roles and employees are ready to be used in the intranet portal.
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the intranet application
2. Add and manage departments data
3. Add and manage roles data
4. Add and manage employees and their roles
5. Publish news
6. View news
7. Administration

Extensions:
• 1a. Sign-in fails
• 1a* Extend:
• 1a1. Show error message
• 1a2. Open sign-in window
• 2a. Datatype error
• 2a* Extend:
• 2a1. Show error message
• 3a. Datatype error
• 3a* Extend:
• 3a1. Show error message
• 4a. Datatype error
• 4a* Extend:
• 4a1. Show error message
• 5a. Datatype error
• 5a* Extend:
• 5a1. Show error message

Frequency of Use: The frequency of use depends on new employees and changes in the privi-
leges scheme. Approximately 5 times per week.

Status: Finished
Owner: Intranet portal administrator
Priority: high

13.4 Data model 214

Again for the sake of simplicity extension use case (adding attachment to the news) is skipped
in Figure 13.1.

13.4 Data model
13.4.1 Narrative description of data model

There are six entities in the logical data model. The CH13 DEPARTMENT entity has three
attributes: ID, name and location of the department. Each department can have many employees.
Basic data about employees is stored in the CH13 EMPLOYEE entity: ID, first and last name, birth
date and email. An employee can be a manager. Each employee has only one manager, whilst a
manager can manage several employees. Each employee can has a role, with roles defined by ID,
name and description. For each employee and each role, a start and end date are defined. Over time,
employee can have several roles, also more employees can be assigned to one role. Nevertheless,
one definition of an employee role can not be transferred to another employee or role. An employee
can publish more news over time. Each news is identified by ID, title, description, start date and
end date. Each news can have more attachments. An attachment is identified with ID, file name,
mime type, date created and content.

13.4.2 Logical data model
The above story is depicted on logical data model Figure 13.2.

Figure 13.2: Logical data model.

13.4.3 Relational data model
Automatic transformation from logical data model to relational data model in Oracle SQL Data
Modeler is provided by function Engineering to relational. The result is shown in Figure 13.3.

Oracle SQL Data Modeler also generates SQL script for table, sequence and trigger creation.
Select all tables on relational model and use function File > Export > DDL File to get a script like
this:

CREATE TABLE CH13_NEWS (
NEWS_ID NUMBER NOT NULL
...
);

CREATE TABLE CH13_DEPARTMENT (

13.5 Application interfaces 215

Figure 13.3: Relational data model.

DEPT_ID NUMBER NOT NULL
...
);

Now it is time to generate tables in Oracle database. We can import the generated script and
execute it in APEX.

13.5 Application interfaces
In the following figures, application interfaces are presented for all three roles. First, the dashboard
for Contributor (Publisher) is presented in Figure 13.4.

Figure 13.4: The Contributor (Publisher) dashboard.

The page for publishing news with attachments and its details is presented in Figure 13.5.
The Viewer (Reader) role has the most limited dashboard. Only the Home and the View news

is available for now, as presented in Figure 13.6.
The main feature for the Viewer (Reader) is to access news (see Figure 13.7).
In addition to viewing and publishing news, the administrator can manage departments, roles

and employee with roles data, as depicted in Figure 13.8. Also, the administration page is available,
where user management is possible.

13.6 Supplementary learning material 216

Figure 13.5: Publishing news with attachments.

Figure 13.6: Viewer (Reader) dashboard.

The page for editing employee roles data is presented in Figure 13.9. This page is only available
to the Administrator of the intranet portal.

13.6 Supplementary learning material
You can find the following supplementary learning material:

• exported application
• scripts for creating, dropping and inserting
• video guide

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter13
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

13.6.1 Exported application
Exported application is packaged. Installation create tables and populate data. De-installation
removes all data base objects used in this application.

https://beeapex.eu/course/view.php?id=12

13.7 Questions 217

Figure 13.7: Viewer (Reader) access to news.

Figure 13.8: Administrator dashboard.

13.6.2 Video guides
Video guide show every step in application development.

13.7 Questions
1. How would you change logical data model to implement the following requirement: one

attachment can belong to more news.
2. How would relational data model change if the requirement (one attachment can belong to

more news) is implemented?
3. Which user roles are implemented in Chapter 13 application and why?

13.8 Answers
1. One-to-many relation should be allied in direction from attachment to news.
2. Pair attachment-news in logical model would be transformed into three relational tables:

attachment, news and attachment_news. The last one would contain at least two fields (IDs
of attachment and news) both serving as a foreign keys.

3. In Chapter 13 the following user roles are implemented: Administrator, Contributor and
Reader. These roles are implemented to enable authorized users to do their job and to prevent
unauthorized users to perform unapproved actions.

13.8 Answers 218

Figure 13.9: Editing employee role by Administrator.

14. GreenDi - Catalog of plants

VJERAN STRAHONJA, DIJANA OREŠKI, DARKO ANDROČEC AND ANA KUTNJAK

14.1 Business view of the case
A group of enthusiasts gathered in the GreenDi nonprofit organization has been launching and
implementing various initiatives related to urban gardening, healthy eating, growing old domicile
varieties, cooperation with local farmers, etc. So far, they have used social networks in their
work. That’s why they decided to launch their own GreenDi, a peer-to-peer seed and plant sharing
platform, with the aim of promoting a biodiversity and facilitating the activities of their past
activities and enable new ones. In order to develop and implement such a platform, a specification
of requirements and basic models, including a data model and use cases need to be made.

14.2 Problem definition
The open part of the platform has the following characteristics:

• GreenDi users are not limited to a geographical location but can be global. However, since
this is a plant exchange, the formation of local networks related to a certain geographical
area is expected.

• The platform is divided into several thematic units such as traditional and indigenous varieties
and seeds (vegetables, fruits, medical herbs, indoor and ornamental plants), with the idea of
expanding to industrial and other plants.

• The basis of the open part is a catalog of plants, with the name(s) in the user’s language,
Latin and English, classification of plant (taxonomy), description, habitats, cultivation and
use, photos and other basic information.

• Basic information about the plant is open for search and viewing without any registration.
• The GreenDi catalog of plants is linked to several open web pages, databases and external

services that contain information related to plants. URL addresses, hyperlinks and other
types of tagged data are used.

• The catalog includes plants that are exchanged on the GreenDi platform, but also those that
have not yet been exchanged or included in an offer. The catalog also has links to commercial
suppliers, with whom members have good experience and who nurture organic farming.

Catalog Management is described by following sentences:
• The Catalog of Plants is managed by the administrators of the GreenDi platform.
• Catalog Management includes entering and changing information about plants.

14.3 Use cases 220

• Some functionalities of the Catalog Management are made available to users authorized by
the administrator (authorized user).

• Advanced functionalities, are available to the administrators, include linking to other pages
that contain information about the plant, videos on cultivation, use of plants etc.

• All registered users (Members) can, if they wish, share their opinion about the plant, write a
review, add some more information, etc., but that is not part of this functionality.

14.3 Use cases
Use case diagrams describe communication between actors and other systems in environment
which we develop. Use cases present functionalities of authorization and user management which
are presented in Figure 14.1.

14.3.1 Narrative description of use case
The open part of the GreenDi platform enables any user from any location to view the data of the
Catalog of plants, without registration. At the same time, the plants are classified into categories
that allow the user to navigate more easily. Name, taxonomy, description, habitats, cultivation and
use, photos and other basic information, as well as links to external data sources are kept for each
plant.

14.3.2 Semi-structured description
Table 14.1 presents UC.

14.3.3 Use case diagram
This story is depicted on use case diagram 14.1. On the right side of the Use Case diagram is
the External Source actor. This actor presents an external system from which GreenDi Catalog
of Plants retrieves information about plants, seeds and similar. There are many examples of such
plant databases that offer open services or open datasets. That means that the database or data is
freely available for use, without any restrictions on access or use. Some examples of online plant
databases that provide open services or open data include:

1. The Global Biodiversity Information Facility (GBIF, https://www.gbif.org) provides
free and open access to biodiversity data, including data on plants. GBIF allows users to
search and access data from a range of sources, including herbaria, museums, and research
institutions. It refers to The International Plant Names Index (IPNI), database of the names
and associated basic bibliographical details of seeds, plants, ferns and lycophytes (https:
//www.gbif.org/dataset/046bbc50-cae2-47ff-aa43-729fbf53f7c5).

2. WFO Plant List (https://wfoplantlist.org/plant-list) was launched in May 2021 and provides
a user-friendly, citable static list of all plant species. The entire WFO Plant List dataset can
also be downloaded as a whole. The data can also be accessed via the WFO Plant List API.

3. The Flora of Italy dataset can be downloaded from the University of Roma website and
includes high-resolution images of over 10,000 plant species in Italy.

These are just a few examples of the datasets available that include images of plants and seeds
in Europe, but there are many other datasets available that provide similar information. In this
example, we will not realize communication with the External Source because it requires more
advanced knowledge.

https://www.gbif.org
https://www.gbif.org/dataset/046bbc50-cae2-47ff-aa43-729fbf53f7c5
https://www.gbif.org/dataset/046bbc50-cae2-47ff-aa43-729fbf53f7c5
https://wfoplantlist.org/plant-list

14.3 Use cases 221

Table 14.1: Use case description: browsing catalog of plants
Keyword Value
ID: ch14-01
Title: Browse catalog of local plants
Description: Catalog of local plants is publicly accessible for all interested persons. The

application enables searching with filters on all data base fields.
Primary Actor: Any person
Preconditions: Basic information about the plant is open for search and viewing without

any registration.
Postconditions: If the Browse catalog of plants is called from another use case (extend), the

ID of the selected plant is transferred.
Main Catalog of plants
Success Scenario: First scenario, Catalog of plants:

1. Any user on the home page opens the Browse catalog of plants form,
which is a Search Form, based on the principle of Query by Example
(QBE).

2. Search is possible by the following data: a) Thematic unit - list
of codes (all by default or some specific name specific, such as
vegetables, fruits, medicinal herbs, indoor and ornamental plants,
etc.); b) Type of plant - hierarchically organized classification of
plant (all by default or some specific name), c) Name (s) in the user’s
language, d) Latin name e) English name (s)

3. The search result is displayed in Tabular Form.
4. It is possible to sort the Tabular Form by columns.
5. By choosing a row, it is possible to open the form with the Details

of the Plant Form, that contains: type of plant, thematic unit, local
names, English names, Latin names, description, habitat, cultivation,
use, photos, hyperlinks and status.

Second scenario, Catalog management:
1. Catalog Management can be performed by an active user in the type

Administrator, so the first step is the login procedure (UC: Log-In)
where the fulfillment of these conditions is checked.

2. Catalog Management involves changing or adding information about
a plant that is already in the catalog, deleting that plant (actually
hiding it because the plant is not physically deleted), or adding a
new plant.

3. The user confirms or rejects the change.

Extensions:
• Search Form (QBE)
• Tabular Form
• Details of the Plant Form

Frequency of Use: Approx. maximum is 1000 searches per minute.
Status: Development status
Owner: public, anonymous user
Priority: high

14.4 Data model 222

Figure 14.1: Use case diagram - Catalog of plants.

14.4 Data model
14.4.1 Narrative description of data model

The logical data model (Entities-Relationship model) contains several entities. The basic one is
Plant, described with the following attributes: Plant_ID (plant identification attribute), Name local
(local name of the plant), Name English (name of the plant in English), Name Latin (the name of
the plant in Latin), Description (description of the plant), Habitat (description of the habitat where
the plant can be found), Cultivation (method of cultivation), Use (use of the plant), Photo (one or
more photos of the plant), Hyperlinks (links to external sources of information) and Status (active
plant being exchanged, archived plant). Plant is a hierarchically organized code list. This means
that each Type of plant can contain 0, 1 or more subtypes of plant and can be included as a subtype
in 0 or 1 super-type of plant. The Thematic unit is also a code list that defines varieties of plants and
seeds (vegetables, fruits, medicinal herbs, indoor and ornamental plants). Each Plant belongs to 0, 1
or more Thematic units. Each Thematic unit classifies 0, 1 or more Plants. Thematic unit attributes
are: Thematic unit_ID (code, or identification attribute of Thematic unit; Name of thematic unit
(one or more names). The model also shows the User entity type. Also, few entity types were added
to this data model: Plant optional data, Type of optional data and Type of plant and Thematic unit.
Plant optional data comprise the following attributes: Plant optional_ID (identification attribute),
Description (content of additional optional data, i.e. link description, if any) and Link (optional).
Type of optional data contains attributes: Type_ID (identification attribute), Name of type (general
information, use, cultivation, personal opinion, review). Each Plant can have 0, 1 or more Plant
optional data. Each Plant optional data refers to 1 and only 1 Plant. Each Plant optional data
belongs to 1 and only 1 Type of optional data Each Type of optional classifies 0, 1 or more Plant
optional data. Plant optional data is entered by 1 and only 1 User.

14.4.2 Logical data model
Logical data model is presented in Figure 14.2.

14.5 Application interfaces 223

Figure 14.2: Logical data model.

14.4.3 Relational data model
Automatic transformation from logical data model to relational data model in Oracle SQL Data
Modeler is provided by function Engineering to relational. The result is shown in Figure 14.3.

Now, let Oracle SQL Data Modeler generate SQL script. Select all tables on relational model
and use function File > Export > DDL File to get a script. We can import the generated script in
APEX and execute it.

14.5 Application interfaces
Details of the interactive grid for Plant Form are presented in Figure 14.4.

Browsing the catalog of local plants is implemented with the search form.

14.6 Supplementary learning material
You can find the following supplementary learning material:

• script for creating and populating tables
• script for dropping tables
• exported packaged application
• video which demonstrates how to generate application

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter14
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

14.6.1 Exported application
Exported application is packaged and uses only two tables (ch14_type_of_plant and ch14_plants).
Installation creates tables as well it populates data. De-installation removes all data base objects
used in this application.

Packaged application is tested and will run in a new workspace if the following requirements
are meet:

https://beeapex.eu/course/view.php?id=12

14.7 Questions 224

Figure 14.3: Relational data model.

• add APEX user before running application. Only in development and testing workspace
navigate to Shared Components > Application Access Control > Add User Role Assignment;
enter APEX user and set this user roles Administrator, Contributor and Reader. In production
consultation with skilled personnel before deployment in a must.

If user is not granted appropriate role than imported application will crash. It is necessary to
clear web browser cookie (i.e. Firefox: Settings > Cookies and Site Data > Manage Data) after
application crashes due to unmet requirements.

14.6.2 Video guides
Video guide shows all steps in application development

14.7 Questions
1. Investigate how communication with an External Source, or another database or system that

contains plant data, could be implemented.
2. List some of the formats in which images of plants and seeds are stored.
3. In which data type are images, videos and similar objects saved in the Oracle database?

14.8 Answers
1. In principle, there are two ways of realizing communication with such an external source.

One way is to download the dataset, i.e. the complete database into the Catalog of plants.
Another way is to connect with the help of an Application Programming Interface (API). It is
a set of protocols, tools, and standards that defines how software components should interact
and communicate with each other. APIs allow different software systems to communicate
and share data with each other in a standardized way.

2. Some of the most common formats are:
a. JPEG (Joint Photographic Experts Group) - this is a popular format for digital photos

due to its compression capabilities, which allow for smaller file sizes without significant

14.8 Answers 225

Figure 14.4: Interactive grid for Plant Form.

Figure 14.5: Public part – open browsing of plant data.

loss of quality. It supports millions of colors and can handle high-resolution images.
b. BMP (Bitmap) - this format is commonly used in Windows operating systems and can

support both grayscale and color images. It does not support compression, so files can
be large, but it is a good option for storing high-quality images.

c. PNG (Portable Network Graphics) - this format is known for its lossless compression,
which means that the image quality is not compromised when the file size is reduced. It
supports transparency and is often used for web graphics and digital art.

d. TIFF (Tagged Image File Format) - this format is commonly used for storing high-
quality images, such as those used in printing. It supports lossless compression, multiple
layers, and can handle both gray scale and color images.

3. Images, videos, and similar objects are typically stored in the Oracle database using the
BLOB (Binary Large Object) data type. BLOBs can store binary data, such as images
and videos, up to 4 gigabytes in size. This data type is ideal for storing large objects like
multimedia files, as it allows for efficient storage and retrieval of binary data.

15. GreenDi - User Authorisation and
Management

VJERAN STRAHONJA, DARKO ANDROČEC, ANA KUTNJAK AND LARISA HRUSTEK

15.1 Business view of the case
A brief business overview of the GreenDi platform is described in chapter 14. It focuses on the
open part of the platform GreenDi. Advanced functionalities are possible only for registered users
(members and administrators). It is necessary to enable the functionality of user registration, login
of registered users to the system with authentication and authorization to perform certain activities.
The necessary functionalities include suspending the user under certain conditions and monitoring
the history of data about the registered user.

15.2 Problem definition
The following describe the problem of User Authorization and Management:

• For a deeper insight into information about plants and other advanced functionalities, it is
necessary to log in to the platform, i.e., it’s possible only for registered users (members).

• Log-in is common for all functionalities and in principle must be a single sign on.
• The basic user authentication mechanism is Username and Password.
• Information about the current password is not visible to the administrator or any other user.
• The registration process includes entering basic required user information, such as name:

address, email, phone, username and password.
• Optional data are user interests, date of birth, etc.
• After successful registration, a new user automatically receives the default type of Member

and the status of Active. Changing the status to Administrator and vice versa, as well as type
can only be done by another active administrator.

• Upon registration, the member accepts the terms of use. If he or she violates them, the
administrators suspend the membership, which is also described in the terms of use.

• Regular registration and deletion of membership is voluntary and performed by the user.
• Every change of any user data is recorded in the form of a log. The administrator can review

the change history of each user, except for the password.
• At the user’s request, the system enables a password reset, in such a way that the administrator

sends a temporary password to the user via email or SMS
• Optional functionality: In addition to the username and password, authentication is optionally

possible using Fb and Google Sign-In, or other services. For example, a web application that

15.3 Use cases 227

uses OAuth 2.0 to access Google APIs must have authorization credentials that identify the
application to Google’s OAuth 2.0 server.

15.3 Use cases
15.3.1 Narrative description of the use case

User Authorization and Management are realized through Use Cases (see 15.1). Any person
can start Log In. Likewise, the Log In use case is included in those use cases of the GreenDi
platform with which only registered users can communicate. If the user is not registered, they are
directed to the User Registration use case, which is included in Log In. The basic functionality of
this use case involves entering user data, including usernames and passwords. User Registration
can be started from Log In also in case the user wants to change their data. User Management
is a use case with which only a registered user of the Administrator type can communicate.
The functionality of this use case allows the administrator to change the type I status of any
other registered user, including suspending it. The user can change the password, that is, the
system generates a temporary password on request that lasts a short time, and sends it to the user.
External Authentication is an optional function that should enable authentication using Fb and
Google Sign-In or other services. For example, a web application that uses OAuth 2.0 to access
Google APIs must have authorization credentials that identify the application to Google’s OAuth
2.0 server. You can find more information about using OAuth 2.0 to Access Google APIs at
https://developers.google.com/identity/protocols/oauth2

15.3.2 Semi-structured description
The use case diagram describes the communication of the Actor and other systems in the environ-
ment with the system we are developing. Use cases represent the functionality of authorization and
user management, which is described in Figure 15.1.

Table 15.1 presents UC.

15.3.3 Use case diagram
The above story is depicted on use case diagram 15.1.

Figure 15.1: Use case diagram - GreenDi User Authorization and Management

15.3 Use cases 228

Table 15.1: Use case description: user Authorization and Management.
Keyword Value
ID: ch15-01
Title: User Authorization and Management
Description: Authorizing and managing users.
Primary Actor: Any person, Member, Administrator
Preconditions: Log In typically starts automatically from other use cases, where the user

is set to be a member or administrator.
Postconditions: The resulting situation is that the user is not authorized, or that he is autho-

rized, but his status (pending, active ...) and type (member, administrator)
are known.

Main -
Success Scenario:

1. Advanced functionalities of GreenDi platform requires logging in to
the system (Log In Form of the Log In Use case): a) At the first login,
the new user needs to register through the User Registration Form of
the User Registration use case, included in the Log In use case. The
registration process includes entering mandatory user information,
such as name, address, email and phone, as well as optional infor-
mation, such as user interests and date of birth. b)The user sets the
username and the password (they are recorded in a special table in
the database, separated from other user data or encrypted). c) The
user accepts the terms of use and confirms the entered data. d) The
default User type is Member and the default status is Active.

2. User data can be changed by the user himself or herself at each
subsequent Log In to the system, through the User Registration
Form.

3. Password reset is initiated by the user from the Log In Form, so that
a message with a temporary password that lasts 15 minutes is sent to
the user’s email.

4. Every change of any user data is recorded in the form of a log in the
User History data entity. The administrator can review the change
history of each user, except for the password.

5. The functionality of the User Management use case allows a user of
the Administrator type and in the Active status to change the type
and status of another (Administrator to Member, and vice versa, as
well as the Active - Suspended - Inactive status).

6. There is a table view of users with the possibility of searching (Table
of Users Form). On this form, the administrator can select the details
of any user, on a similar form as the User Registration Form (User
Details Form), change the status and type of the user, reset the
password and open the User History Form, which shows the changes
in data about the selected user in tabular form.

7. Each subsequent Log In of the registered user initiates a check of
User authorization, which checks the username and password, the
status of the user and whether it is an administrator or a member.

Extensions: Log In form; User Registration Form; Table of Users Form; User Details
Form; User History Form

Frequency of Use: Approx. maximum is 100 per day.
Status: Development status
Owner: public, anonymous user
Priority: high

15.4 Data model 229

15.4 Data model
15.4.1 Narrative description of a data model

The logical data model (Entities-Relationship model) contains 2 types of entities: User and User
History. User has the following attributes: User ID (identification attribute); Type (user type:
Member, Administrator); Name (name and surname of the user; Address (address of the user); E-
mail; Phone; Date of birth (opt.); Interests (opt.); Status (Active, Suspended, Inactive); User name
(not visible to the administrator, encrypted); Password (not visible to the administrator, encrypted)
Each User has 1 or more User History records. User History has the same attributes as User, it is a
copy of the User’s record after the change, with the fact that it has a system-generated change time
and the ID of the person who made the change (the member himself or the administrator). This
means that the changed data is recorded in this log after each change.

15.4.2 Logical data model
The logical data model is presented in Figure 15.2.

Figure 15.2: Logical data model.

15.4.3 Relational data model
The automatic transformation from the logical data model to the relational data model in Oracle
SQL Data Modeler is provided by function Engineering to relational. The result is shown in
Figure 15.3.

Let now Oracle SQL Data Modeler generates SQL script. Select all tables on the relational
model and use the function File > Export > DDL File to get a script. We can import the generated
script in APEX and execute it.

15.5 Application interfaces
The User Form is presented in Figure 15.4.

Insert data into User History Form is presented in Figure 15.5.
Functionalities that require user authorization are described in chapter 18 Webshop - GreenDi.

15.6 Supplementary learning material 230

Figure 15.3: Relational data model.

Figure 15.4: User Form.

15.6 Supplementary learning material
You can find the following supplementary learning material:

• exported application
• scripts for creating, dropping and inserting
• video guide

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter15
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

15.6.1 Exported application
Exported application is packaged. Installation creates tables and populates data. De-installation
removes all data base objects used in this application.

15.6.2 Video guides
Video guide show every step in application development.

https://beeapex.eu/course/view.php?id=12

15.7 Questions 231

Figure 15.5: User History Form.

15.7 Questions
1. What are built-in and application level user authentication and authorization functionalities

when developing applications using Oracle APEX?
2. How can we use external authentication in APEX?
3. What are the advantages for users when they log into an application with their Facebook,

Google or similar accounts?

15.8 Answers
1. a) Built-in User Authentication: APEX provides built-in user authentication functionality,

allowing you to define and manage user accounts directly within the APEX environment.
Users can have different roles and privileges, and you can control access to specific application
pages or components based on user roles. b) Application-Level Authorization: APEX allows
you to define fine-grained authorization rules at the application level. You can specify which
users or roles have access to specific pages, regions, buttons, or other components within
your application.

2. We you can use login options like Facebook, Google, and other platforms in an application
or website that you develop ourself. Many popular platforms provide developer APIs
(Application Programming Interfaces) that allow you to integrate their login functionality
into your own applications or websites. For example, Facebook provides the Facebook
Login API, which enables users to log in to your application or website using their Facebook
credentials. Similarly, Google provides the Google Sign-In API, which allows users to sign
in using their Google accounts. To implement these login options, you typically need to
register your application or website with the respective platform’s developer portal. This
registration process usually involves obtaining API keys or client IDs, which you will then
use in your code to authenticate users and manage the login process.

3. By incorporating login options from these platforms, you can offer your users a convenient
and familiar way to sign in to your application or website without requiring them to create
new accounts or remember additional login credentials. There is no need to register and enter
name, address and similar data, no new user names and passwords are created that need to be
remembered.

16. Small Innovation System

ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

16.1 Business view of the case
In a contemporary enterprise, innovative ideas are the key of success and improvement of business
performance. Due to their knowledge about the business processes, employees are probably the
best source of innovative ideas. These ideas include different viewpoints like process optimization
suggestions, customer relationship management improvements, quality assurance tasks upgrades
and similar. Therefore, the management in this specific case decided to collect small innovative
ideas from employees and reward them.

16.2 Problem definition
Innovative ideas in the enterprise used to be collected via emails and on paper forms. An overview
of collected ideas in the enterprise was time consuming. The evaluation criteria for idea assessment
was not defined. Due to the high number of potential ideas that could be beneficial to the enterprise,
there is a need to have a good overview. The platform should enable the collection of innovative
ideas in a small enterprise. Employees should be able to sign-in to the platform and enter their
ideas with simple descriptions or attachments. Since ideas do not have the same value (to the
management and operations), they will be reviewed and evaluated. When evaluators finish the
process the idea is rated as accepted, rejected or a revision is needed. The most innovative ideas
will be awarded depending on the grade they receive. The following awards can be achieved for
the proposed idea: GOLD (100 EUR), SILVER (80 EUR), BRONZE (60 EUR), CONTRIBUTOR
(40 EUR), or THANK YOU. Only managers will have the option to evaluate ideas. Managers will
regularly initiate the evaluation and rewarding (i.e. once per month). All signed-in users will be
able to review the ideas after they are evaluated.

16.3 Use cases
16.3.1 Narrative description of use case

Each employee has an opportunity to suggest innovation ideas through the application form. All
the ideas are collected and evaluated by the management. The ideas are ranked according to the
usefulness and realization possibilities and good ideas are rewarded.

16.4 Data model 233

16.3.2 Semi-structured description
We can summarize three distinct user stories or use cases: idea submission, overview of ideas and
idea evaluation. The final step, reward payment, is not covered by this business case.

Adding an attachment to the idea is actually an extension to the UC described above and we
could describe it as a new use case. For the sake of readability, we will proceed with the other two
main use cases, however, the application will have a feature to add attachments to the idea.

16.3.3 Use case diagram
The above story is depicted on the use case diagram (see Figure 16.1).

Figure 16.1: Use case diagram.

Again, for the sake of simplicity extension use case (adding an attachment to the idea) is skipped
in Figure 16.1.

16.4 Data model
16.4.1 Narrative description of data model

There are three entities in the logical data model. The CH16 IDEA entity has eight attributes: ID,
submission date, title, idea description, idea filename, mime type, decision and decision date. Each
idea is proposed by one employee. Basic data about employees is stored in the CH16 EMPLOYEE
entity: ID, first and last name. An employee can be a manager to other employees. Each employee
has only one manager, while manager can manage several employees. Managers evaluate ideas.
One manager can evaluate many ideas, whereas one idea can be evaluated only by one manager.
Each idea can receive one award. CH16 AWARD entity has three attributes: ID, award description
and amount in euros. One type of award can be given to more ideas. Evaluation rules are not
included in the data model since that would pose a risk of changing application each time the rules
are changed. With the proposed data model we assured: application robustness, fast development
and deployment, low development and maintenance costs and flexibility.

16.4.2 Logical data model
The above story is presented on logical data model (see Figure 16.2).

16.4 Data model 234

Table 16.1: Use case description: idea submission.
Keyword Value
ID: Ch16-01
Title: Idea submission
Description: An employee signs-in to the platform and enters the idea. Each idea has a

title and a short description added as an attachment (document file).
Primary Actor: Employee
Preconditions: The employee needs to have the Oracle APEX user account for the Small

Innovation System application. Access to the web application has to be
enabled.

Postconditions: After successful input of the idea, the idea and the detailed description in
the attachment are available to other SIS portal users.

Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the SIS application
2. Select Ideas in the menu
3. Select Add new idea
4. Enter the idea Title and add attachment
5. Enter file name and attachment type
6. Confirm the insert by clicking the Create button
7. Review the inserted data

Extensions:
• 1a. Sign-in fails
• 1a* Extend:
• 1a1. Show error message
• 1a2. Open sign-in window
• 4a. Datatype error
• 4a* Extend:
• 4a1. Show error message
• 7a. Datatype error
• 7a* Extend:
• 7a1. Show error message

Frequency of Use: On average, the company receives 3 innovative ideas per week.
Status: Finished
Owner: Employee with access to the application
Priority: moderate

16.4 Data model 235

Table 16.2: Use case description: overview of ideas.
Keyword Value
ID: Ch16-02
Title: Overview of ideas
Description: An employee signs-in to the platform and checks the status of the idea or

other ideas.
Primary Actor: Employee
Preconditions: The employee needs to have the Oracle APEX user account for the Small

Innovation System application. Access to the web application has to be
enabled.

Postconditions: -
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the SIS application
2. Select Ideas in the menu
3. Browse listed ideas and their status
4. Select Overview in the menu
5. View the charts of idea submission data

Extensions:
• 1a. Sign-in fails
• 1a* Extend:
• 1a1. Show error message

Frequency of Use: The option to view ideas is given to employees, reviewers and administra-
tors. Altogether, they access the platform approximately 5 times per day.

Status: Finished
Owner: Employee with sign-in option
Priority: low

16.4 Data model 236

Table 16.3: Use case description: idea evaluation.
Keyword Value
ID: Ch16-03
Title: Idea evaluation
Description: A reviewer signs-in to the platform and reviews the idea. The award is also

defined in this use-case.
Primary Actor: Reviewer
Preconditions: The employee user has to be added to the CH16_Reviewer role. Access to

the web application has to be enabled.
Postconditions: The selected idea is evaluated and the proposed award is defined.
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the SIS application
2. Select Review ideas from the menu
3. Identify the idea and add details using the Edit button
4. Select decision from the list of values (Accept, Reject, Revise)
5. Select the type of award from the list of values (Gold, Silver, Bronze,

Contributor, Thank you)
6. Confirm the update

Extensions:
• 1a. Sign-in fails
• 1a* Extend:
• 1a1. Show error message
• 1a2. Open sign-in window
• 2a. Datatype error
• 2a* Extend:
• 2a1. Show error message
• 3a. Datatype error
• 3a* Extend:
• 3a1. Show error message
• 4a. Datatype error
• 4a* Extend:
• 4a1. Show error message
• 5a. Datatype error
• 5a* Extend:
• 5a1. Show error message

Frequency of Use: Managers review the proposed ideas once per month.
Status: Finished
Owner: Reviewer
Priority: high

16.4 Data model 237

Figure 16.2: Logical data model.

16.4.3 Relational data model
Automatic transformation from logical data model to relational data model in Oracle SQL Data
Modeler is provided by function Engineering to relational. The result is shown in Figure 16.3.

Figure 16.3: Relational data model.

Oracle SQL Data Modeler also generates SQL script for table, sequence and trigger creation.
Select all tables on relational model and use function File > Export > DDL File to get a script like
this:

CREATE TABLE CH16_AWARD (
AW_ID NUMBER NOT NULL

...

16.5 Application interfaces 238

);

CREATE TABLE CH16_EMPLOYEE (
EMP_ID NUMBER NOT NULL

...
);

Now it is time to generate tables in Oracle database. We can import the generated script and
execute it in APEX.

16.5 Application interfaces
In the following figures, application interfaces are presented for both basic roles (employee and
reviewer). First, the dashboard for Employee is presented in Figure 16.4.

Figure 16.4: The Employee dashboard.

The page for submitting ideas with attachments and its details is presented in Figure 16.5.

Figure 16.5: Submitting idea with attachments.

Each employee has the option to view the Organizational structure in the company, as presented
in Figure 16.6.

16.6 Supplementary learning material 239

Figure 16.6: Organizational Structure in the company.

Also, each employee can see the dashboard of charts presenting the distribution of ideas over
time alongside data demonstrating the breakdown of accepted, rejected, and revised ideas; and
employees with the highest number of innovative ideas in the company (see Figure 16.7).

In addition to the described actions, the reviewer has the option to update data about awards
and employees, as depicted in Figure 16.8. The administration page is available only to the
administrators, not to reviewers.

The page for reviewing the idea is presented in Figure 16.9. This page is only available to the
Reviewer. The Reviewer selects the decision and the type of award if applicable.

16.6 Supplementary learning material
You can find the following supplementary learning material:

• script for creating
• script for populating tables
• script for dropping tables
• exported packaged application
• video which demonstrate how to generate application out of script

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter16
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

16.6.1 Exported application
Exported application is packaged. Installation creates tables as well it populates data. De-installation
removes all data base objects used in this application.

Packaged application is tested and it will run in new workspace if the following requirements
are meet:

• add APEX user before running application.
If user is not granted appropriate role than imported application will crash. It is necessary to

clear web browser cookie (i.e. Firefox: Settings > Cookies and Site Data > Manage Data) after
application crashes due to unmet requirements.

16.6.2 Video guides
Video guide shows all steps in application development.

https://beeapex.eu/course/view.php?id=12

16.7 Questions 240

Figure 16.7: Small Innovation Idea overview.

16.7 Questions
1. Where are user roles in Chapter 16 defined?
2. Which relationship in the logical data model enables the presentation of Organizational

structure in Chapter 16?
3. Why are some fields on the page for idea review disabled in Chapter 16?

16.8 Answers
1. No roles are defined in the Chapter 16 data model. They are only used in APEX environment.
2. The relationship connecting the Employee table with itself (recursive relationship) enables

the presentation of Organizational structure in Chapter 16.
3. In Chapter 16 some fields are disabled to create a better user experience and assure consistency

of the data since the user is not required to add data which are already in the database.

16.8 Answers 241

Figure 16.8: Reviewer dashboard.

Figure 16.9: Page for reviewing the ideas.

17. Business process management

ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

17.1 Business view of the case
Most of this book emphasize the importance of data and a data-driven approach to developing web
applications with APEX. But the data-driven approach has sibling: process-driven applications.
As the name suggests, process-driven applications focuses on processes. Neither can good data-
driven application neglect the process aspect nor can process-driven application neglect the data
aspect. Implicit or explicit inclusion of both, make any application fit for purpose. It is important
for the developer to have profound insight into business processes in organization. Any type of
organization, regardless of size, annual earnings, ownership, industry and the mission, conducts
business processes. The common classes of business processes that apply for most organizations
fall into the following categories:

• sales and marketing include sub processes such as acquiring and retaining customers, genera-
tion of leads, customer relationship management, and marketing campaigns.

• supply chain management includes sub processes such as coordination and management of
the flow of goods and services, procurement, production, and distribution.

• financial management includes sub processes such as management of an organization’s
financial resources, accounting, budgeting, and financial reporting.

• human resource management includes sub processes such as management of the organiza-
tion’s workforce, recruitment, training, and employee development.

• customer service includes sub processes such as providing support and assistance to cus-
tomers, complaint resolution and problem solving.

• operations management includes sub processes such as management of day-to-day business
operations, production, logistics, and inventory management.

• information technology includes sub processes such as management of an organization’s
information technology resources and systems, hardware, software, and data management.

These processes are considered critical as they support the core functions of an organization
and enable achieving its goals and objectives. Improving the efficiency and effectiveness of these
processes can have a significant impact on the overall performance and success of an organization. In
an attempt to make clear understanding and definition of typical business OASIS OPEN developed
Universal Business Language which describe processes and business documents (see [5]). Software
industry started in late 1990s with integration of processes, invented Business Process Execution
Language (BPEL) and later Business Process Modeling Language (BPML). Big players like

17.1 Business view of the case 243

Microsoft, IBM, SAP, Oracle as well as myriad of smaller contributed to software platforms which
aimed to provide seamless integration of business functions. Apart from software world other
industries have sharpened focus on processes through the lens of specific businesses from 1980s
with quality management initiatives and standards.

Since the 1990s, the disciplines of business process management (BPM) and business process
re-engineering (BPR) have important roles when organizations want to improve their performance.
BPM focuses on the representation and documentation of a company’s workflows, operations
and processes using diagrams, flowcharts, or other visual aids. The goal is to understand and
improve existing processes, or design new ones, to increase efficiency and reduce inefficiencies.
BPR is sought as the fundamental rethinking and radical redesign of business processes to achieve
significant improvements in performance and productivity. It involves the analysis and design of
workflows and processes within an organization, with the goal to be more efficient, effective, and
capable of adapting to the changing business environment. BPR can involve utilization technology
and information systems to automate processes and enhance decision-making.

In BPM and BPR several diagrams can be used:
• Flowcharts: A simple and intuitive way to represent a process as a series of steps, decisions,

and loops.
• Swimlane diagrams: A type of flowchart that adds a visual representation of who or what is

responsible for each step in a process.
• Process maps: A high-level view of the steps and activities, involved in a process, often

including inputs, outputs, and decision points.
• BPMN (Business Process Model and Notation [4]): An industry standard notation used for

modeling business processes, standardized by the Object Management Group (OMG).
• EPC (Event-driven Process Chain): A type of flowchart that uses events as the driving force

behind a process, instead of activities.
• IDEF (Integration Definition for Function Modeling): A method used in software engineering

to model and analyze processes and systems.
The choice of diagram type to present workflow depends on the level of details needed, the purpose
of the model, and the target audience. At this point we will focus on BPMN only as: a) BPMN has
standard notation and wide acceptance across different industries and b) BPMN is implemented
as modeling diagram type in Oracle Application Express (APEX) feature (sometimes referred as
extension) called Flows for APEX. Flows for APEX is open source, licensed under very permissive
MIT Licence. Flows for APEX allows developers to build and deploy web-based applications
using a visual, drag-and-drop interface. Flows for APEX provide a way to automate and simplify
complex business processes by breaking them down into a series of steps and tasks, and guiding
users through them.

Flows for APEX can include a variety of elements, such as pages, forms, reports, and dialogs,
and can be configured to include branching logic, conditional branching, data validation, and
error handling. The visual interface of Flows for APEX makes it easy for developers to design,
build, and test business processes, without the need for extensive coding. It can be integrated with
other Oracle APEX components, such as SQL, PL/SQL, and REST services, to create complete,
web-based applications as well as to build custom solutions for specific business needs, such as
workflow management, customer on-boarding, and data management. Overall, Flows for APEXs
provide a way for organizations to streamline and automate complex business processes, improve
productivity, and reduce errors and inefficiencies. Excellent tutorials on Flows for APEX are also
available. So, how can we link APEX as low-code programming environment and Flows for APEX
with embedded standard BPMN presentation?

Activity diagram (see Figure 17.1) depicts the simplified presentation of integrating Flows and
APEX application. Steps in Figure 17.1 3. modeling data, 4. developing application, 6. defining
user roles, 7. testing and 8. removing errors from application are common for all APEX applications.

https://flowsforapex.org/
https://flowsforapex.org/latest/getting-started/

17.1 Business view of the case 244

Figure 17.1: Integrating Flows for APEX with APEX application.

Step 1. installing Flows for APEX is similar to installing any other packaged application. The real
novelties are 2. modeling the workflow and 5. linking APEX application with workflow.

Readers not acquainted with business process management (BPM) and business process mod-
eling notation (BPMN) diagrams are advised to search for popular textbooks and study already
mentioned BPMN spefification [4]. As a brief reminder for all readers, the following elements of
BPMN diagrams are the most commonly used:

• Start Event: Indicates the starting point of a process.
• Task: Represents a single unit of work, such as an activity or a step in the process.
• Gateway: Represents a decision point in the process, such as a fork in the flow or a conditional

branch.
• Sequence Flow: Connects elements in the diagram and represents the flow of control from

one element to another.
• End Event: Indicates the end of a process.
• Pool/Lane: Represents a grouping of related tasks, used to define the roles and responsibilities

of different participants in the process.
• Message Flow: Represents the flow of messages between participants in a process, such as a

communication between two systems.
• Data Object: Represents a piece of data that is used or produced in a process, such as an

invoice or a customer record.
• Data Store: Represents a container for storing data that is used or produced in a process, such

as a database or a file system.
These elements can be combined to create detailed and accurate models of business processes,
allowing organizations to identify areas for improvement and optimize their workflows.

17.2 Getting started with Flows for APEX 245

17.2 Getting started with Flows for APEX
17.2.1 Install Flows for APEX

Download Flows zip file version 22 and unzip all files to your computer. Follow Flows for APEX
instructions. Before installing Flows for APEX plug-in, check requirements. The requirements are
met, if you are using your APEX free workspace, free/payable OCI or Oracle Academy account.
Two additional post-installation tasks are:

• grant "create job" to workspace. You or APEX instance administrator must establish con-
nection to the database (with OCI interface, SQL Developer, SQL Plus, TOAD) and issue
command. You can not grant this privilege within APEX.

• configure workspace, default application and user info within application "Flows for APEX".
You can do this step any time later when you develop your own process-driven application.

Though sometimes called feature or plug-in, the installation will create new data base objects
(tables, views) and application, called "Flows for APEX". This application is an administrative
interface which allows you:

• to monitor instances of workflows on dashboard (Dashboard),
• to visually create new workflows (Flow Management) and
• to execute workflows by creating instances, completing tasks that belong to instances and

testing the workflows (Flow Monitor).

17.2.2 Install Sample Process Flow Application
Sample process Flow application is also provided in the same zip file as Flows for APEX. Installation
is straight-forward. It deals with expense claims. Employee prepares expense claim which is
validated by manager. If the claim is declined, than the employee is informed. Finally, for approved
claims, the accounting department prepare payment, execute bank transaction and set status of
payment. If the claim is paid, then this instance of the workflow is finished. The application is very
similar to real process in any organization - and because it is so well documented it presents great
study material.

17.2.3 Read and practice exercises
First read tutorials on Flows for APEX. At the end of these introductory exercises find BPMN
tutorial and APEX integration tutorial. Reading and practicing will empower you to develop your
own process driven application. Practicing through all exercises will probably take a few hours for
the reader to complete. The reader is strongly encouraged to experience learning-by-doing. The
rest of this chapter will provide the same template as other chapters in this textbook (from problem
definition to application) with additional inclusion of BPMN and application integration with Flows
for APEX. However the scope of the application, developed in the Chapter 17 is narrowed to core
functionality and skip the details of authorization. It will provide guides to:

• define workflow in Flows for APEX
• start the instance of the defined process within developed application
• monitor the flow of instance within developed application
• complete each task of specific instance of the workflow within developed application

Narrowed application can also present a nice challenge for enthusiastic learner, does it?

17.3 Problem definition
A medium sized manufacturing company receives inquiries for custom made products by customers.
Each inquiry may have more related documents with specifications, required standards, schemes,
sketches and similar. A customer can have more inquiries. The sales person prepares and classifies
inquiry documents into three categories: manufacturing, financial and business. To evaluate one

https://github.com/flowsforapex/apex-flowsforapex/releases/download/v22.2/FlowsforAPEX_v22.2.zip
https://flowsforapex.org/latest/installation/
https://flowsforapex.org/latest/installation/
https://flowsforapex.org/latest/getting-started/
https://flowsforapex.org/latest/tutorials
https://flowsforapex.org/latest/tutorials
https://flowsforapex.org/assets/files/Tutorial_Flows_for_APEX_v22.2.zip

17.4 Use cases 246

inquiry sales must prepare multiple documents for decision makers. The production manager and
his team evaluate the inquiry manufacturing aspect. They provide an expert opinion on a company’s
capability to produce the required product item. If the product item can be manufactured, then the
team provide estimated duration of manufacturing process in days. Financial manager and his team
evaluate the inquiry financial aspect. They provide an expert opinion on the company’s capability
to provide financing and estimate the expected profit. The final evaluation and the decision is taken
by chief executive officer and his team. They consider the feasibility (manufacturing, financial),
estimate the importance of the customer and make decision abaout the inquiry. Depending on the
company’s capability to manufacture and to finance the business opportunity as well as business
prospect, the CEO decide to how to reply to customer: a) send business proposal with manufacturer’s
price and expected delivery duration or b) message to inform the customer that the manufacturer
can not send business proposal.

Bad business decisions (send business proposal or reject the business) can have disastrous
impacts on manufacturing company such as lost earnings, low profit, bad reputation due to exceeded
delivery dates and even bankruptcy. The situation presented cause headache to all involved: sales
person, production manager, financial manager and chief executive officer. IT department is
responsible to provide user-friendly, reliable and secure software support for described workflow.
Their problem is to develop such support with Flows for APEX.

To developed the application, you must have installed Flows for APEX. This chapter will
analyze the business case (description, semi-structured description, use case diagram, process
model, data model) and develop application. You will learn:

• how to define a process model (workflow) for this business case,
• how to create data model and develop APEX application
• how to link developed application with defined workflow

Please keep in mind that user authorization will not be implemented because this would expand
this chapter beyond reasonable student effort.

17.4 Use cases
17.4.1 Narrative description

Four actors are involved in four use cases. Each actor is responsible for one use case: sales person
prepares documentation related to inquiry, production manager provides evaluation of manufactur-
ing aspects, financial manager provides evaluation on financial aspects and chief executive officer
takes decision. Use case diagram (see Figure 17.2) assumes that workflow designer will decide
whether production and financial manager should work in parallel or sequential way. If they work
in parallel and one or both decide that inquiry requirements can not be met, than some unnecessary
effort (costs) appears, but the workflow can be completed faster. If workflow designer decides for
sequential approach than workflow will take more time but less unnecessary effort will appear.

17.4.2 Semi-structured description
UML proposes that each use case has also semi-structured description. Four distinct semi-structured
descriptions are provided in Tables 17.1, 17.2, 17.3 and 17.4.

17.4.3 Use case diagram
Use case diagram can also depict generalization. In the given context an employee has four special
instances (field managers) and each manager is associated with one use case. All four use cases are
depicted in Figure 17.2.

17.4 Use cases 247

Table 17.1: Use case description: prepare inquiry documentation.
Keyword Value
ID: ch17-01
Title: Prepare inquiry documentation
Description: Sales person create new inquiry and add related documents
Primary Actor: Sales person
Preconditions: Customer already sent all documents related to inquiry
Postconditions: -
Main -
Success Scenario:

1. add new inquiry
2. add related documents to specific inquiry
3. confirm with "Confirm" button or dismiss with "Cancel" button

Extensions: -
Frequency of Use: Approx. 250 per year, average 5 per week.
Status: [Development status]
Owner: Sales person
Priority: high

Table 17.2: Use case description: evaluate manufacturing aspects of inquiry.
Keyword Value
ID: ch17-02
Title: Evaluate manufacturing aspects of inquiry
Description: Production manager and his/her team provide expert opinion whether

company has capability to manufacture product item and if yes how long
(in days) would manufacturing of given quantity take. Justification of
opinion is obligatory.

Primary Actor: Production manager
Preconditions: Inquiry documentation prepared
Postconditions: -
Main -
Success Scenario:

1. enter opinion
2. confirm with "Confirm" button or dismiss with "Cancel" button

Extensions: -
Frequency of Use: Approx. 250 per year, average 5 per week.
Status: [Development status]
Owner: Production manager
Priority: high

17.4 Use cases 248

Table 17.3: Use case description: evaluate financial aspects of inquiry.
Keyword Value
ID: ch17-03
Title: Evaluate finacial aspects of inquiry
Description: Financial manager and his/her team provide expert opinion whether com-

pany has capability to finance product item and if yes what would be
expected profit. Justification of opinion is obligatory.

Primary Actor: Financial manager
Preconditions: Inquiry documentation prepared
Postconditions: -
Main -
Success Scenario:

1. enter opinion
2. confirm with "Confirm" button or dismiss with "Cancel" button

Extensions: -
Frequency of Use: Approx. 250 per year, average 5 per week.
Status: [Development status]
Owner: Financial manager
Priority: high

Table 17.4: Use case description: evaluate business aspects of inquiry.
Keyword Value
ID: ch17-04
Title: Evaluate busimess aspects of inquiry
Description: Chief executive officer and his/her team make decision on whether to

provide business proposal to customer of to skip the offer. Justification of
opinion is obligatory and demanded by board of directors.

Primary Actor: Chief executive officer
Preconditions: Use cases 17.1, 17.2 and 17.3 finished.
Postconditions: -
Main -
Success Scenario:

1. enter opinion
2. confirm with "Confirm" button or dismiss with "Cancel" button

Extensions: -
Frequency of Use: Approx. 250 per year, average 5 per week.
Status: [Development status]
Owner: Chief executive oficer
Priority: high

17.5 Workflow model 249

Figure 17.2: Use case diagram.

17.5 Workflow model
Initial workflow model introduces a preparation task which then splits into parallel gateway with
two tasks (manufacturing and financial evaluation). Workflow proceeds to the last task (business
evaluation) when both of previous tasks are finished (see Figure 17.3).

Figure 17.3: Workflow - processing inquiry - BPMN diagram.

All four tasks are defined as "Manual task" and end event (Stop) is defined as "Terminate end
event". We can test the workflow immediately in Flow Monitor (in "Flows for APEX" applcation).
Save flow as CH17. Then, navigate to Flow Monitor. Click "Create instance" button (see Figure
17.4).

Select model (CH17) and enter distinct name of the instance of the flow CH17 (see Figure
17.5). New instance appears. Click the indicated icon in Figure 17.6 and select "Start". The status
of the instance will change to "running". Click "Details" for demo instance. Set side-by-side
display settings to and click "Complete" in column "Quick Action" (see Figure 17.7). Now, the flow
proceeds with parallel gate and two tasks (see Figure 17.8). Click "Complete" in column "Quick
Action" for both tasks and proceede with the final task. Repeat completion for the last task and the
instance is completed (see Figure 17.9). Entire history of the instance will be presented by clicking
"Show history". We have proved, that the workflow CH17 is executable and we can model data and
application interface.

17.6 Data model 250

Figure 17.4: Creating instances.

Figure 17.5: Creating instance of the flow CH17.

17.6 Data model
17.6.1 Narrative description of data model

The most important entity is ch17 inquiry. An instance of ch17 inquiry is related to one instance
of ch17 customer while customer may have multiple inquiries. Each instance of ch17 inquiry
must have at least three instances ch17 document. Each instance of ch17 document belongs to
one instance of ch17 document class.

Attributes for entity ch17 inquiry are: ID, customer requirements (price per order, quantity,
delivery date), manufacturing aspects (capability, delivery time for requested quantity, justification),
financial aspects (financial capability, expected profit for required quantity) and business aspects
(decision to take or leave opportunity, justification).

We will define a limited set of attributes for other entities to provide this case more compact.

17.6.2 Logical data model
Logical data model is presented in Figure 17.10.

17.6 Data model 251

Figure 17.6: Start demo instance.

Figure 17.7: Complete first task in demo instance.

17.6.3 Relational data model
Relational data model is presented in Figure 17.11.

17.6.4 Quick SQL for generating SQL script
Quick SQL is handy tool to accelerate the development of data model. It can be used for prototyping
by generating SQL script within APEX (generate application out of script) or to apply reverse
engineering to logical data model by importing SQL script into SQL Developer Data Modeler and
transform relational to logical model. The data model, presented in this chapter can be described by
the following Quick SQL:

ch17_employee
apex_un vc30 /nn,
firstname vc30 /nn,
lastname vc30 /nn

ch17_customer
comp_name vc80 /nn,
comp_taxid vc20 /nn,
comp_bic vc20 /nn,
comp_iban vc20 /nn,
comp_rating vc1 /check ’A’,’B’,’C’,’D’ /nn

ch17_doc_class
doc_class_desc vc512 /nn,
doc_class_short vc13 /check ’MANUFACTURING’,’FINANCIAL’,’BUSINESS’,

’OTHER’ /nn

ch17_inquiry
customer_id num /fk ch17_customer /nn,
cust_price num /nn,

17.6 Data model 252

Figure 17.8: Executing tasks in parallel gate.

Figure 17.9: Completed demo instance.

cust_quantity num /nn,
cust_delivery_date date /nn,
cust_product_item vc50 /nn,
sale_man_id num /fk ch17_employee /nn,
sale_eval_date date,
prod_capability vc11 /check ’YES’,’NO’,’CONDITIONAL’,’N.A.’,
prod_delivery_days num,
prod_justification vc1024,
prod_man_id num /fk ch17_employee /nn,
prod_eval_date date,
fina_capability vc11 /check ’YES’,’NO’,’CONDITIONAL’,’N.A.’,
fina_exp_profit num,
fina_justification vc1024,
fina_man_id num /fk ch17_employee /nn,
fina_eval_date date,
bus_capability vc11 /check ’YES’,’NO’,’CONDITIONAL’,’N.A.’,
bus_bid_price num,
bus_bid_quant num,
bus_bid_deliver date,
bus_man_id num /fk ch17_employee /nn,
bus_eval_date date

ch17_inquiry_doc
inquiry_id /fk ch17_inquiry /nn,

17.6 Data model 253

Figure 17.10: Logical data model.

doc_class_id /fk ch17_doc_class /nn,
contblb blob,
fmime vc100,
fname vc200,
fdcr date,
frefer vc256

One of the benefit of Quick SQL is its compactness and simplicity. Number of lines in Quick SQL
is half of the SQL script and number of characters is less than one a third of SQL script. Time
and effort for learning Quick SQL is good investment. APEX also provides user-friendly editor
with auto-completion, however the advantages of Quick SQL would be more utilized by user who
speaks SQL.

17.6.5 Sequence and two stored functions
In this business case, application requirements force us to use some easy-to-understand concepts of
Oracle database:

• the mechanism of sequence - it generates integer numbers by defining initial value, maximum
value, increment, etc. With this mechanism our application will generate a unique number to
identify inquiry and compose the name of the flow instance.

• stored functions in PL/SQL language take input parameters and return a one value. Our
application will use two user defined functions: one to get the size of the document stored in
BLOB column and one to count the number of documents, associated with specific inquiry.

We can define sequence and stored functions in SQL Workshop > SQL Command. The sequence
has name, minimum value, maximum value, increment, start value and some other properties which
are at the moment not important for us:

CREATE SEQUENCE "CH17_SEQ_INQUIRY" MINVALUE 1 MAXVALUE 999999999999
INCREMENT BY 1 START WITH 100 CACHE 10
NOORDER NOCYCLE NOKEEP NOSCALE GLOBAL;

We will also define two stored functions which are explained as comments within the code - two
dashes at the beginning of the lines are comments. The first function is called ch17_doc_bytesize:

17.6 Data model 254

Figure 17.11: Relational data model.

create or replace function ch17_doc_bytesize(xdocid in number) return number
-- Function ch17_doc_bytesize returns the size of the BLOB, stored in contblb
-- column in the table ch17_inquiry_doc for particular row.
-- Function parameter 1 is the ID of of ch17_inquiry_doc table.
-- The length of contblb column is provided by another system level PL/SQL
-- function called dbms_lob.getlength.
is
wdoc_size number := 0;
wblob blob;
Begin

select contblb into wblob from ch17_inquiry_doc where id = xdocid;
wdoc_size := dbms_lob.getlength(wblob);
RETURN wdoc_size;

END ch17_doc_bytesize;

The second function is called ch17_count_docs:

create or replace function ch17_count_docs(xinqid in number) return number
-- Function ch17_count_docs returns the number of documents associated with
-- particular inquiry. Function parameter 1 is the ID of inquiry.
-- If the length of the BLOB in the table ch17_inquiry_doc is greater than 0,
-- then we assume that the content is stored. So, function adds 1 to variable
-- wnumdocs, which is used as a counter. When all matching rows in the
-- table ch17_inquiry_doc are examined, than counter function returns counter.
is
wnumdocs number := 0;
CURSOR c_blob is

select contblb from ch17_inquiry_doc where inquiry_id = xinqid;
Begin

FOR r_blobs IN c_blob
LOOP

if dbms_lob.getlength(r_blobs.contblb) > 0 then

17.7 Application interfaces 255

wnumdocs := wnumdocs + 1;
end if;

END LOOP;
RETURN wnumdocs;

END ch17_count_docs;

17.7 Application interfaces
We suggest the reader to install packaged application for this chapter prior to design of application.
Please find link in Supplementary learning material for this chapter. Page numbers quoted, relate
to prepared packaged application. Reader can of course develop and use other page numbers to
provide the same functionality as described in this section.

Application interface provide functionalities for four actors: sales manager, production manager,
financial manager and chief executive manager. It was first generated with wizard and all features
included (progressive, web app, about page, access control, activity reporting, configuration options,
feedback and theme style selection, total 21 pages). By default a login page is also generated.
Home page contains pure HTML to describe a business situation. It provides links to required
plug-in and tutorials (see Figure 17.12, Page 1 in packaged application).

Figure 17.12: Home page of "CH17 Business Process Management" application.

Some LOVs and Plug-ins were set up or included prior to application development in a narrower
sense.

17.7.1 List of values in Shared Components
In this application the following Lists of value are defined:

• CH17_LOV_CAPABILITY: type is static, display values are (YES, NO, CONDITIONAL,
Not Available), return values are (YES, NO, CONDITIONAL, N.A.). This LOV is used to
fill three distinct capabilities (manufacturing, financial and business) .

• CH17_LOV_CRATING: type is static, display values are (Excellent rating, Good rating,
Edge acceptable rating, Not acceptable rating), return values are (A, B, C, D). This LOV is
used to enter customer rating.

• CH17_LOV_CUSTOMER: type is dynamic, based on table CH17_CUSTOMER, display
value is DOC_CLASS_DESC and return value is ID. This LOV is used on forms and reports
to contribute to readability and to prevent entering wrong customer ID.

• CH17_LOV_DOC_CLASS: type is dynamic, based on table CH17_DOC_CLASS, display
value is COMP_NAME and return value is ID. This LOV is used on forms and reports to
contribute to readability and to prevent entering wrong class of the document related to
inquiry.

• CH17_LOV_EMPLOYEE: type is dynamic, based on SQL query on table CH17_EMPLOYEE:

17.7 Application interfaces 256

SELECT FIRSTNAME || ’ ’ || LASTNAME as d,
id as r
FROM CH17_EMPLOYEE order by LASTNAME, FIRSTNAME

This LOV is used on forms and reports to contribute to readability and to prevent entering
the wrong person who prepares documentation and evaluates inquiry. Concatenate operator
is used to form display string with employee first name, space and last name.

• CH17_LOV_INQUIRY: type is dynamic, based on SQL query on table CH17_INQUIRY:

SELECT
’Instance:’ || ch17_inquiry.id || ’ (Customer: ’ || comp_name || ’,

product:’ || cust_product_item as d,
ch17_inquiry.id as r
FROM ch17_inquiry, ch17_customer
WHERE ch17_inquiry.customer_id = ch17_customer.id;

This LOV is used on forms and reports to contribute to readability and to prevent entering
wrong inquiry ID. Concatenate operator is used to form display long string with a lot of
information.

17.7.2 Plug-ins in Shared Components
The following plug-ins in Flows for APEX are imported: Manage Flow Instance, Manage Flow
Instance Step, Manage Flow Instance Variables and Viewer. These plug-ins are copied from
installed Flows for APEX plug-in.

17.7.3 Sales manager
Application interfaces allow sales manager to:

• initiate workflow instance (see Figure 17.13, Page 2 in application)
• monitor workflow (see Figure 17.14, Page 5 in application)
• confirm that all documents for further evaluations are store in the database (see Figure 17.15,

Page 4 in application)
• get insight into all inquiries (see Figure 17.17, Page 6 in application)
• get insight into all documents related to inquiries (see Figure 17.17, Page 8 in application)
• upload document into related column of inquiry document (see Figures 17.18 and 17.20,

Page 8 and 9 in application)
Comments in Figure 17.13 (numbers and arrows) present the sequence of actions: 1 (user enters

data), 2 (user confirms entered data) and 3 (success or fail message is displayed, data fields are
cleared for new entry).

Besides the visible components there is one hidden page item (P2_WID) which simply gets
next numerical value from sequence CH17_SEQ_INQUIRY. This was the reason that we define
sequence CH17_SEQ_INQUIRY before page design. Button "Start" executes two processes: "Add
inquiry" adds one row to table CH17_INQUIRY and four rows in table CH17_INQUIRY_DOC,
while "Create and start" process executes action from Flows for APEX plug-in (see details in
packaged application, Page 2, Processes). Message of successful completion is returned as seen on
Figure 17.13.

Flow report for sales in presented in Figure 17.14.
Flow report for sales is classic report based on SQL query:

select sbfl_id, sbfl_prcs_id, sbfl_process_name, sbfl_prcs_init_ts,
sbfl_current_name, sbfl_step_key, sbfl_status

17.7 Application interfaces 257

Figure 17.13: Sales - initiated process.

Figure 17.14: Sales - flow report.

from flow_task_inbox_vw
where sbfl_dgrm_name = ’CH17’ and

sbfl_current_name = ’prepare documentation’

It shows only instances of process "CH17" which have current name "prepare documentation". Two
links are provided on Page 4 in application (see Figure 17.14):

1. lens icon in "Subflow ID" column shows the state of the instance in workflow diagram (see
Figure 17.15, Page 5 in application).

Figure 17.15: Sales - flow diagram for selected instance.

2. "Sbfl Process Name" column shows modal dialog in which sales can confirm that documen-
tation is ready (see Figure 17.16, Page 7 in application). At this point, documentation is not
prepared yet (0 documents uploaded). The counter is a result of PL/SQL block as source:

BEGIN
RETURN CH17_COUNT_DOCS(:P7_INQUIRY_ID);

END;

17.7 Application interfaces 258

Figure 17.16: Sales - flow report for selected instance.

Function CH17_COUNT_DOCS (see details in packaged application Supporting objects
or after installation in Object Browser > Functions) counts all large binary objects (BLOB)
stored in table CH17_INQUIRY_DOC which are associated with the specific inquiry. If the
BLOB size is greater than zero, then content is stored, otherwise only empty blob exists.
According to the business rules at least three documents must be prepared (for manufacturing,
finance and business).

To get insight in all inquiries, interactive report for sales is prepared (see Figure 17.17, Page 6 in
application). Sales inquiry report offers searching, and actions (selection of columns, rearranging,

Figure 17.17: Sales - inquiry report.

filtering, formatting, charting, reporting, exporting etc.). The aim of this report is to provide the
sales manager an ID of inquiry which can be used in the process of documentation preparation (i.e.
17 as indicated in Figure 17.17). Next step for the sales manager would be preparation of technical,
financial, business and other specification (see Figure 17.18, Page 8 in application). Figure 17.18

Figure 17.18: Sales - list of documents.

shows filtered results (inquiry ID is 17). No BLOB is uploaded - column "Ch17 Doc Bytesize(id)"

17.7 Application interfaces 259

shows all zero. Page 8 is an interactive report, based on the following SQL query:

select ID, INQUIRY_ID,DOC_CLASS_ID, CH17_DOC_BYTESIZE(ID), CONTBLB,
FMIME,FNAME, FDCR, FREFER

from CH17_INQUIRY_DOC

PL/SQL function CH17_DOC_BYTESIZE returns the size of the BLOB. Function takes the ID of
the CH17_INQUIRY_DOC as an input parameter and is defined as follows:

create or replace function CH17_DOC_BYTESIZE(xdocid in number) return number
is

wdoc_size number := 0;
wblob blob;

Begin
select contblb into wblob from ch17_inquiry_doc where id = xdocid;
wdoc_size := dbms_lob.getlength(wblob);
RETURN wdoc_size;

END;

ID of the CH17_INQUIRY_DOC table is used as a link to open a modal page (Page 9) in application
(see Figure 17.19). By refreshing Page 8, user can be assured that documents are uploaded (see

Figure 17.19: Sales - uploading document for inquiry.

Figure 17.20, Page 8 in application).

Figure 17.20: Sales - list of documents after uploading and refreshing.

Sales would now confirm that the preparation task is finished. By opening the Sales flow
report and clicking the link on process name, the modal page opens (see Figure 17.21, Page 8 in
application). By clicking "Subflow ID", sales manager gets visual confirmation, that document
preparation task is completed (see Figure 17.22, Page 5 in application).

17.7 Application interfaces 260

Figure 17.21: Sales - report for selected instance after uploading three documents.

17.7.4 Production manager
Production manager can:

• monitor workflow (report in Figure 17.23, Page 20 in application and diagram in Figure
17.24, Page 5 in application)

• enter manufacturing evaluation (Figure 17.25, Page 21 in application)
By clicking “Manufacturing flow report” production manager can track unevaluated inquiries

(i.e. report in Figure 17.23, Page 20 in application).
Selecting lens icon under “Subflow ID” opens Page 5 (see Figure 17.24) which shows the

instance of the flow CH17. Instance is in the parallel gate which means that both tasks (manufac-
turing and financial evaluation) must be finished before the next task (business evaluation) starts.
Manufacturing evaluation can be entered by clicking “Sbfl Process Name” link on Page 20 (see
Figure 17.25, Page 21 in application).

Pressing the button “Confirm manufacturing evaluation” will move the instance flow in next
state, depicted in Figure 17.26. By refreshing Page 20, report displays “Manufacturing has no flow
instances”.

17.7.5 Financial manager
Financial manager can:

• monitor workflow (report in Figure 17.27, Page 30 in application and diagram in Figure
17.28, Page 5 in application)

• enter financial evaluation (Figure 17.29, Page 31 in application)
By clicking “Financial flow report” financial manager can track unevaluated inquiries (i.e report on
Figure 17.27, Page 30 in application).

By clicking lens icon under “Subflow ID” application opens Page 5 (see Figure 17.28) which
shows the instance of the flow CH17. Financial evaluation can be entered by clicking "Sbfl Process
Name" link on Page 30 (see Figure 17.29, Page 31 in application).

Pressing the button “Confirm financial evaluation” will move the instance flow in next state,
depicted in Figure 17.30. By refreshing Page 30, report displays "Finance has no flow instances".

17.8 Linking application with Flows for APEX 261

Figure 17.22: Sales - flow report for selected instance after uploading three documents.

Figure 17.23: Manufacturing - flow report.

17.7.6 Chief executive officer - business manager
Business manager can:

• monitor workflow (report in Figure 17.32, Page 40 in application and diagram in Figure
17.31, Page 5 in application)

• enter business evaluation (Figure 17.33, Page 41 in application)
By clicking “Business flow report” CEO can track unevaluated inquiries (i.e report in Figure

17.32, Page 40 in application). Click on the lens icon under “Subflow ID” will open Page 5 (see
Figure 17.31) which shows the instance of the flow CH17. Business evaluation can be entered by
clicking "Sbfl Process Name" link on Page 40 (see Figure 17.33, Page 41 in application).

Pressing the button “Confirm business evaluation” will move the instance to the end of workflow,
depicted in Figure 17.34. By refreshing Page 40, report displays "Business has no flow instances".

17.8 Linking application with Flows for APEX
The application, developed in chapter 17 applied two functions provided by Flows for APEX:

• start an instance on the Page 2
• show the state of the instance on Page 5
• push forward instance to the next task on Pages 7, 21, 31, 41

Starting an instance requires a process on the page. In identification area of the process type:
“Flows for APEX - Managing Flow Instance [Plug-In]”. Action should be “Create and Start”. We
set Flow instance Name to:

CH17 (&P2_WID.) by - &APP_USER.

Remember that page item P2_WID contains unique number, provided by sequence. So the name is
concatenated string, composed of fixed string “CH17”, space, open parenthesis, unique sequence
number, close parenthesis, space, fixed string “by - ” and current user. Select Flow is using “Static

17.9 Define user roles 262

Figure 17.24: Manufacturing - BPMN diagram - state of instance.

Figure 17.25: Manufacturing evaluation.

text” and the Static text is “CH17”. Success Message is “Flow CH17 instance started.” and Error
Message is “Flow CH17 instance NOT started.”.

To present the state of the instance on Page 5 the page wizard for plug-in page is used. The
page contains viewer plug-in and hidden item - P5_PRCS_ID. See settings in Figure 17.35.

To push instance forward (i.e. Pages 7, 21, 31, 41) define page items as shown in Figure 17.36.
Only first four page items (from P7_PRCS_ID to P7_INSTANCE_NAME) are relevant to Flows
for APEX integration. Create a new process which is triggered by a button. Process is defined as
"Manage Flow Instance Step" plug-in. Set Action, Process ID Item, Subflow ID item and Step Key
as shown in Figure 17.37.

17.9 Define user roles
User roles can be defined in Application Access Control in Shared Components (i.e. Figure 17.38).
At this time we will skip the details and implementation for this specific case. For fast overview see
Chapter 13 or for thorough insight study APEX documentation on authorization.

17.10 Testing and correcting errors
For beginner, the testing process would be very simplified as you put your hands on the keyboard
and mouse to develop with APEX, you are on a certain path to make errors and to correct it. Do
not be afraid to make errors. Take the lesson from each one that you solved by yourself. Share the
knowledge in open APEX community. The discipline of software testing is a huge one and you can
learn it by doing it. There is no other way. Developers are the first line of defense against software
errors, faults, and failures.

Surprisingly, failed software development projects in most cases went the wrong way before a
single line of code was written. The application, developed for this chapter, has software errors too.

17.11 Supplementary learning material 263

Figure 17.26: Manufacturing evaluation finished, instance waiting to financial evaluation.

Figure 17.27: Finance - flow report.

Some of them will be discovered and debugged by clever readers. Some errors are also deep inside
APEX itself. We, the writers and developers of this chapter hope that testing and debugging will
present a pleasant challenge to readers.

Removing errors from software is sometimes fun and sometimes a curse. Just do not give up
too soon!

17.11 Supplementary learning material
You can find the following supplementary learning material:

• exported packaged application and scripts
• workflow model called CH17
• video guides

All supplementary learning material is available on public BeeAPEX project page. Login as a
guest user (no password is required). Find the textbook in Books section, scripts in folder Part 2 >
Chapter17 in the Scripts section and video guides in Collection of video guides. Material for short
courses is in Short courses section.

17.11.1 Exported application
Exported application is packaged. Installation creates tables, sequence, functions as well as populate
data. De-installation removes all data base objects used in this application.

https://beeapex.eu/course/view.php?id=12

17.11 Supplementary learning material 264

Figure 17.28: Finance - BPMN diagram - state of instance.

Figure 17.29: Financial evaluation.

Packaged application is tested and it will run in new workspace if the following requirements
are meet:

• privilege "create job" is granted to schema which hosts new workspace. Database administra-
tor can grant this privilege by command "grant create job to <schema>". APEX workspace is
associated with database object called schema. If you are using OCI (free, paid or provided
by Oracle Academy) than use web OCI interface (Autonomous Database > specific instance
> Database action) or enter directly web database administrator interface. You can execute
queries and scripts. Figure 17.39 presents the outlook of the interface with entered command
(1) and database response (2). If you use other tools (SQL Developer, TOAD) the procedure
is pretty much the same, except the outlook of the interface.

• Flows for APEX must be installed in new workspace (see prior instructions).
• Workflow model called CH17 is imported into Flows for APEX. File CH17.bpmn is stored

in directory Flows4APEX in packaged application as static file. Go to Shared Components
> Static Application Files and download it to your local computer. The same file is also
available in learning materials scripts. Than import file CH17.bpmn with Flows for APEX.
Log in into application Flows for APEX. Select Flow management and import the file (see
Figures 17.40 - step 1 and Figure 17.41 - step 2). The meaning of the numbers in Figure
17.41 are: 1 (arbitrary category), 2 (name of the model must be exactly CH17), 3 (navigate
your file explorer to CH17.bpmn) and 4 (confirm by pressing Import)

• After installation of the packaged application add a user role assignment (Shared components
> Application Access Control > Add User Role Assignment).

If any of the above requirements is not met then the imported application will crash. It is necessary
to clear the web browser cookie (i.e. Firefox: Settings > Cookies and Site Data > Manage Data)
after application crashes due to unmet requirements.

17.12 Questions 265

Figure 17.30: Financial evaluation finished, instance waiting to business evaluation.

Figure 17.31: Finance - BPMN diagram - state of instance.

17.11.2 Video guides
Video guide shows initial steps in application development.

17.12 Questions
1. Explain what is Flows for APEX?
2. What are the artifacts of business process model presented with BPMN diagram?
3. Which functions by Flows for APEX were used in this application?

17.13 Answers
1. Flows for APEX is called a feature, a plug-in and an application. All three meanings are

correct. Feature is meant when we discuss in the context of process modeling. Plug-in relates
to development of custom application. Application "Flows for APEX" is aimed to design
workflows and administer the instances in the case of issues.

2. Artifacts of business process model presented with BPMN diagram are:
• Start Event: Indicates the starting point of a process.
• Task: Represents a single unit of work, such as an activity or a step in the process.
• Gateway: Represents a decision point in the process, such as a fork in the flow or a

17.13 Answers 266

Figure 17.32: Business - flow report.

Figure 17.33: Business evaluation.

conditional branch.
• Sequence Flow: Connects elements in the diagram and represents the flow of control

from one element to another.
• End Event: Indicates the end of a process.
• Pool/Lane: Represents a grouping of related tasks, used to define the roles and respon-

sibilities of different participants in the process.
• Message Flow: Represents the flow of messages between participants in a process, such

as a communication between two systems.
• Data Object: Represents a piece of data that is used or produced in a process, such as

an invoice or a customer record.
• Data Store: Represents a container for storing data that is used or produced in a process,

such as a database or a file system.
3. To start instance, action "Create and Start" was used. To present instance on BPMN diagram,

plug-in page wizard used Viewer component. To push forward to next step the component
"manage Flow Instance Step" was used in application.

17.13 Answers 267

Figure 17.34: Business evaluation finished, instance terminated.

Figure 17.35: Showing the state of the instance on BPMN diagram.

17.13 Answers 268

Figure 17.36: Setting page items.

Figure 17.37: Completing step in Flows for APEX.

17.13 Answers 269

Figure 17.38: Define roles and user roles in Application Access Control menu.

Figure 17.39: Granting "create job privilege" to workspace.

Figure 17.40: Import workflow called CH17 into Flows for APEX - step 1.

17.13 Answers 270

Figure 17.41: Import workflow called CH17 into Flows for APEX - step 2.

18. GreenDi – Exchange of Plants and Seeds

VJERAN STRAHONJA, DIJANA OREŠKI, DARKO ANDROČEC AND ANA KUTNJAK

18.1 Business view of the case
A short business overview of the GreenDi platform is described in chapters 14 and 15. Chapter
18 refers to the part of the platform dedicated to the exchange of plants and seeds. All registered
users of the platform can participate in this exchange, presenting their own offer, or responding to
someone else’s offer. At the same time, the system should enable searching for offers by different
filters, sorting columns and similar functionalities. In addition, communication between the bidder
and other users related to a specific offer should be enabled. Communication is in the form of chat.

18.2 Problem definition
The following sentences describe the problem:

• The basic functionalities of exchanging seeds and plants are submitting one’s own offers
(bid and ask) and responding to other people’s offers (bid and ask), which is reserved for
members.

• Members can search the catalog by different criteria and open a table with open offers for
each type of plant from the catalog.

• The platform is not commercial, ie plants are not sold or bought on the platform, but
exchanged and donated. Therefore, plant transactions are not subject to taxation.

• The offer includes the plant that is offered or requested, quantity, place, bidder, comments,
bid date, bid validity date, instructions for picking up or sending, status, etc.

• Offers (bid or ask) are presented in tabular form, with the possibility of sorting by columns
and searching and filtering by various criteria (type of plant, date of offer, member, place,
status, etc ...).

• Each member can respond to any open offer.
• The conversation on any bid takes the form of a public, or private chat.
• The basic unit for conversation (chat) is a message.
• The message contains information about the member who sends it (automatically generated),

the text of the message and visibility (public, private).
• The system should support all phases of lifecycle management of offers (create, change,

close, delete and archive). The bid is created, modified, closed, deleted and archived by the
bid owner. The administrator can delete an offer if it violates some rules and can archive

18.3 Use cases 272

Table 18.1: Use case description: exchange of Plants and Seeds.
Keyword Value
ID: ch18-01
Title: Exchange of Plants and Seeds
Description: Plants Exchange.
Primary Actor: Any person
Preconditions: Basic information about the plant is open for search and viewing without

any registration.
Postconditions: If user enters new offer than new data is stored.
Main -
Success Scenario:

1. user scrolls up and down the catalog until plant is found or applies
filter search

2. user opens the list of offers for selected plant or all plants
3. user scrolls up and down the list of offers or applies filter search
4. user opens new offer for selected plant, enters details and exposes

the new offer
5. user clicks on selected offer, opens the pop-up window with detail of

selected offer
6. user can respond to any active offer with a counteroffer or acceptance,

or start a chat.
7. chat is in the form of messages and replies to messages
8. link is visible to the offerer and the other participating users

Extensions:
• List of offers (report)
• Details of the offer (new or existing)
• Chat (list of messages)

Frequency of Use: Approx. maximum is 100 per day.
Status: Development status
Owner: public, anonymous user
Priority: high

inactive offers after a certain time.

18.3 Use cases
18.3.1 Narrative description of use case

Communication with UC Offer management is available to every registered user or member of
the GreenDi platform. A prerequisite for communication is a successful Log-In (included UC).
The UC Browse catalog of plants functionality is an extension of the UC Offer management. The
administrator is also an external user of UC Offer management. At the same time, he can view all
offers and chats without restrictions and can change the status of each offer.

18.3.2 Semi-structured description
Table 18.1 presents UC.

18.4 Data model 273

18.3.3 Use case diagram
The above story is depicted on use case diagram 18.1.

Figure 18.1: Use case diagram - Exchange of Plants and Seeds

18.4 Data model
This section explains data model.

18.4.1 Narrative description of data model
The logical data model (Entity-Relationship model) is actually an upgrade of the data model from
Chapters 14 and 15). The Plant and Thematic unit entity types were taken from Chapter 14, and
User from Chapter 15. The basic entity types for Exchange of Plants and Seeds are Offer and
Message. Offer is described by the following attributes: IDoffer (identification attribute); Bid
or ask (describes if plant or seed is offered or requested), Quantity (of plant or seed), Location
(where plant or seed can be picked-up, or delivered), Bidder (the user who bids or asks), Comments
(comments on quality, instructions for delivery etc.), Date (date of the offer), Valid to (validity
date), Status (active, withdrawn, realized). Offer is an original offer, or a response to an original
offer. This means that each offer is a response to 0, or one offer, AND has 0, 1, or more responses.
Each Offer is offered by one and only one User. 0, 1, or more Messages are related to the Offer.
Each Message is related to 1 and only 1 Offer, sent by 1 and only 1 User (sender) and intended for
1 and only 1 user (recipient).

18.4.2 Logical data model
Logical data model is presented in Figure 18.2.

18.5 Application interfaces 274

Figure 18.2: Logical data model.

18.4.3 Relational data model
Automatic transformation from logical data model to relational data model in Oracle SQL Data
Modeler is provided by function Engineering to relational. The result is shown in Figure 18.3.

Let now Oracle SQL Data Modeler generates SQL script. Select all tables on relational model
and use function File > Export > DDL File to get a script. We can import the generated script in
APEX and execute it.

18.5 Application interfaces
Offers are presented as interactive report (see Figure 18.4).

Message form is presented in Figure 18.5.

18.6 Supplementary learning material
You can find the following supplementary learning material:

• exported application
• scripts for creating, dropping and inserting
• video guide

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter18
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

18.6.1 Exported application
Exported application is packaged. Installation create tables and populate data. De-installation
removes all data base objects used in this application.

https://beeapex.eu/course/view.php?id=12

18.7 Questions 275

Figure 18.3: Relational data model.

18.6.2 Video guides
Video guide show every step in application development.

18.7 Questions
1. How could we make the offer visible with a delay, from a certain moment, when the bidder

wants it?
2. Can this app be used to chat about a topic other than actually exchanging plants and seeds?

How?
3. In table CH18_OFFER, the column VALID_TO has CHAR datatype. What are the potential

problems if a date is defined as CHAR type?

18.8 Answers
1. First, we would add a column in CH18_OFFER table. Than we would correct the form which

enables entering new offers. Finally, we would correct the query on offers report by adding
condition (where new_column <= SYSDATE).

2. Theoretically, it is possible. The moderator of the chat should open a dummy offer, and all
users who come in with their dummy counteroffer could participate in the chat.

3. Storing dates as CHAR can introduce data integrity issues, sorting problems, limited date
operations, formatting difficulties and some other problems. It is generally recommended to
use the appropriate date data types provided by Oracle, such as DATE or TIMESTAMP, for
accurate and efficient date storage and manipulation.

18.8 Answers 276

Figure 18.4: Offers - interactive report.

Figure 18.5: Message form.

19. Book review management system

ANA KUTNJAK, LARISA HRUSTEK, ALENKA BAGGIA AND ROBERT LESKOVAR

19.1 Business view of the case
The book review management system was designed with the aim of managing reviews of books
available for sale on the arbitrary on-line platform. The company (i. e. Amazon) is thinking about
managing the catalog of available books in such a way that, based on user reviews, it decides on the
books offer by adding or removing it. Using the review management system, the company collects
user reviews, creates a unique database and decides on further action based on the collected data.
The basic stakeholders of the database are the administrator and the user, the book reader. The use
case and idea are inspired and offered by Kaggle - online community platform for data scientists
and machine learning enthusiasts. Original data is available www.kaggle.com. Use cases and data
model are profoundly modified and supplemented. The aim of this business case is to demonstrate
development capabilities of APEX relying only on wizards. With the exception of Quick SQL
(total 31 short lines) no other code will be written by developer.

19.2 Problem definition
Review management system has the following functionalities:

• Given the wide range of books in the global offer, data on their reviews and rating score are
collected.

• The common view of the platform includes a list of books with information about the title,
authors, content description, publisher, published date, categories and reviews.

• The administrator’s options include adding books to the platform’s database, as well as
editing and selecting them by category.

• Since the database allows users to add reviews, the administrator can view reviews and review
comments. Based on that, the administrator makes decisions about actions per book (adding
or removing).

• The user has the option of registering to the platform, which enables him to view book details,
but also to review them and comment reviews.

• Reviews on the user side have two benefits. First, based on the analysis of the book reviews,
the potential user decides to buy book. Second, based on the existing reviews, company
makes actions regarding books, i.e., adding or removing them from the catalog.

https://www.kaggle.com/datasets/mohamedbakhet/amazon-books-reviews

19.3 Use cases 278

19.3 Use cases
19.3.1 Narrative description of the use case

The administrator is in charge of entering or changing data about books within the company review
management system and is enabled to view various statistical indicators related to books. The
Amazon review management system is based on user registration on the platform. By registering,
users can view the catalog of books available on the platform. The book catalog contains detailed
information about available books and is the basis for further actions within the platform. The
books are classified into categories, which makes searching easier and allows introduction of user
personal preferences. Registered user can add review and add comment on review.

19.3.2 Semi-structured description
Activities to enter new book data are assigned to the administrator. It complements the current
database with new books, which results in the addition of the offer in the book catalog. The
frequency of use of the platform by the administrator is on a daily basis. The user makes registration
on the book review management system platform. After successful registration, user reviews the
catalog of books, their reviews, and finally adds his own review and comments on reviews. The
frequency of using the platform by users is several times a month.

Description of use cases are provided in Table 19.1.

19.3.3 Use case diagram
The above story is depicted on use case diagram (see Figure 19.1).

19.4 Data model
19.4.1 Narrative description of data model

Logical data model (Entity-Relationship model) consists of several entities: ch19_category,
ch19_book_data, ch19_book_review, ch19_book_user in ch19_book_review_comment. Entity
book_data consist of several attributes:, title, authors, about, publisher, publication_date and rat-
ing_count. Entity book_user include profile_name, firstname and lastname. Entity book_review
have attributes: review and review_date and review_score. Entity review_comment contain re-
sponses on reviews: rev_comment, rev_helpfulness and rev_comm_score. Each book belong to one
and only one category. Category can have more books. There may be more reviews related to one
book. User can comment more books and more reviews by other users. We add primary UID called
ID in each entity. These attributes will become primary keys in corresponding tables. After we
generate SQL script for table creation we add two check constraints - we will allow review score
and comment on review score to have numeric values between 1 and 5 only.

Developer has several possibilities to create tables. One is to use SQL Developer Data Modeler
and design logical model from scratch, transform to relational and generate SQL script. Another is
to create tables in APEX, export scripts which creates tables, apply reverse engineering in SQL
Develoepr Data Modeler to generate relational model and than transform it to logical model. Using
only APEX Quick SQL functionality is the most straight forward approach. After Quick SQL is
writen, it can be transformed into SQL script with APEX built-in generator.

19.4.2 Logical data model
Logical data model is presented in Figure 19.2.

19.4 Data model 279

Table 19.1: Use case description: book reviews management system
Keyword Value
ID: ch19-10
Title: Book reviews analysis
Description: The book review management system is available based on registration on

the platform. The platform allows browsing catalogs, filtering them, and
classifying them according to categories.

Primary Actor: User
Preconditions: browser on PC or smart phone, user has credentials, application is accesible.
Postconditions: if book detail, review or comment on review is added than database store it.
Main Scenarios
Success Scenario: First scenario (administrator add new book):

1. the administrator logs into application.
2. the administrator selects the form for entering a new book.
3. the entry form includes title, authors, description, publisher, publish

date and category selection.
4. the administrator completes the procedure by creating a new entry.
5. the administrator logs out of the platform.

Second scenario (user, book review):
1. the user registers on the platform.
2. the user browses the book catalog and selects the book he wants to

review.
3. the review form includes title, price, profile name, review helpfulness,

review score, review summary, and review text.
4. the user completes the procedure by entering a new review.
5. the user logs out of the platform.

Third scenario (user, commenting book review):
1. the user registers on the platform.
2. the user browses the book reviews.
3. the review includes title, price, profile name, review helpfulness,

review score, review summary, and review text.
4. the user adds a new review comment.
5. the user logs out of the platform.

Extensions:
• Book insert
• Interactive report per book
• Book reviews
• Comments on reviews

Frequency of Use: Daily basis, several time on month.
Status: [Development status]
Owner: Potential users, based on registration.
Priority: high

19.4 Data model 280

Figure 19.1: Use case diagrams.

19.4.3 Relational data model
Automatic transformation from second logical data model to relational data model in Oracle SQL
Data Modeler is provided by function Engineer to Relational Model. The result is shown in Figure
19.3. Let now Oracle SQL Data Modeler generates SQL script. Select all tables on relational model
and use function File > Export > DDL File to get the script. We can import the generated script in
APEX and execute it.

19.4.4 SQL script
The script which corresponds to relational model includes the following SQL commands:

1 create table ch19_category (
2 id number generated by default on null as identity
3 constraint ch19_category_id_pk primary key ,
4 category_name varchar2 (256 char));
5

6 create table ch19_book_user (
7 id number generated by default on null as identity
8 constraint ch19_book_user_id_pk primary key ,

19.4 Data model 281

Figure 19.2: Logical data model.

9 profile_name varchar2 (256 char),
10 firstname varchar2 (256 char),
11 lastname varchar2 (256 char));
12

13 create table ch19_book_data (
14 id number generated by default on null as identity
15 constraint ch19_book_data_id_pk primary key ,
16 title varchar2 (256 char),
17 authors varchar2 (256 char),
18 about varchar2 (1024 char),
19 publisher varchar2 (256 char),
20 publication_date date ,
21 rating_count number ,
22 category_id number
23 constraint ch19_book_data_category_id_fk
24 references ch19_category on delete cascade);
25

26 create table ch19_book_review (
27 id number generated by default on null as identity
28 constraint ch19_book_review_id_pk primary key ,
29 review varchar2 (1024 char),
30 review_date date ,
31 review_score number
32 constraint ch19_book_revie_review_scor_ck
33 check (review_score in (1,2,3,4,5)),
34 book_id number
35 constraint ch19_book_review_book_id_fk

19.4 Data model 282

Figure 19.3: Relational data model.

36 references ch19_book_data on delete cascade ,
37 user_id number
38 constraint ch19_book_review_user_id_fk
39 references ch19_book_user on delete cascade);
40

41 create table ch19_review_comment (
42 id number generated by default on null as identity
43 constraint ch19_review_commen_id_pk primary key ,
44 rev_comment varchar2 (1024 char),
45 rev_comm_date date ,
46 rev_helpfulness varchar2 (256 char),
47 rev_comm_score number
48 constraint ch19_review_c_rev_comm_scor_ck
49 check (rev_comm_score in (1,2,3,4,5)),
50 review_id number
51 constraint ch19_review_commen_review_i_fk
52 references ch19_book_review on delete cascade ,
53 user_id number
54 constraint ch19_review_commen_user_id_fk
55 references ch19_book_user on delete cascade);

19.4.5 Quick SQL
The most straight forward procedure to generate SQL script is usage of Quick SQL function in
APEX. The following lines in Quick SQL enable generation of SQL script, presented above:

1 ch19_category
2 category_name vc256

19.5 Application interfaces 283

3

4 ch19_book_user
5 profile_name vc256
6 firstname vc256
7 lastname vc256
8

9 ch19_book_data
10 title vc256
11 authors vc256
12 about vc1024
13 publisher vc256
14 publication_date date
15 rating_count num
16 category_id /fk ch19_category
17

18 ch19_book_review
19 review vc1024
20 review_date date
21 review_score num /check 1,2,3,4,5
22 book_id /fk ch19_book_data
23 user_id /fk ch19_book_user
24

25 ch19_review_comment
26 rev_comment vc1024
27 rev_comm_date date
28 rev_helpfulness vc256
29 rev_comm_score num /check 1,2,3,4,5
30 review_id /fk ch19_book_review
31 user_id /fk ch19_book_user

The code is very dense. However it requires the basic knowledge of data modeling and syntax
of Quick SQL.

19.5 Application interfaces
19.5.1 Administrator

In this case we will generate application from SQL script which creates tables and populates sample
data. Find file CH19CREATEINSERT.sql in learning materials and import it into your workspace.
Once imported open it and click Create App (see Figure 19.4).

Figure 19.4: Generating application out of script CH19CREATEINSERT - part 1.

19.5 Application interfaces 284

Name the application, select all Features and click Generate Application (see Figure 19.5).

Figure 19.5: Generating application out of script CH19CREATEINSERT - part 2.

Working prototype of the application is now prepared. From now on functions for administrator
and end user will be presented. So far not a single line of code was written by developer (with the
exception of Quick SQL) and no application interface was tailored by developer. The actual code
behind the application was assembled entirely by APEX wizards.

Figure 19.6 shows the form for entering a new book by the administrator.
Figure 19.7 shows the form for inserting the book category by the administrator.

19.5.2 User
Figure 19.8 shows the user registration form.

Figure 19.9 shows the browsing and adding reviews.
Figure 19.10 shows form to comment a review.
Reports are by default tabular. End user can generate graphs without programming, using just

built in wizard. See Chapter 8 for transforming reports to graphs.

19.6 Define user roles 285

Figure 19.6: Adding book by administrator.

Figure 19.7: Adding category by administrator.

19.6 Define user roles
User roles can be defined in Application Access Control in Shared Components. At this time we
will skip the details and implementation for this specific case. For fast overview see Chapter 13 or
for thorough insight study APEX documentation on authorization.

19.7 Supplementary learning material
You can find the following supplementary learning material:

• script for creating and populating tables
• script for dropping tables
• exported packaged application
• video which demonstrates how to generate application out of script.

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter19
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

https://beeapex.eu/course/view.php?id=12

19.7 Supplementary learning material 286

Figure 19.8: User registration.

Figure 19.9: Browsing and adding reviews.

19.7.1 Exported application
Exported application is packaged. Installation creates tables as well it populates data. De-installation
removes all data base objects used in this application.

Packaged application is tested and it will run in new workspace if the following requirements
are meet:

• add APEX user before running application. Only in developement and testing workspace
navigate to Shared Components > Application Access Control > Add User Role Assignment;
enter APEX user and set this user roles Administrator, Contributer and Reader. In production
consultation with skilled personel before deployment in a must.

If user is not granted appropriate role than imported application will crash. It is necessary to
clear web browser cookie (i.e. Firefox: Settings > Cookies and Site Data > Manage Data) after
application crashes due to unmet requirements.

19.7.2 Video guides
Video guide shows all steps in application development.

19.8 Questions 287

Figure 19.10: Form to comment a review

19.8 Questions
1. Why was in this case used Quick SQL script?
2. How can you generate multiple forms and reports in one shot?
3. How can you authorize APEX application user within application itself?

19.9 Answers
1. Quick SQL script was introduced to speed-up development of the data model. Quick SQL

script generates SQL script upon request. SQL script is executable i.e. it creates database
objects like tables and views.

2. It is possible to generate multiple forms and reports in one shot by writing the script which
contain definition of several tables.

3. To authorize APEX application user within application itself, the application must be gener-
ated with Access Control Feature. Than authorized user (Administrator) can add other users
with Administrator, Contributor and Reader roles.

20. Bill-of-material and cost calculation

ROBERT LESKOVAR, UROŠ RAJKOVIČ AND ALENKA BAGGIA

20.1 Business view of the case
The observed small company, which will be called OSC (10-20 employees) manufactures cable
assemblies, cable bundles, conductors and signal lamps. They also offer assembly of electrome-
chanical parts and mechanical semi-products. Their customers are bigger companies which provide
house appliances, measuring equipment, control systems, electricity meters, medical devices and
similar. Customer orders are accepted by phone and e-mail. For simple products and operations, as
well as for repetitive orders, OSC send confirmation to the customer very quickly. Recently, orders
for multi-level assembled products and more complex semi-products have been increasing. Also,
there are dozens of items in one order and each item can include product composed od several
semi-products and materials. Semi-products may be composed of semi-products and materials. The
customers wants to receive an offer quickly. Delivering a calculation of the price of the material
and semi-products (bill-of-material calculation or short BOM calculation) is demanding, error
prune and time consuming task for multi-level assembled products and semi-products. It may take
several days to respond to the customer with the offer. The calculation of costs of work (operations)
is another calculation which for brevity of the chapter is omitted. The scope of the chapter will
therefore be BOM calculation only. The company owner expressed the following needs:

• the report on products, semi-products, material and possibly customer inquiries
• the report on bill-of-material
• form for editing products, semi-products, material and possibly customer inquiries
• form for editing bill-of-material
• calculation and tree-like presentation of bill-of-material

An application should be usable on phone, tablet or desktop computer.

20.2 Problem definition
The company manager faces several issues related to agile response:

• calculation is time consuming, error prone and demanding, however it must be prepared very
quickly,

• over-dues and calculation mistakes can affect business in several ways such as loosing
potential customers, lower financial results, decreasing business reputation, lowering sales
and stuffing and similar.

20.3 Use cases 289

Table 20.1: Use case description: report and maintain basic data.
Keyword Value
ID: Ch20-01
Title: Report and maintain basic data
Description: The manager uses the APEX application to report and maintain (select,

update) basic data whether it is a product, semi-product, material or
inquiry. Materials and aggregates are described with same set of attributes.
Updating prices of materials will not trigger re-calculation of the prices
of the aggregates in which material is used. Customer inquiry can be
composed of several products and semi-products. The unit of measure for
quantity in this case will be piece.

Primary Actor: Manager
Preconditions: Manager has account for APEX application.
Postconditions: After reporting or maintaining data another action can be taken including

BOM calculation.
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the application.
2. Select menu item or page navigation "Prod./Semi/Material".
3. To edit scroll down the page or filter data to find specific product,

semi-product or material.
4. Click on pencil icon for specific product, semi-product or material

and update data.
5. Click "Apply changes".

Extensions: none
Frequency of Use: average 5 per day
Status: Finished
Owner: Manager
Priority: high

The above risks should be mitigated effectively by web application.

20.3 Use cases
20.3.1 Narrative description

We can determine basic tasks to perform:
• report and maintain data about products, semi-products and materials. We treat consuming

as reporting in tabular and tree forms and maintaining as adding, updating and deleting (see
Table 20.1).

• calculate BOM for specific inquiry, product or semi-product (see Table 20.2).
The titles of use cases are therefore "report and maintain basic data", "report and maintain structure
data" and "calculate BOM".

20.3.2 Semi-structured description
The above story is depicted on use case diagram.

20.3 Use cases 290

Table 20.2: Use case description: report and maintain structure data.
Keyword Value
ID: Ch20-02
Title: Report and maintain structure data
Description: Manager uses APEX application to report (view selected data) and main-

tain (insert and delete) the structure of products, semi-products and ma-
terial. Customer inquiry can be composed of several products and semi-
products. Inserting new items or deleting existing items will not trigger
(re)calculation of the prices of the aggregates.

Primary Actor: Manager
Preconditions: Manager has account for APEX instance.
Postconditions: After reporting or maintaining data, another action can be taken including

BOM calculation.
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the application.
2. Select menu item or page navigation "Bill-of-material".
3. To add a component click "Create" button.
4. To delete an item in the structure click "Delete".

Extensions: none
Frequency of Use: average 30 per month
Status: Finished
Owner: Manager
Priority: high

20.3 Use cases 291

Table 20.3: Use case description: calculate BOM.
Keyword Value
ID: Ch20-03
Title: Calculate BOM
Description: The manager uses the APEX application to calculate the price of the

structure described by BOM for a specific item, whether it is a product,
semi-product or inquiry. The resulting prices are updated for all items,
aggregated in the structure, regardless of their complexity and depth, in-
cluding the top aggregate.

Primary Actor: Manager
Preconditions: Manager has account for APEX instance.
Postconditions: After calculation, any another action can be taken including another BOM

calculation.
Main Scenarios
Success Scenario:

1. Open the web browser and sign-in to the application.
2. Select menu item or page navigation "Tree view and calculation".
3. Select the aggregate to calculate.
4. Click "Calculate" button. Message appears showing the status of

calculation and the calculated price.
5. Expand or collapse the tree structure of selected item to show sub

parts data.

Extensions: none
Frequency of Use: average 30 per month
Status: Finished
Owner: Manager
Priority: high

20.4 Data model 292

20.3.3 Use case diagram
The above story is depicted on use case diagram (see Figure 20.1).

Figure 20.1: Use case diagram.

20.4 Data model
20.4.1 Narrative description of data model

There are only two entities in the data model for this case. Entity ch20 psm (later referred as a
table) describes products, semi-products, materials and customer inquiries with only three attributes
common to all: ID, description, unit of measure and price per unit of measure. Values for all
attributes are required. Why? It is meaningless to store an instance without knowing how it is
called, how it is measured and what is the price per unit. The ID is unique number without any
decimal part. The Description must contain at least one printable character. The domain of units of
measure is limited to millimeter, centimeter, meter and piece. Due to the small number of distinct
values of units of measure no additional entity will be introduced to present the fact that one unit
of measure has many occurrences in ch20 psm while one ch20 psm instance relates to only one
instance of unit of measure only.

To present arbitrary hierarchical structure (bill of material of any width and any depth) the
entity ch20 bom has three attributes only: identification of sub part, identification of aggregate
and quantity of sub part contained in aggregate. Values for all attributes must be present. The pair
(identification of sub part, identification of aggregate) is unique however we will add a primary
key generated as a sequence of integer values to take benefits of low code APEX environment. One
instance of ch20 bom can has double relation with ch20 psm: sub part relates to one instance of
ch20 psm and aggregate relates to one instance of ch20 psm. In the opposite direction we have:
one ch20 psm instance may point to many sub parts and many aggregates in ch20 bom entity.
Therefore we have two 1-to-many relations between ch20 psm and ch20 bom. One more thing
more about logical data model must be pointed: the uniqueness of pair (identification of sub part,
identification of aggregate). Logical model in Oracle Data modeler has no "syntax" to express this
uniqueness as special object in data base called index. But on relational data model it is possible to
introduce uniqueness of specified pair of values as index. In relational data model the unique index
is composed of two fields in the table. This unique index guarantees that no duplicate pair values
will be stored in data base - data base engine will protect developer and end user to disrupt data

20.4 Data model 293

integrity.

20.4.2 Implementation of business rules in data base
Logical and relational data model is simple. In mathematics bill of material is special type of graph
where each node is connected with only one parent node except the root node which has no parent
node. It is very easy to break a hierarchy by introducing additional connection between nodes or
deleting a connection. In the context of data base changes in connections affects data integrity.
Storing cyclical structure in ch20 bom would cause that calculation of bill of material never ends.
In the context of business rules it is impossible and forbidden for a car (product) to be composed of
wheels (semi-product) and at the same time that wheel to be composed of cars. Also car cannot be
composed of itself. To prevent violation of business rules we will introduce a trigger (another data
base object) mechanism which is usually represented by a few lines of code in PL/SQL language.
The trigger will be executed before writing to or updating ch20 bom. Such code would prevent new
insert into ch20 bom if pair in reverse order already exists or both new sub part and aggregate has
the same value. Implementation of such kind of rules cannot be presented on logical or relational
data model.

It is also impossible to present how calculation of BOM will be implemented in data models.
This chapter will provide insight into code which turns hierarchy upside down (from bottom to top)
and start summing total cost from the bottom - first calculate the cost of material in semi-products
and them cost of semi-products in product. Remember that data model with two entities or two
tables is capable to present any complexity (width and depth of hierarchy) of BOM structure.

So start with data models first.

20.4.3 Logical data model
Logical data model is presented in Figure 20.2.

Figure 20.2: Logical data model.

20.4.4 Relational data model
Automatic transformation from logical data model to relational data model in Oracle SQL Data
Modeler is provided by function Engineering to relational. Than we introduce unique index
ch20_bom_ui composed of two fields aggreg_id and subprt_id (see Figure 20.3). The result,
relational data model ready to be exported as SQL script is shown in Figure 20.4.

Oracle SQL Data Modeler also generates SQL script for table, sequence and trigger creation.
Select all tables on relational model and use function File > Export > DDL File to get a script.
Save the script and check the order of table definitions. Table ch20_psm must be defined first and
then ch20_bom. The following code define table ch20_psm and set constraints:

1 CREATE TABLE ch20_psm (
2 id NUMBER GENERATED BY DEFAULT ON NULL

20.4 Data model 294

Figure 20.3: Definition of unique index in Oracle SQL Data Modeler.

Figure 20.4: Relational data model.

3 AS IDENTITY (START WITH 1 NOCACHE) NOT NULL ,
4 description VARCHAR2 (80 CHAR) NOT NULL ,
5 unit_of_measure VARCHAR2 (5 CHAR) NOT NULL ,
6 price NUMBER NOT NULL
7) LOGGING;
8

9 ALTER TABLE ch20_psm
10 ADD CONSTRAINT ch20_psm_id_pk PRIMARY KEY (id);
11

12 ALTER TABLE ch20_psm
13 ADD CONSTRAINT ch20_psm_unit_of_measure_ck
14 CHECK (unit_of_measure IN (’CM’,’M’,’MM’,’PIECE’));

The following code define table ch20_bom, set constraints and define unique index:

1 CREATE TABLE ch20_bom (
2 id NUMBER GENERATED BY DEFAULT ON NULL
3 AS IDENTITY (START WITH 1 NOCACHE) NOT NULL ,
4 subprt_id NUMBER NOT NULL ,
5 aggreg_id NUMBER NOT NULL ,
6 quantity NUMBER NOT NULL
7) LOGGING;
8

20.4 Data model 295

9 ALTER TABLE ch20_bom
10 ADD CONSTRAINT ch20_bom_id_pk PRIMARY KEY (id);
11

12 ALTER TABLE ch20_bom ADD CONSTRAINT
13 ch20_bom_subprt_id_fk FOREIGN KEY (subprt_id)
14 REFERENCES ch20_psm (id)
15 ON DELETE CASCADE NOT DEFERRABLE;
16

17 ALTER TABLE ch20_bom ADD CONSTRAINT
18 ch20_bom_aggreg_id_fk FOREIGN KEY (aggreg_id)
19 REFERENCES ch20_psm (id)
20 ON DELETE CASCADE NOT DEFERRABLE;
21

22 CREATE UNIQUE INDEX ch20_bom_ui
23 ON ch20_bom (aggreg_id , subprt_id);

Save script with the instructions which creates tables with primary and foreign keys, check
constraints and unique index. Now it is time to generate tables in Oracle database. We can import
the generated script and execute it in APEX.

20.4.5 Objects in APEX
Navigate your browser to your APEX workspace. In this section we will:

• create tables and indexes
• create function and procedure
• create trigger
There are two options to create tables and index. If you used Oracle Data Modeler to generate

script first imported it (SQL Workshop > SQL Scripts > Upload) and then run it. Another option is
to generate the above script by Quick SQL in the case you want to use only APEX to generate the
such script. Navigate to SQL Workshop > Utilities > Quick SQL. Put the following text in Quick
SQL text area (left part of the window):

1 ch20_psm
2 description vc80 /nn,
3 unit_of_measure vc4 /check ’mm’,’cm’,’m’, ’piece’ /nn,
4 price num /nn
5

6 ch20_bom /unique
7 subprt_id num /fk ch20_psm /nn,
8 aggreg_id num /fk ch20_psm /nn,
9 quantity num /nn

Click generate SQL. Tables have the same properties as the tables generated in Oracle Data
Modeler (see Figure 20.5). Take a look at the lines 26 and 27. These two lines, although correct
will be edited later. Click Save SQL Script and Review and Run. Replace lines 26 and 27 (create
two indexes) and replace with one statement:

create unique index ch20_bom_ui on ch20_bom (aggreg_id, subprt_id);

Now run the script. Two tables and one unique index will be generated. Note that running this
script will not be successful if you already run script generated with Oracle Data Modeler. The
reason is that data base objects already exist.

To create function enter the following text in SQL Workshop > SQL Commands:

20.4 Data model 296

Figure 20.5: Generating SQL script by using Quick SQL tool.

1 create or replace FUNCTION CH20_GET_PRICE (
2 xpsm IN NUMBER
3) RETURN NUMBER
4 IS
5 y_price number;
6 BEGIN
7 SELECT price INTO y_price FROM ch20_psm WHERE ID = xpsm;
8 return y_price;
9 EXCEPTION

10 WHEN OTHERS THEN
11 return (-505);
12 END CH20_GET_PRICE;

This function will return the price (product, semi-product, material, inquiry) for given ID. If
something unexpected happens with the data base (lost connection, server down, hardware error, no
data for specified ID) then negative value -505 will be returned. Select all text and run. You will
receive feedback that function is created.

To create procedure to calculate costs of bill of material enter the following text in SQL
Workshop > SQL Commands:

1 create or replace PROCEDURE CH20_CALCULATE_BOM
2 (xpsm IN NUMBER ,
3 ystatus OUT INTEGER ,
4 yprice OUT NUMBER)
5 -- creation date: 20.1.2023
6 -- author: Robert Leskovar
7 -- input parameter: xpsm , id of product or semi -product
8 -- output parameters 1: status of calculation:
9 -- 0=not calculated , 1= successfully calculated

10 -- output parameters 2: price calculated
11 -- description: calculation of the total costs of given product
12 -- and all underlying levels
13 -- exceptions: system and user defined
14 -- date of testing: 20.1.2023
15 -- author of test: swqlab
16 -- status: APPROVED

20.4 Data model 297

17 is
18 v_rezult NUMBER (38, 2);
19 v_psm NUMBER;
20 v_price NUMBER (38, 2);
21 e_negative_price EXCEPTION;
22 CURSOR c_ds IS
23 WITH STRUK(hier , subprt_id , aggreg_id , quantity) AS
24 (SELECT 1 AS hier , subprt_id , aggreg_id , quantity
25 FROM CH20_BOM JOIN CH20_PSM ON subprt_id = CH20_PSM.ID
26 WHERE aggreg_id = xpsm
27 UNION ALL
28 SELECT hier+1, C1.subprt_id , C1.aggreg_id , C1.quantity
29 FROM CH20_BOM C1 JOIN CH20_PSM P ON C1.subprt_id = P.ID
30 JOIN STRUK C2 ON C1.aggreg_id = C2.subprt_id)
31 SELECT hier , subprt_id , aggreg_id , quantity
32 FROM STRUK ORDER BY hier DESC , aggreg_id , subprt_id;
33 BEGIN
34 ystatus := 0;
35 v_rezult := 0.0;
36 v_psm := 0;
37 SAVEPOINT old_state;
38 FOR r_ds IN c_ds LOOP
39 v_price := CH20_GET_PRICE(r_ds.subprt_id);
40 IF (v_price <= 0) THEN
41 RAISE e_negative_price;
42 END IF;
43 IF (r_ds.aggreg_id = v_psm) THEN
44 v_rezult := v_rezult + v_price * r_ds.quantity;
45 UPDATE ch20_psm SET price=v_rezult WHERE ID=r_ds.aggreg_id;
46 ELSE
47 v_psm := r_ds.aggreg_id;
48 v_rezult := v_price * r_ds.quantity;
49 UPDATE ch20_psm SET price=v_rezult WHERE ID=r_ds.aggreg_id;
50 END IF;
51 END LOOP;
52 COMMIT;
53 ystatus := 1;
54 yprice := v_rezult;
55 EXCEPTION
56 WHEN e_negative_price THEN
57 ROLLBACK TO old_state;
58 ystatus := 0;
59 yprice := -505;
60 WHEN OTHERS THEN
61 ROLLBACK TO old_state;
62 ystatus := 0;
63 yprice := -100;
64 end CH20_CALCULATE_BOM;

This procedure will return the status of calculation and the price (product, semi-product, material,
inquiry) for given ID unless any component has negative value. If something unexpected happens

20.5 Application interfaces 298

with the data base (lost connection, server down, hardware error, no data for specified ID) then
negative value will be returned. If the reader is not familiar with PL/SQL it would be enough
to read comments in procedure. Otherwise rather complex cursor is created with common table
expression (WITH statement). This cursor returns union of two sets. It provides complete structure
of aggregate which is ordered from bottom to top. The prices of intermediate aggregates are stored
in corresponding rows and cumulated till all rows in cursor are processed.

The last object to be created is trigger. The trigger will ensure that no aggregate and sub part in
bill of material cannot have the same value (car is composed of car) and traversal relation is created
(if car is composed of wheels than wheel cannot be composed of cars). To create the trigger which
implements stated rules enter the following text in SQL Workshop > SQL Commands:

1 create or replace trigger CH20_TRG_BOM_RULES
2 before insert or update on ch20_bom
3 for each row
4

5 declare
6 xsubprt numeric :=:new.subprt_id;
7 xaggreg numeric :=:new.aggreg_id;
8 xcount numeric;
9 begin

10 select count(subprt_id) into xcount from ch20_bom
11 where subprt_id = xaggreg and aggreg_id = xsubprt;
12 if xsubprt = xaggreg or xcount > 0 then
13 :new.subprt_id :=null;
14 end if;
15 end;

With this trigger we will prevent inserting by forcing NULL value in a table field which must have
value. The precedence of NOT NULL definition in the table column over the trigger mechanism
will cause that no data inserted if this business rule is violated. However we protected the hierarchy
to become cycle in a graph (term from a graph theory). If we skip the creation of this trigger we
should train end user not to fall into cycle trap. It is much better to prevent than to heal, right?

20.5 Application interfaces
In the following figures, application interfaces are presented. First we present the sketch of entry
window. User will navigate to managing basic data, managing structure data and calculation either
with left side menu or with page navigation (see Figure 20.6).

Figure 20.6: Application home page.

20.6 Supplementary learning material 299

Next two figures (20.7 and 20.8) present the sketches of report and form for products, semi-
products, materials and inquiries. Inserting, updating and deleting is available.

Figure 20.7: Managing basic data - report.

Figure 20.8: Managing basic data - form.

Further two figures (20.9 and 20.10) present the sketches of report and form for structure, bill
of material. Inserting, updating and deleting is available.

Sketch (20.11) presents the interface to perform a calculation of any aggregate (semi-product,
product, inquiry). User first selects an item and then presses Calculate button. The status of
calculation and calculated price is displayed as a pop-up and tree component is shown. User can
expand and collapse hierarchy.

20.6 Supplementary learning material
You can find the following supplementary learning material:

• exported application
• video guides

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter20
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

https://beeapex.eu/course/view.php?id=12

20.7 Questions 300

Figure 20.9: Managing structure data - report.

Figure 20.10: Managing structure data - form.

20.6.1 Exported applications
Exported application is packaged. Installation create tables, index, function, procedure and trigger
as well it populate data. De-installation removes all data base objects used in this application.

20.6.2 Video guides
Video guide show every step in application development.

20.7 Questions
1. How would you change logical data model to implement new entity for units of measure,

because we want to include tens of units?
2. How would specify Quick SQL to reflect the above change?
3. What will be the consequences of dropping unique index ch20_bom_ui?

20.8 Answers
1. We apply new entity ch20_uom and set at least two attributes (ID and description of the unit

of measure). Than we set 1-to-many relation between ch20_psm and ch20_uom.
2. In Quick SQL we first define table ch20_uom as:

20.8 Answers 301

Figure 20.11: Page for calculation of bill of material.

ch20_uom
description vc80

and change the definition ch20_psm as:

ch20_psm
description vc80 /nn,
unit_of_measure num /fk ch20_uom
price num

3. Dropping unique index ch20_bom_ui would enable to store multiple pairs (sub part, ag-
gregate) with the same values. Table would consume more disk space. The calculation
functionality would not be affected, however processing would take longer and more RAM
would be consumed.

21. Nutrition and diet management

ROBERT LESKOVAR, ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS

TSIMPIRIS AND DIMITRIOS VARSAMIS

21.1 Business view of the case
This example describes the creation of web site for popular food media brand with expected reach
of few hundred thousands occasional users. The company owns market-leading food magazine
and digital edition, organizes each year a number of live events, including the largest national food
festival and publishes a hugely successful series of cookbooks.

The company has decided to create and promote a web tool that allows users to access thousands
of recipes via their website. There will be three main groups of users: the group of selected chefs
will manage their recipes, the group of registered users will be able to view recipes and nutrition
properties and add comments on recipes and unregistered users will be allowed to view recipes
and comments. At the begining we must note that each recipe includes several data. Particularly
important are step-by-step instructions and the list of all ingredients. The vision of the company is
to provide good recipes, serving thousands of ordinary cooks and providing the nutrition facts of
the recipes.

21.2 Problem definition
Users who enjoy cooking often face limitations when it comes to what they can eat, whether
due to health issues such as diabetes or high cholesterol, or personal dietary preferences such as
vegan or gluten-free. One issue with existing web-based recipe resources is that they often do
not provide comprehensive alternatives to accommodate these limitations. As a result, users may
become frustrated with the limited information provided and abandon the recipe search altogether,
resulting in unhealthy eating patterns. The preparation of accurate and detailed data on recipes
requires additional effort for professional chefs but on the other side it add great value to end users.
The comments posted by users can easily become security threat if uncontrolled. Therefore site
administrators will be allowed to enforce different policy measurements: banning the registered
users to comment or deleting inappropriate posts. Easy and intuitive reporting features for recipes
must be provided to end users. This case does not provide details on registering users nor the
policies, but focuses on:

• administrator tasks of deleting the particular recipe comment
• chef task of composing the recipe with all details

21.3 Use cases 303

• registered user task of adding the comment and
• user task of preparing customised report on recipe

21.3 Use cases
There will be four use cases in this chapter however the application will be developed to serve four
distinct groups of users: administrators, chefs, registered users and site public viewers.

21.3.1 Narrative description
To accomplish the tasks of three distinct groups of user the following use cases are presented:

• deleting the particular recipe comment: only administrators are authorised to delete the
comments.

• composing the recipe with all details: chefs are authorised to enter, change or delete any
data related to recipe. Details of the recipe would be edited in two steps. First step include
management of recipe title, implementation, number of persons, steps to prepare, approximate
total calories, classification of vegan and gluten recipes, one photo, recipe category and origin
(if known). The second step implements management of particular ingredients and its quantity.
This use case will assume that each ingredient is already entered in the database and described
with its name, unit of measure, nutrition facts (calories, fat, cholesterol, carbohydrates, fiber,
protein), chemical elements (sodium, magnesium, calcium, iron and potassium) and vitamins
(D, A, C).

• adding the comment: registered user will be allowed to enter free text as a comment to
particular recipe. Username and the date of the comment are stored automatically.

• preparing customised report: end user sets filter on data to get facts about one recipe only,
applies selection of columns, formats control break and aggregates selected columns of
interest.

Reader should understand that due to book size limitations only these four use cases are presented
in detail.

21.3.2 Semi-structured description
The semi-structured description is provided in Tables 21.1, 21.2, 21.3, and 21.4.

21.3.3 Use case diagram
The above use cases are depicted on diagram (see Figure 21.1).

21.4 Data model
Data model provides six connected entities:

• ingredient: ID, name, unit of measure, nutrition facts such as calories, fat, cholesterol,
carbohydrates, fiber, protein, chemical elements such as sodium, magnesium, calcium, iron
and potassium and finaly vitamins D, A, and C. Igredient may be used in N recipes, while
recipe may have N ingredients.

• recipe: general data on recipes such ID, category, author, source, title, minutes to prepare,
implementation type, person portion, steps to prepare, approximate total calories, vegan and
gluten property, photo,MIME type of the image, and file name of the photo. Recipe belogs to
one category and category can have N recipies. Recipe may be included in another recipe.

• recipe ingredient: recipe ID, ingredient ID and quantity of ingredient in recipe
• category: ID and category name
• user: ID, email and nickname
• comment: id, recipe ID, commentator ID, comment text and comment date. User can post N

21.4 Data model 304

Table 21.1: Use case description: delete the particular recipe comment
Keyword Value
ID: Ch21-01
Title: Delete or change the user comment.
Description: The administrator selects particular user comment and decides to delete

the post entirely or edits it. Deleting cause that the comment is removed
from database, while editing will cause the changes in the comment text.
The administrator acts according to published policy of the web site.

Primary Actor: Administrator
Preconditions: User has administrator role in this APEX application.
Post conditions: After deleting there is no comment stored in database. After updating

redacted comment is stored in database.
Main Scenario
Success Scenario:

1. Open your web browser and sign in to the application.
2. Select comments from the menu or page navigation.
3. Select particular comment and click the pencil icon.
4. To edit the comment, change the text and click the Apply changes

button.
5. To delete the comment, click on the Delete button twice.

Extensions: None
Frequency of Use: The administrator is expected to delete or change 100 user comments per

week upon request by internal regulator.
Status: Finished
Owner: Administrator
Priority: high

21.4 Data model 305

Table 21.2: Use case description: compose the recipe
Keyword Value
ID: Ch21-02
Title: Compose the recipe with all details.
Description: Details of the recipe are edited in two steps. First step include input of

recipe title, implementation, number of persons, steps to prepare, approxi-
mate total calories, classification of vegan and gluten recipes, one photo,
recipe category and origin (if known). The second step determines the
particular ingredient and the quantity. This use case assume that each
ingredient is already entered in the database and described with its name,
unit of measure, nutrition facts (calories, fat, cholesterol, carbohydrates,
fiber, protein), chemical elements (sodium, magnesium, calcium, iron and
potassium) and vitamins (D, A, C).

Primary Actor: Chef
Preconditions: User has CHEF role in this APEX application.
Post conditions: After editing all recipe details are stored in the database.
Main Scenario
Success Scenario:

1. Open your web browser and sign in to the application.
2. Select recipe report from the menu or page navigation.
3. First step: click Create button for entering new recipe or select

existing recipe be clicking pencil icon.
4. Enter category, author (default is current user), source, title, minutes

to prepare, implementation type, person portion, steps to prepare
(HTML formatinf is enabled), approximate total calories, vegan and
gluten property, photo and file name of the photo. Click Create or
Apply changes button.

5. Second step: select recipe ingredient editor from the menu or page
navigation.

6. Second step: To add new ingredient of the recipe: click Create
button and enter recipe, ingredient and ingredient quantity. Confirm
with Create button. To change ingredient (replace one-to-one) and/or
quantity click pencil icon of particular ingredient. Select replacement
ingredient and change the quantity. Confirm with Apply changes
button. To delete ingredient of the recipe: click pencil icon of
particular ingredient. Confirm with Delete button twice.

Extensions: add ingredient to the database
Frequency of Use: Each CHEF is expected to insert one recipe per week.
Status: Finished
Owner: CHEF
Priority: high

21.4 Data model 306

Table 21.3: Use case description: add user comment on recipe
Keyword Value
ID: Ch21-03
Title: Add user comment.
Description: Add user comment: registered user are allowed to enter free text as a

comment to particular recipe. Username and the date of the comment are
stored automatically.

Primary Actor: Registred user
Preconditions: User has registreed user role in this APEX application.
Post conditions: After adding there is new post stored in the database.
Main Scenario
Success Scenario:

1. Open your web browser and sign in to the application.
2. Select comments from the menu or page navigation.
3. Click Create button.
4. Select recipe and enter comment text.
5. Click the Create button to confirm.

Extensions: None
Frequency of Use: The registered user is expected to add one new comment per week.
Status: Finished
Owner: Registred user
Priority: moderate

comments while recipe may recieve N comments.

21.4.1 Logical data model
The logical data model is shown in Figure 21.2.

21.4.2 Relational data model
The Relational data model is shown in Figure 21.3.

21.4.3 QuickSQL
To write Quick SQL code, we must first access the SQL Workshop > Utilities > Quick SQL.
Tables are defined in Quick SQL as follows:

CH21_USER
email vc200 /unique
nickname vc30 /unique

CH21_CATEGORY
category_name vc255 /nn

CH21_RECIPE
title vc255 /nn
minutes_to_prepare num /nn
implementation_type vc50 /check cooking frying baking assembling
person_portion int
steps_to_prepare vc2048
calories_recipe num
vegan vc1 /check Y N

21.4 Data model 307

Table 21.4: Use case description: prepare customised nutrition report on recipe
Keyword Value
ID: Ch21-04
Title: Prepare customised report on recipe.
Description: Preparing customised nutrition report include: optionally set filter on data

to get facts about one recipe only, select and reorder the columns, option-
ally format control break and application of aggregates to selected columns
of interest. Default report show all recipies, all ingredient with quantities,
names, unit of measures nutritional facts, chemical elements and vitamins.
Default control break is concatenated info string (title of the recipe, ap-
proximate calories, vegan, gluten and number of persons). All nutritional
facts, chemical elements and vitamins are calculated (quantity multiplied
by property value with stored unit of measure). Default aggregation is
applied on ingredient calories. Therefore the sum may differ from info
string.

Primary Actor: any user including public access
Preconditions: User navigates browser to specified page of this APEX application. URL of

the page is constructed with apex-instance-name, /ords/r/workspace name,
application name and page name.

Post conditions: None.
Main Scenario
Success Scenario:

1. Open your web browser, optionally sign in to the application and
navigate to Nutrition report page.

2. To select and/or reorder columns click Actions > Columns. Select
and/or reorder columns in subpage.

3. To aggregate any other numeric column, Click Actions > Data
> Agregate. Select Sum function and the columns of interest in
subpage. Authenticated users can store customised report.

Extensions: None
Frequency of Use: Expected number of users is 1000 per day.
Status: Finished
Owner: Public user
Priority: high

21.4 Data model 308

Figure 21.1: Use case diagram.

gluten vc1 /check Y N
photo blob
mimetype vc20 /check ’image/png’,’image/jpg’,’image/jpeg’
filename vc100
category num /fk CH21_CATEGORY
author num /fk CH21_USER
source num /fk CH21_RECIPE

CH21_COMMENT
recipe_id num /fk CH21_RECIPE /nn
commentator num /fk CH21_USER /nn
comment_text vc(512)
comment_date date

CH21_INGREDIENT
ingredient_name vc255 /nn
unit vc10 /check cup piece gram liter teaspoon tablespoon
calories_ingredient num
total_fat_g num
cholesterol_mg num
sodium_mg num
total_carbohydrate_g num
fiber_g num
protein_g num
vitamin_d_IU num
vitamin_a_IU num

21.4 Data model 309

Figure 21.2: Logical data model.

vitamin_c_mg num
magnesium_mg num
calcium_mg num
iron_mg num
potassium_mg num
photo blob
mimetype vc20 /check ’image/png’,’image/jpg’,’image/jpeg’
filename vc100

CH21_RECIPE_INGREDIENT
recipe_id num /fk CH21_RECIPE
ingredient_id num /fk CH21_INGREDIENT
ingredient_quantity num /nn

QuickSQL script include all references to foreign keys (clause fk, NOT NULL declarations and
check constraints that define domain for certain data fields.

21.4.4 SQL Script
While writing Quick SQL code in left pane, APEX generates SQL script in right pane. We can also
check the diagram which corresponds to SQL script (see Figures 21.4 and 21.5.)

Next steps are:
• click on Review and Run button (top of the right pane)
• set script name to CH21CREATE
• download, create or run SQL script CH21CREATE by clicking the corresponding button

Figure 21.6 shows SQL Scripts > Script Editor.
Run the generated script and check that empty tables CH21_RECIPES, CH21_RECIPE_INGREDIENTS,

CH21_INGREDIENTS, CH21_CATEGORY, CH21_COMMENT and CH21_USER exist.

21.5 Preparing data for testing in spreadsheet 310

Figure 21.3: Relational data model.

21.5 Preparing data for testing in spreadsheet
Workflow for preparing test data in spreadsheet include:

• collect some pictures of ingredients and meals
• process pictures in image editor (i.e. GIMP) - this may include reducing the number of colors

and resizing to max. 70x70 pixels
• create a hex dump of the pictures and save them to separate files. Small utility in Linux called

xxd can do this task in a pipeline with tr. If you have Windows operating system you can
setup Windows Subsystem for Linux (WSL) and desired Linux distribution.

• create spreadsheet with 6 sheets (user, category, ingredients, recipes, comments and recipe’s
ingredients). Set columns with the names that correspond fields in tables CH21_RECIPE,
CH21_RECIPE_INGREDIENT, CH21_INGREDIENT, CH21_CATEGORY, CH21_COMMENT
and CH21_USER. Insert test data. You can enter pictures for CH21_RECIPES and CH21_INGREDIENTS
by copy/paste the content of the hex dump file.

If you have your own set of test data you can skip preparation of hex dump because application will
have a form to upload images directly from your local computer.

21.5.1 Create a hex dump
To create hex dump of the photo you can use xxd and tr utilities in Linux or WSL in Windows.
Execute the command:

xxd -p honey.png | tr -d ’\n’ >honey.hex

Utility xxd generates hex dump which is passed to tr. The later deletes all newline characters. The
output is saved as file - honey.hex. The example in Figure 21.7 shows creation of hex dump file in
WSL. Also first 200 characters of the output is shown with command cut. Command ls was used to
check the lenghts of original png and hex files.

21.5 Preparing data for testing in spreadsheet 311

Figure 21.4: Generated SQL code in right pane.

Figure 21.5: Diagram in right pane.

21.5.2 Create a spreadsheet
Test data was prepared in spreadsheet which has 6 sheets named as tables. Columns in the sheet
correspond to the fields in the tables. Figure 21.8 shows partially the prepared data in the sheet
ch21_ingredient. Take attention to the content of column PHOTO where hex dump is copied from
previous step.

21.5.3 Load test data in APEX from spreadsheets
When test data is prepared we can use APEX to import these data. Select SQL Workshop > Utilities
> Data Workshop > Load Data. You can copy/paste the test data. Figure 21.9 shows pasted data
from the sheet ch21_ingredient.

In next step just select Existing table, point to table CH21_INGREDIENT, check First line
contains headers and inspect if the content is properly prepared. Then click Load Data button.
Load test data for all six tables. Sample data in Excel spreadsheet are available in learning material.

21.6 Application interfaces 312

Figure 21.6: Run generated SQL script.

Figure 21.7: Preparation of hex dump file in WSL.

21.6 Application interfaces
Development of application interfaces include the following steps:

• generate first draft of the application using the script CH21CREATE
• create demo users for APEX application
• design and implement authorization schemes, application access control- with roles and user

role assignments
• add static file for background of the login page
• create new static and dynamic LOVs
• plan user rights for web pages in application
• design web pages and implement authorization schemes to page elements (whole page,

regions, buttons, items, columns etc.)
• test application as administrator, chef, registered user and public user

21.6.1 First draft of the application
First draft of application can be generated using wizard associated with script which creates tables
- CH21CREATE. But for this application we used plain wizard and generate only home page.
Selected features were> Feedback, Activity Reporting, Theme Style Selection, About Page and
Configuration Options.

Select App Builder, name application as CH21, and click Use Create App Wizard. Application
is generated and opened in developer interface. Figure 21.10 show generated pages in new
application.

Do not run application at this point. Proceed with next step. In Shared Components > Glob-

21.6 Application interfaces 313

Figure 21.8: Preparation of sheets with hex dump photos.

alization Attributes set date, time and timestamp formats to show also hours and minutes (i.e.
DD-MON-YYYY HH24:MI).

21.6.2 Create demo users for APEX application
Open generated application in design mode. Click user and tool wrench icon (top right of the
screen). Select Manage Users and Groups menu. Then click create Create Multiple Users.
APEX instructs you to create multiple users at once, enter or copy and paste email addresses
separated by commas, semicolons, or new lines. Set password and click Next button (see Figure
21.11).

Confirm creation of valid users by clicking Create Valid Users button (see Figure 21.12).

21.6.3 Authorization schemes, application access control, roles and user role
assignments
In application developer mode select Shared Components > Authorization Schemes. Create three
new authorization schemes: AS_ADMIN, AS_CHEF and AS_REGUSER. First will adress appli-
cation administrators, second chefs and the third registred users. Click Create button, select From
Scratch, Next, name the scheme, select scheme type as Is in Role or Group, enter error message
and click Create Authorization Scheme button. Enter data for all reguired authorization schemes
(AS_ADMIN, AS_CHEF and AS_REGUSER). Figure 21.13 show creation of authorization scheme
AS_REGUSER.

Proceed with Application Access Control. Add roles ADMIN, CHEF and REGUSER with
corresponding static identifiers of authorization scheme (see Figure 21.14).

Finally set user role assignments by clicking Add User Role Assignment button. We already
created users. For testing purposes we assign user ALFA@DEMO.SI application role ADMIN,
user BETA@DEMO.SI application role CHEF and user GAMMA@DEMO.SI application role
REGUSER (see example in Figure 21.15). APEX let you know that Application users are not
exported as part of your application. When you deploy your application you will need to manually

21.6 Application interfaces 314

Figure 21.9: Loading data - pasted content from the sheet ch21_ingredient.

Figure 21.10: Generating draft application.

manage your user to role assignments. Roles are exported as part of an application export and
imported with application imports. You should have set user role assignments as presented in
Figure 21.16.

21.6.4 Static file for background on the login page
Adding background image to logon page requires to find appropriate image, upload it to static files
and referencing it on login page. For testing purpose we use an image by Pietro Jeng which is free
to use. After downloading the image open Shared Components > Static Application Files. Select
Create File and upload the image (see Figure 21.17). . Figure 21.18 provides reference which will
be used for login page design.

Proceed with the design of the page 9999 - Login Page. In the Inline property of the page enter
CSS code:

body {
background-image:

http://https://www.pexels.com

21.6 Application interfaces 315

Figure 21.11: Creating multiple users - step one.

url("#APP_FILES#pexels-pietrozj-671956.jpg");
background-size:1700px 900 px:
}

Save the changes, run application and see that background image appears on the login page. If you
attempt to use any of previously created users than you will have to change default password you
set.

21.6.5 Lists of values
For this application we define dynamic and static LOVs:

• dynamic LOV_NICKNAME as SQL Query:

SELECT NICKNAME as D, ID as R FROM CH21_USER WHERE EMAIL=v(’APP_USER’)

• dynamic LOV_RECIPE_INGREDIENT_ID as SQL Query:

select i.INGREDIENT_NAME || ’’ || i.UNIT as D, i.ID as R
from CH21_INGREDIENT i, CH21_RECIPE_INGREDIENT ri
where ri.INGREDIENT_ID=i.ID and &INGREDIENT_ID = i.ID

• dynamic LOV_CATEGORY as Table Source Type CH21_CATEGORY (CATEGORY_NAME,
ID)

21.6 Application interfaces 316

Figure 21.12: Creating multiple users - step two.

• dynamic LOV_AUTHOR as Table Source Type CH21_USER(EMAIL, ID)
• dynamic LOV_SOURCE as Table Source Type CH21_RECIPE(TITLE, ID)
• dynamic LOV_INGREDIENT_NAME as Table Source Type CH21_INGREDIENT (IN-

GREDIENT_NAME, ID)
• static LOV_YES_NO displaing YES or No and returning Y or N
• static LOV_UNIT displaying and returning: cup piece gram liter teaspoon tablespoon
• static LOV_IMPLEMENTATION displaying cooking, frying, baking, assembling and re-

turning the corresponding word. Note that this LOV is defined to make editing the recipe
easier.

21.6.6 Web pages and grants
Now it is time to elaborate user rights for web pages in application. Since we already defined
authorization schemes, roles and user roles we need to grants to pages and its elements obey reuired
authorizations scheme. Table 21.5 outlines the intentions.

21.6.7 Web pages and authentications
21.6.7.1 User management

User Report (Page 2) and User Editor (Page 3) are generated in one step. Select Create page, pick
Interactive Report, enter the names of the two pages and define SQL Query as show in Figure
21.19.

Click Next button, choose ID as primary key and click Create Page button. Open page 2
and set authentication property as Page Requires Authentication for the whole page. For page
body User Report set Attributes > Link to Exclude Link Column. Set Authorization Scheme
AS_ADMIN to column ID. Change Type of column for ID to Link. Set Link properties as show in
Figure 21.20.

21.6 Application interfaces 317

Table 21.5: Requirements for pages and grants.
Req. Page Grants
1 interactive report User report (page 2)

on table CH21_USER
ADMIN may insert (create new user), update
and delete existing user and view all fields in
the table. CHEF, REGUSER users may view
only the nicknames. Click on ID link opens
modal form User Editor which is available only
to authorization scheme AS_ADMIN.

2 modal form User Editor (page 3) on ta-
ble CH21_USER

Only ADMIN users may insert, update, delete
and view all fields.

3 interactive report Category Report(page
4) on table CH21_CATEGORY

CHEF may insert (create new category), update
and delete existing category and view all fields
in the table.

4 modal form Category Editor(page 5) on
table CH21_CATEGORY

CHEF users may insert, update, delete and view
all fields.

5 interactive report Recipe Report(page
6) on table CH21_RECIPE

CHEF may insert (create new recipe), update
and delete existing recipe and view all fields in
the table.

6 modal form Recipe Editor (page 7) on
table CH21_RECIPE

CHEF users may insert, update, delete and view
all fields.

7 interactive report Ingredi-
ent Report(page 8) on table
CH21_INGREDIENT

CHEF may insert (create new ingredient), up-
date and delete existing ingredient and view all
fields in the table.

8 modal form Ingredient Editor (page 9)
on table CH21_INGREDIENT

CHEF users may insert, update, delete and view
all fields.

9 interactive report Recipe Ingre-
dient Report(page 10) on table
CH21_RECIPE_INGREDIENT

CHEF may insert (create new ingredient in
recipe), update and delete existing ingredient
in recipe and view all fields in the table.

10 modal form Recipe Ingredi-
ent Editor (page 11) on table
CH21_RECIPE_INGREDIENT

CHEF users may insert, update, delete and view
all fields (ingredient or quantity of ingredient).

11 interactive report Comments
(page 12) is based on SQL Query
(select c.id, r.title, u.nickname,
c.comment_text, c.comment_date from
CH21_COMMENT c, CH21_RECIPE
r, CH21_USER u where c.recipe_id =
r.id and c.commentator = u.id order by
c.COMMENT_DATE DESC)

View is public. Author of the comment is pre-
sented with nickname. Users with REGUSER
role may post (create) new comments. Once the
comment is added the author can not change it.
The only option is to make new post related to
the same recipe. Users with ADMIN role may
view, delete and modify any post.

12 form Comment Editor (page 14) on ta-
ble CH21_COMMENT

ADMIN users may insert, update, delete and
view all fields.

13 interactive report customized Nutrition
report (page 15) is based on SQL Query

View is public. User gets preset report which
can be further customized. Authenticated users
can save the customized and named version of
report outlook.

21.6 Application interfaces 318

Figure 21.13: Add authorization scheme.

Users that have CHEF or REGUSER role view only nickname column on User Report page
while User Editor page is not accesible to them (see Figure 21.22)

Requirements 1 and 2 in Table 21.5 are now satisfied.

21.6.7.2 Category management

Apply pattern used in user management. Category Report (page 5) and Category Editor (page 6)
are based on SQL Query:

select id, category_name from CH21_CATEGORY.

Category Report page and Category Editor as shown in Figure 21.23.
To prevent other users (except with CHEF role) to display the item in navigation menu enter

Shared Components > Lists > Navigation Menu > Category Report and enter Authorization Scheme
AS_CHEF.

21.6.7.3 Recipe management - general data

Again we design one interactive report (Recipe Report, page 6) and one modal page (Recipe Editor,
page 7) to edit general data on recipe. Apply AS_CHEF authorization on both pages and on
Breadcrumb part of Recipe Report. Define SQL Query for report:

select ID, CATEGORY, AUTHOR, SOURCE, TITLE, MINUTES_TO_PREPARE,
IMPLEMENTATION_TYPE, PERSON_PORTION, STEPS_TO_PREPARE,

CALORIES_RECIPE, VEGAN,GLUTEN,
sys.dbms_lob.getlength(PHOTO)PHOTO,
MIMETYPE,FILENAME

from CH21_RECIPE

On Recipe Report make additional changes:
• for page body Recipe Report set Attributes > Link to Exclude Link Column.
• set column ID to Link (page 7, name P7_ID, value #ID#
• set column STEPS_TO_PREPARE attribute Escape special characters to off. This will enable

HTML tags in the text. In sample data each step starts in new line with break tag.
• set column PHOTO as type Display image

21.6 Application interfaces 319

Figure 21.14: Adding role and setting static identifier.

Figure 21.15: Adding user role assignments.

• change BLOB Attributes: (Table Name: CH21_RECIPE, BLOB Column: Photo, Primary
Key Column 1: PHOTO, Mime Type Column: MIMETYPE, and File name Column: FILE-
NAME)

On Recipe Editor make additional changes:
• set page item P7_CATEGORY Select List (Shared Component LOV_CATEGORY)
• set page item P7_AUTHOR Select List (Shared Component LOV_AUTHOR)
• set page item P7_SOURCE Select List (Shared Component LOV_SOURCE)
• set page item P7_IMPLEMENTATION_TYPE Select List

(Shared Component LOV_IMPLEMENTATION_TYPE)
• set page item P7_VEGAN Select List (Shared Component LOV_YES_NO)
• set page item P7_GLUTEN Select List (Shared Component LOV_YES_NO)
Figures 21.24 and 21.25 shows the Recipe Report and Recipe General Editor as seen by CHEF

user.
To prevent other users (except with CHEF role) to display the item in navigation menu enter

Shared Components > Lists > Navigation Menu > Recipe Report and enter Authorization Scheme
AS_CHEF.

21.6.7.4 Ingredient management

Apply pattern used for recipe management. Users with CHEF role can access Ingredient Report
(page 8) and Ingredient Editor (page 9). Report is based on SQL Query:

21.6 Application interfaces 320

Figure 21.16: Adding user role assignments.

Figure 21.17: Adding static file to application - step 1.

select ID,
INGREDIENT_NAME, UNIT,CALORIES_INGREDIENT,TOTAL_FAT_G, CHOLESTEROL_MG,
SODIUM_MG,TOTAL_CARBOHYDRATE_G, FIBER_G, PROTEIN_G, VITAMIN_D_IU,
VITAMIN_A_IU, VITAMIN_C_MG, MAGNESIUM_MG, CALCIUM_MG, IRON_MG,
POTASSIUM_MG, sys.dbms_lob.getlength(PHOTO)PHOTO, MIMETYPE, FILENAME

from CH21_INGREDIENT

The outlook of the pages are shown in Figures 21.26 and 21.27.

21.6.7.5 Recipe Ingredient management

While managing general data on recipe is already implemented adding, changing and deleting
ingredients in the recipe is not. Therefore interactive report Recipe Ingredient Report (page 10) is
created along with modal form Recipe Ingredient Editor (page 11). Start with Create Page wizard,
select table CH21_RECIPE_INGREDIENT as a Source Type. When both pages are created, make
the following changes on Recipe Ingredient Report (page 10):

• change Source Type in Body (Recipe Ingredient Report) from Table to SQL Query:

select ri.ID,
r.TITLE,
i.INGREDIENT_NAME,

21.6 Application interfaces 321

Figure 21.18: Adding static file to application - step 2.

ri.INGREDIENT_QUANTITY,
i.UNIT
from

CH21_RECIPE_INGREDIENT ri, CH21_RECIPE r, CH21_INGREDIENT i
where ri.INGREDIENT_ID = i.ID and ri.RECIPE_ID = r.ID

Synchronize Columns for Body and Columns.
• apply authentication scheme AS_CHEF to entire page 10
• modify Format of quantity to 9999.99

The only modification on Recipe Ingredient Editor (page 11) would be setting of authentication
scheme AS_CHEF to entire page 11. Interactive report also offers filtering to select ingredients in
one recipe only (see Figure 21.28). That make editing of the ingredient in recipe more user friendly.

Once the recipe ingredient is determined all changes are possible (update, delete). See Figure
21.29.

This approach requires minimum programming. There are also other options in APEX to
implement more complex and all-in-one solutions (i.e. Master Detail form, JavaScript) but they
require more detailed knowledge in topics.

21.6.7.6 Coments management

There are two pages: Comments (page 12) and Comment Editor (page 14). Comments page (page
12) is generated with wizard as interactive report and later modified:

• report is based on SQL Query:

21.6 Application interfaces 322

Figure 21.19: Create User Report (page 2) and User Editor (page 3).

select c.id, r.title, u.nickname, c.comment_text, c.comment_date
from CH21_COMMENT c, CH21_RECIPE r, CH21_USER u
where c.recipe_id = r.id and c.commentator = u.id
order by c.COMMENT_DATE DESC

• authentication for the whole page is set to Page is Public
• authentication for Create button is set to AS_REGUSER. Only users with this role can

access the button.
• column ID Type is set to Link. Target page is set to 14, link is page item P14_ID. Authoriza-

tion scheme is AS_ADMIN
• column COMMENT_DATE has format DD-MON-YYYY HH24:MI

Comment Editor page (page 14) is generated with wizard as form and later modified:
• report is based on table CH21_COMMENT
• authentication for the whole page is set to Page requires authentication
• page item P14_ID Type is set to Hidden
• page item P14_RECIPE_ID Type is set to Select List. List of values attributes are: Type

(Shared Components), List of values (LOV_RECIPE_TITLE)
• column P14_COMMENTATOR Type is set to Hidden. Default value Type is set to SQL

Query (return single value), SQL Query is:

21.6 Application interfaces 323

Figure 21.20: Set link for column ID to page 3.

select id from ch21_user where upper(email) = v(’APP_USER’);

• column P14_COMMENT_DATE Type is set to Display only. Format mask is set to DD-
MON-YYYY HH24:MI. Default value Type is set to SQL Query (return single value),
SQL Query is:

select CURRENT_TIMESTAMP from dual;

Comment Editor entry in Navigation bar is set to Authorization Scheme AS_ADMIN to prevent
other roles to be displayed.

The outlook of the Comments page is presented separately for ADMIN and REGUSER role in
Figures 21.30 and 21.31.

Comment Editor for ADMIN users is presented in Figure 21.32.

21.6.8 Nutrition report
Nutrition report is interactive and customizable for all users. Authenticated users can store named
customized version of report. The source for the report is rather long SQL Query (see Figure
21.33).

Five tables are used: CH21_CATEGORY, CH21_USER, CH21_RECIPE_INGREDIENT,
CH21_INGREDIENT and CH21_RECIPE (note lines 23 - 27). They are joined via primary
anf foreign keys to prevent cartesian product (see conditions in lines 28 - 31). Line 3 defines
concatenated values for column INFO: recipe title, recipe calories, vegan and gluten classification,
number of portions, and explanation or delimiting strings. Lines 4 - 8 are references to columns
while lines 9 - 22 are computed as product between ingredient quantity and its properties. Open
generated report and modify it:

• select Actions > Format > Control break on column Info

21.7 Supplementary learning material 324

Figure 21.21: User Report and User Editor for ADMIN role.

• select Actions > Data > Aggregate Sum on Calories Ingredient, Total Fat G, Cholesterol Mg,
Sodium Mg, Total Carbohydrate G, Fiber G, Protein G, Vitamin D Iu, Vitamin A Iu, Vitamin
C Mg, Magnesium Mg, Calcium Mg, Iron Mg and Potassium Mg.

• select Actions > Report > Save Report as Default Report Type Primary
• select Actions > Columns and choose and reorder columns, save named reports according to

your preference
One might show all data on Primary Report and prepare three named reports such as Elements,
Vitamins, Nutrition (see Figures 21.34 and 21.35)

21.7 Supplementary learning material
You can find the following supplementary learning material:

• exported packaged application (include installation and deinstallation script as well as
background picture and Excel demo data)

• video guides
All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter
21 in the Scripts section and video guides in Collection of video guides. Material for short courses
is in Short courses section.

https://beeapex.eu/course/view.php?id=21

21.8 Questions 325

Figure 21.22: User Report for CHEF and REGUSER roles.

Figure 21.23: Category Report and Category Editor for CHEF role.

21.7.1 Exported application
Exported application is packaged. Installation create tables. To populate tables with test data use
Data Workshop. De-installation removes all data base objects used in this application.

21.7.2 Video guides
Video guide show every step in application development.

21.8 Questions
1. How can you change the background in your log in page?
2. Where else can we find role management in Oracle APEX environment if it is not enabled in

our app?
3. How can you configure the button name of a report?
4. How can you change the page name after creating it?

21.9 Answers
1. In your app environment, choose Shared Components then choose Static Application Files

click on Create File and in the pop up window add the image of your preference. Then copy
the reference name of the image, go back to your app environment and choose 9999-Login
Page, go to css field and type in inline

body {
background-image:
url("#APP_FILES#\textit{the reference name of the image}");

21.9 Answers 326

Figure 21.24: Recipe Report for CHEF role.

Figure 21.25: Recipe General Editor for CHEF role.

background-size:1700px 900 px:
}

2. In your app environment, choose Shared Components then choose Application Access
control.

3. To change the label of the Create button to a different name, you should enter the Page
Designer of the report, locate the Create button, and change the label in the Identification
field.

4. To change the name of a page that you have created, log in to your app and click on Quick
Edit. Then, click on the page title and select the arrow in the source area of the breadcrumb.
Next, click on Edit Component, and in the Short Name field, update the name to the desired
new name. Finally, click on Apply Changes, and the new name will appear in the page title.

21.9 Answers 327

Figure 21.26: ngredient Report for CHEF role.

Figure 21.27: Ingredient Editor for CHEF role.

Figure 21.28: Ingredients in recipes for CHEF role - view.

21.9 Answers 328

Figure 21.29: Ingredients in recipes for CHEF role - change.

Figure 21.30: Comments with link to editor for ADMIN role.

Figure 21.31: Create button for REGUSER role.

21.9 Answers 329

Figure 21.32: Manage comments for ADMIN role.

Figure 21.33: SQL Query for Nutrition report.

21.9 Answers 330

Figure 21.34: Primary report.

Figure 21.35: Named Elements report.

22. Office Hours Scheduling

JACEK MAŃKO, MONIKA SOŃTA AND ROBERT LESKOVAR

22.1 Business view of the case
A university Office Hours booking application from a business perspective can be seen as a tool to
streamline and optimize the scheduling process for university staff. It can help to improve scheduling
efficiency, reduce administrative workload, increase student satisfaction, and provide real-time
availability information. The application can also generate data and insights on appointment
patterns and utilization, which can inform decision making and resource allocation. In addition,
the application can offer a convenient and accessible booking platform for students, helping to
foster a more proactive and engaged student community. Each week, the academic staff is obliged
to make 60 minutes of their time available to the students, which is internally called as ‘Office
Hours’. Moreover, it happens quite frequently, especially as semester end approaches, when the
inquiries from students intensify both in number and scope. In such case, 60 minutes per week
is not enough, as students are determined to get urgently desired outcome from the academic
staff as soon as possible. Even though, there are some standardized topics for discussion such as:
dissertation, exams, final assignments, however, some of the cases are related to irrelevant subjects
which perhaps should be discussed, but not necessarily during the Office Hours with the teacher
(for example: administrative requests or the problems that can be managed easily without the
intervention of the academic teacher). In the last years and especially due to COVID-19 pandemics,
universities underwent radical technological transition enabling various forms of remote teaching
using available platforms and communicators that would facilitate online teaching process. In fact,
virtually all academic activities were transferred online including, naturally, remote Office Hours.
Even though there is an agreement among academic community that remote teaching will never
fully replace on-site teaching, remote teaching and even working continues to be implemented
to some extent worldwide. More importantly, some university activities and processes already
transitioned or will transition to online mode entirely in the upcoming future, for example to ensure
efficient paperless document circulation. These circumstances strengthen even further an urgent
business need of a viable digital tool that would enable online booking of Office Hours that could
take place either online or offline. Clearly, a whole academic community would greatly benefit
from such application which should soon become everyday tool for everybody within academic
community to use, such as email box, and not some distant digital fad.

22.2 Problem definition 332

22.2 Problem definition
As of now, it is not possible to book (enroll) the time slot and plan the content of the meeting in
advance. In fact, students, if they appear in whatever number, are served on the first-come-first-
served basis. Not only does it increase frustration of the students, who need to wait in the line
without any certainty that their appointment will even take place, but it also upsets academic staff
who must choose between letting some students wait in vain or rescheduling their plan for the day.
As a result, there come situations in which academic staff is effectively doing pro bono counseling
for students, or even at the expense of their private life, just to avoid being perceived as unavailable
or unfriendly by students. Furthermore, this status quo amounts to inefficient time allocation for
both students and academic staff, as well as unnecessary scheduling workload for the latter.

This administrative systemic inefficiency enforces academic staff to engage in additional, often
unpaid responsibilities, while also keeping students uncertain about the outcomes and most likely
barely satisfied with the whole process. It is a paramount example of shifting the consequences of
a malfunctioning meeting appointment system to groups that are situated lower in the academic
hierarchy (students and academic staff), instead of finding top-down solution initiated by the
university authorities. Therefore, technology offers here a viable, empowering, and implementable
solution that would greatly alleviate academic staff workload and the same time ensuring higher
satisfaction and efficiency of use for the students.

Students frequently address student office the questions about dates and places of office hours.
Since there is no reliable source they rely on experiences and they often direct students to wrong
places at wrong times. According to the rules of academic institution every change of office hours
should be approved by vice dean. The approvals are granted in direct communication between
teacher and vice dean and student office has no information about it. Vice dean therefore wishes
the student office would enter the rescheduled office hours.

Management has little evidence of the big picture of office hours in academic institution.
Rumors and other unreliable information are not good foundations for rational decisions about
increased or decreased number of duty hours. It can also be related to the awarding teachers for
their extra efforts.

22.3 Use cases
The Office Hours booking application enables access to management, student office personnel,
students and academic staff (also referred as teachers), each having different privileges:

• Management get summary information gathered on management dashboard (number of office
hours by year and month, top 10 teachers by number of students, top 5 overbooked teachers
and top 5 teachers with no students during office hours).

• Student office personnel access office hours interactive report and reschedule any office
hours.

• Students can access calendar of his/her appointments, calendar of all office hours offered
by teachers engaged in student’s study program, enrollment through calendar and detailed
interactive report on student office hours enrollment.

• Academic staff/teachers can get detailed interactive report on teacher’s office hours (duty
hours), calendar with teacher’s office hours (duty hours) and may reschedule office hours
with no enrollments.

22.3.1 Narrative description
For the conciseness sake we will present only two use cases out of several:

• Rescheduling of office hours by the teacher where no students are enrolled requires the
teacher to log-in, overview scheduled office hours with no one enrolled and "move" one by
one to other dates.

22.4 Data model 333

Table 22.1: Use case description: rescheduling of office hours by teacher.
Keyword Value
ID: Ch22-01
Title: Rescheduling office hours by teacher
Description: Teacher uses APEX application to reschedule office hours where no student

is enrolled.
Primary Actor: teacher
Preconditions: access to web browser on mobile device or PC, user has Teacher credentials

and privileges, application web site is available.
Postconditions: data stored in data base table ch22_duty_hours
Main -
Success Scenario:

1. teacher opens the web browser and sign-in to the application
2. select reschedule duty hours with none enrolled
3. click the slot marked as none enrolled
4. on form enter rescheduled data (location, start and end time)
5. review and confirm the rescheduling by clicking appropriate button

Extensions: -
Frequency of Use: Approximately 4 out of 30 obligatory dates in one academic year.
Status: [Finished]
Owner: User with the teacher privileges
Priority: moderate

• Student enrollment for office hours consists of overview of calendar (all office hours offered
by all teachers engaged in student-s study program), selecting desired office hours, entering
the purpose and confirming enrollment. It is not allowed to enroll more than once per
scheduled office hours.

22.3.2 Semi-structured description
First use case is rescheduling office hours by teacher when no student enrolls (see Table 22.1).
We limit the rescheduling to this type because no student is affected. The second use case targets
student enrollment for office hours (see Table 22.2). The application should also prevent student to
enroll to one office hour slot more than once.

22.3.3 Use case diagram
Figure 22.1 presents identified use cases. Note that use case "sign-in" is performed only once per
user session and that none of the other use cases can be executed before successful completion
of "sign-in". Three use cases, namely "reschedule office hours","enrollment to office hours" and
"reschedule office hours with none enrolled" are dependent and noted with "extend" association.
These use cases are executed upon request after parent use case is finished.

22.4 Data model
22.4.1 Narrative description of data model

There are ten entities in the logical data model:
• ch22_dh_slot present one student-teacher meeting;
• ch22_duty_hour present preallocated teacher time slice (office hours) which points to several

slots aka student-teacher meetings;

22.4 Data model 334

Table 22.2: Use case description: student enrollment for office hours.
Keyword Value
ID: Ch22-02
Title: Student enrollment for office hours
Description: Student uses APEX application to enroll office hours. The calendar has

all scheduled office hours for all teachers that are engaged with student
study programs (departments). Usually one student is enrolled to one
study program, but exceptional individuals may be permitted to study two
or more. Application will prevent multiple enrollments of one student to
specific office hours.

Primary Actor: student
Preconditions: access to web browser on mobile device or PC, user has teachers credentials

and privileges, application web site is available
Postconditions: data stored in data base in table ch22_dh_slot
Main -
Success Scenario:

1. student opens the web browser and sign-in to the application
2. enroll through calendar
3. click the desired slot (slots are colored indicating the statuses)
4. on new form student clicks the button and confirms the enrollment

Extensions: -
Frequency of Use: Over 1000 students use office hours at on average 2 times per semester for

10 to 15 teachers.
Status: [Finished]
Owner: Student
Priority: high

22.4 Data model 335

Figure 22.1: Use case diagram.

• ch22_purpose stores reasons and average duration of student-teacher meetings;
• ch22_student_dept points to one study program of one student, Exceptional students are

allowed to be enrolled in more than one program (synonymous for department) in one
academic year;

• ch22_student is a person who is studying at a university and involved in the study program
(synonymous for department);

• ch22_teacher_dept points to one study program (aka. department) of one teacher. One
teacher is usually engaged in more than one study program;

• ch22_teacher is a person that conducts academic activities (lessons, lab exercises, etc.)
• ch22_location is either physical (R) or virtual (I) or both (B) - it is a place where office hours

happens;
• ch22_department is a synonymous for study program;
• ch22_acad_cal_umb holds specifies working/non-working days. This entity is related to

all entities with some date attributes however we will not model these relations explicitly
because implicit relation is enough for completeness of the model.

22.4.2 Logical data model
Logical data model is presented in Figure 22.2.

22.4.3 Relational data model
Automatic transformation from logical data model to relational data model in Oracle SQL Data
Modeler is provided by function Engineering to relational. The result, relational data model ready
to be exported as SQL script is shown in Figure 22.3.

Relational data model can be developed without SQL Data Developer Data Modeler. We can

22.4 Data model 336

Figure 22.2: Logical data model.

use Quick SQL in APEX.

22.4.4 Quick SQL
Presented Quick SQL (see Figure 22.4) contains all necessary facts for generating SQL script.

22.4.5 SQL script for creating tables
SQL script for creating tables is provided in learning materials as file CH22CREATE.sql. Script for
creating tables is also available in packaged application in learning materials.

22.4.6 Query builder in APEX
This particular application will use quite long queries that may scare APEX beginners. But there is
remedy - Query Builder which is embedded in APEX (SQL Workshop > Utilities > Query Builder).
It can help anyone to construct correct queries just by clicking and dragging. Figure 22.5 presents
an example query for enrolled students calendar.

Generated SQL statement has the following form:

1 select CH22_TEACHER.FIRSTNAME as FIRSTNAME ,
2 CH22_TEACHER.LASTNAME as LASTNAME ,
3 CH22_DUTY_HOUR.START_DATE as START_DATE ,
4 CH22_DUTY_HOUR.STOP_DATE as STOP_DATE ,
5 CH22_LOCATION.LOCATION_DESCRIPTION as
6 LOCATION_DESCRIPTION ,
7 CH22_LOCATION.LOCATION_ROOM as LOCATION_ROOM ,
8 CH22_LOCATION.LOCATION_URL as LOCATION_URL ,
9 CH22_DUTY_HOUR.ID as ID,

10 CH22_STUDENT.EMAIL as EMAIL
11 from CH22_DH_SLOT CH22_DH_SLOT ,

22.5 Application interfaces 337

Figure 22.3: Relational data model.

12 CH22_DUTY_HOUR CH22_DUTY_HOUR ,
13 CH22_STUDENT CH22_STUDENT ,
14 CH22_TEACHER CH22_TEACHER ,
15 CH22_LOCATION CH22_LOCATION
16 where CH22_DH_SLOT.SLOT_ID=CH22_DUTY_HOUR.ID
17 and CH22_DUTY_HOUR.LOCATION_ID=CH22_LOCATION.ID
18 and CH22_DUTY_HOUR.TEACHER_ID=CH22_TEACHER.ID
19 and CH22_STUDENT.ID=CH22_DH_SLOT.STUDENT_ID

By adding additional condition at the end "and CH22_TEACHER.EMAIL = :APP_USER" the
query will return enrolled student for that specific teacher. Query Builder would be necessary
feature for absolute beginners but experienced users can also benefit using it.

Queries used in this application utilize concatenation operator (||), EXTRACT function, common
table expressions, fetching first 10 or 5 rows only, custom build function CH22_dh_utilization.
Readers of this book may benefit by installing packaged application first and examine queries used
on calendars, dashboard and reports.

22.5 Application interfaces
Application have one common page - Home page. This page provides some basic information
about application (see Figure 22.6). Management, student office personnel, students and teachers
will be served only with customized interfaces.

22.5.1 Management application interfaces
Users with management rights can access management dashboard (see Figure 22.7). It contains
four charts to support decision making related to office hours and teachers:

• number of office hours by year and month
• top 10 teachers by number of students

22.5 Application interfaces 338

Figure 22.4: Data model described with Quick SQL.

• top 5 overbooked teachers and
• top 5 teachers with no students during office hours

At the moment management no further management requirements are defined.

22.5.2 Student office application interfaces
Users with student office rights can access office hours interactive report and reschedule any office
hours. Figure 22.8 shows the interactive report with filter activated (only one teacher is shown).
Next, Figure 22.9 shows form which makes rescheduling possible. User can change teacher,
location, start and stop dates of selected office hours. Figure 22.10 show report after rescheduling.
Two fields are automatically updated: modification date and status of office hours. The latter is
concatenated string which also contains the username who made change.

22.5.3 Student application interfaces
Calendar items are colored depending on the utilization. NONE enrolled is presented as green,
AVAILABLE is presented as blue and OVEBOOKED is presented as brown. At this moment
student may enroll even if OVERBOOKED status is determined. Users with student rights can
access:

• calendar of his/her appointments (see Figure 22.11).
• calendar of all office hours offered by teachers engaged in student’s study program (see

Figure 22.12).
• enrollment to office hours through calendar. First, users picks the desired office hours

(see Figure 22.13). On form student select only the purpose (see Figure 22.14) and clicks
"Enroll" button. If enrollment is successful then students gets feedback (see Figure 22.15).
Checking the enrollment through the "View my appointments" menu item confirms successful
enrollment (see Figure 22.16).

• Detailed interactive report present all student appointments in tabular form (see Figure 22.17).

22.6 Supplementary learning material 339

Figure 22.5: An example Query Builder usage.

Figure 22.6: Application home page.

22.5.4 Teacher application interfaces
Calendar items are colored depending on the utilization. Colors of the statuses are identical to ones
in student interface (NONE is green, AVAILABLE is blue and OVEBOOKED is brown). Users
with teacher rights can:

• view detailed report on teachers’ appointments (see Figure 22.18).
• view teacher calendar. Student name, language and purpose is displayed for each student

enrolled (see Figure 22.19).
• reschedule office hours with none enrolled. First, the calendar of office hours with NONE

status are shown (see Figure 22.20). Clicking the item on calendar opens modal form on
which start and stop dates (also hours and minutes) are entered (see Figure 22.21). By
clicking "Apply changes" office hours are moved to desired new date (see Figure 22.22).

22.6 Supplementary learning material
You can find the following supplementary learning material:

• exported application, scripts for creating tables, inserting data, creating PL/SQL function and
dropping tables

• video guides: a) installing packaged application and creating users (students and teachers)
and b) developing application from scratch

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter22
in the Scripts section and video guides in Collection of video guides. Material for short courses is

https://beeapex.eu/course/view.php?id=12

22.6 Supplementary learning material 340

Figure 22.7: Management dashboard.

in Short courses section.

22.6.1 Exported application
Exported application is packaged. Installation creates tables, index, function, as well it pop-
ulates data. De-installation removes all data base objects used in this application. Packaged
application has embedded CSS file (ch22_cal.css) which is referenced by most calendar pages as
#APP_FILES#ch22_cal#MIN#.css:

.fc-event .fc-content div.fc-time { display: none;}

.fc-event.my-cal-blue {
background-color: lightblue;
border: 0.5pt solid black;
opacity: 0.7;

}

.fc-event.my-cal-blue .fc-event-title {
color: darkblue;
font-weight: bold;

}

.fc-event.my-cal-orange {
background-color: orange;
border: 0.5pt solid black;
opacity: 0.7;

}

.fc-event.my-cal-orange .fc-title {
color: darkred;

22.6 Supplementary learning material 341

Figure 22.8: Office hours interactive report for student office.

Figure 22.9: Rescheduling form for student office.

font-weight: bold;
}

.fc-event.my-cal-dark-orange {
background-color: #8B5A00;
border: 0.5pt solid black;
opacity: 0.7;

}

.fc-event.my-cal-dark-orange .fc-title {
color: white;
font-weight: bold;

}

.fc-event.my-cal-white {
background-color: white;

22.6 Supplementary learning material 342

Figure 22.10: Office hours interactive report after rescheduling.

Figure 22.11: Calendar of student appointments.

border: 0.5pt solid black;
opacity: 0.7;

}

.fc-event.my-cal-white .fc-title {
color: black;
font-weight: bold;

}

.fc-event.my-cal-green {
background-color: lightgreen;
border: 0.5pt solid black;
opacity: 0.7;

}

.fc-event.my-cal-green .fc-title {
color: darkgreen;
font-weight: bold;

22.6 Supplementary learning material 343

Figure 22.12: Calendar of all office hours offered by teachers in student’s study program.

Figure 22.13: Enrollment to office hours through calendar - picking calendar slot.

}

Management dashboard uses the following queries:

SELECT
EXTRACT(YEAR FROM start_date) || ’-’ ||
EXTRACT(MONTH FROM start_date) AS "Year and Month",
COUNT(id) AS count

FROM ch22_duty_hour
GROUP BY EXTRACT(YEAR FROM start_date),

EXTRACT(MONTH FROM start_date)
order by 1;

with teacher_appointmets (appointment, teacher) as
(select CH22_DH_SLOT.ID,
substr(CH22_TEACHER.FIRSTNAME,1,1) || ’.’ ||
CH22_TEACHER.LASTNAME

from CH22_DH_SLOT CH22_DH_SLOT,
CH22_DUTY_HOUR CH22_DUTY_HOUR,
CH22_TEACHER CH22_TEACHER
where CH22_DUTY_HOUR.ID=CH22_DH_SLOT.SLOT_ID
and CH22_TEACHER.ID=CH22_DUTY_HOUR.TEACHER_ID)

22.6 Supplementary learning material 344

Figure 22.14: Enrollment to office hours through calendar - selecting the purpose.

Figure 22.15: Enrollment to office hours through calendar - successful enrollment.

select count(appointment), teacher from teacher_appointmets
group by teacher

order by 1 desc
fetch first 10 rows only;

with teacher_dh_statuses (duty_hour_id, teacher,dh_utilization) as
(select CH22_DUTY_HOUR.ID,
substr(CH22_TEACHER.FIRSTNAME,1,1) || ’.’ ||
CH22_TEACHER.LASTNAME,

CH22_dh_utilization(CH22_DUTY_HOUR.ID)
from CH22_DUTY_HOUR CH22_DUTY_HOUR,
CH22_TEACHER CH22_TEACHER
where CH22_DUTY_HOUR.TEACHER_ID=CH22_TEACHER.ID and
CH22_dh_utilization(CH22_DUTY_HOUR.ID) = ’OVERBOOKED’)
select count(duty_hour_id), teacher from teacher_dh_statuses
group by teacher
order by 1 DESC
fetch first 5 rows only;

22.7 Questions 345

Figure 22.16: Checking the enrollment through the "View my appointments" menu item.

Figure 22.17: Detailed interactive report of all student appointments.

with teacher_dh_statuses (duty_hour_id, teacher,dh_utilization) as
(select CH22_DUTY_HOUR.ID,
substr(CH22_TEACHER.FIRSTNAME,1,1) || ’.’ || CH22_TEACHER.LASTNAME,
CH22_dh_utilization(CH22_DUTY_HOUR.ID)
from CH22_DUTY_HOUR CH22_DUTY_HOUR,
CH22_TEACHER CH22_TEACHER
where CH22_DUTY_HOUR.TEACHER_ID=CH22_TEACHER.ID and
CH22_dh_utilization(CH22_DUTY_HOUR.ID) = ’NONE’)
select count(duty_hour_id), teacher from teacher_dh_statuses
group by teacher
order by 1 DESC
fetch first 5 rows only;

See other queries for pages which are based on calendar element in the packaged application.

22.6.2 Video guides
Video guides show installation of packaged application and developing application from scratch.

22.7 Questions
1. How to add a user with teacher rights?
2. How would you enhance application by enabling student to take notes for particular meeting?
3. How would you limit query results to rows which have date columns equal or greater than

current time?

22.8 Answers 346

Figure 22.18: Detailed report on teacher appointments.

Figure 22.19: Teacher calendar with visible student names, their languages and purposes.

22.8 Answers
1. Use Manage Users and Group. Add new user. Use SQL Workshop > Object Browser and

select table CH22_TEACHER. Select "Data" tab and "Insert row". Email of inserted row
must match created APEX user.

2. Create new table i.e. CH22_NOTES with fields: ID, note and DH_SLOT_ID as a foreign
key which references table CH22_DH_SLOT. Create new report and form for student and
authorize the page for student. Depending on institutional rules you can grant teachers the
right to view or modify student notes.

3. To limit query results to rows which have date columns equal or greater than current time the
condition WHERE date_column >= SYSDATE must be added.

22.8 Answers 347

Figure 22.20: Rescheduling teacher office hours with NONE enrolled - the calendar view.

Figure 22.21: Rescheduling teacher office hours with NONE enrolled - new date entered.

Figure 22.22: The results of rescheduling teacher office hours with NONE enrolled.

23. Telco case

VERONIKA ŠALGOVÁ, JOZEF KOSTOLNÝ, MICHAL MRENA, MICHAL KVET AND

MIROSLAV POTOČÁR

23.1 Business view of the case
To effectively demonstrate the step-by-step process of developing a prototype application, let’s con-
sider the hypothetical company VEYOMI as an example. VEYOMI is a small company focusing on
selling telecommunications services to its clients. As VEYOMI aims to expand its product portfolio
and cater to a growing customer base, it becomes imperative to establish and maintain a robust
application that facilitates seamless management of diverse aspects, including product inventory,
client information, and automated billing systems. In an increasingly competitive market landscape,
VEYOMI recognizes the paramount importance of delivering quick and convenient access to vital
information for its valued customers. By developing an intuitive application, VEYOMI can enhance
its responsiveness, ensuring that pertinent details regarding products, services, pricing, and billing
are readily available at the fingertips of its discerning clientele.

23.2 Problem definition
In the world of business, it is extremely important to keep records of your clients, the products
or services they have purchased, and any ongoing services they are receiving. This allows you
to have all the necessary information at your fingertips, making it easier to serve your clients
effectively. Additionally, it is crucial to provide a simple and accessible way for your customers
to check the status of their services. By offering a user-friendly platform or application, you
enable your customers to easily find out what’s happening with their services and stay updated.
By maintaining accurate records and providing easy access to service updates, you can enhance
customer satisfaction, build trust, and improve your overall business operations.

23.3 Use cases
When creating an application, it is necessary to start with the specification of the services that
the application should provide and what it should cover. Therefore, preparing a list of individual
functionalities and services is crucial. First, however, it is necessary to focus on defining the types of
users. For our use, we can consider three fundamental roles – customer, manager, and administrator.
Each role has specific services to ensure overall coverage of the application’s functionality.

23.3 Use cases 349

Table 23.1: Use case description: add service.
Keyword Value
ID: Ch23-01
Title: Add service
Description: Customer uses APEX application to add new service among available ones.
Primary actor: Customer
Preconditions: Access to application, valid credentials, web application is accessible.
Post conditions: Data on new service is stored in database.
Main: Scenarios
Success scenario:

1. Customer log-in to application.
2. Customer navigates to Buy extra region of the Home page.
3. Customer enters amount.
4. With drop-down menu customer selects new service (buy type).
5. By clicking “Buy” button customer confirms activation of new ser-

vice.

Extensions: -
Frequency of use: Customer changes a set of services approximately once per six months
Status: Finished
Owner: Customer
Priority: high

23.3.1 Narrative description
For the conciseness sake we will present only two use cases out of several:

• Add Service - Customers can easily request to add new services to their existing subscription.
The system activates the new service and updates the customer’s billing accordingly. The
customer receives confirmation and information about the added service.

• Show State of Services - It is possible to easily view the current status and details of the
customer’s subscribed services. The system retrieves and presents an overview of the
customer’s subscribed services. This includes information such as the service type, activation
status, remaining usage or validity period, and any associated features or limitations. Within
the service overview, customers can access more detailed information about their service
usage. This may include data consumption, call minutes, text messages sent, or any other
relevant usage metrics.

23.3.2 Semi-structured description
Two use cases are presented in Tables 23.1 and 23.2.

23.3.3 Use case diagram
The customer needs to ensure the purchase of flat rate and extras services, displaying the status of
the services, which he should be able to cancel as well. Another essential functionality to cover is
the display of an overview of invoices.

The manager user role can access the overview of customers and their addition, editing, and
deletion. In addition, the manager can also generate invoices.

The last user role is the administrator, which has one basic functionality: managing managers.
The representation of these roles is illustrated in Figure 23.1.

23.4 Data model 350

Table 23.2: Use case description: show service status.
Keyword Value
ID: Ch23-02
Title: Show services usage
Description: Customer uses APEX application to get insight into services usage.
Primary actor: Customer
Preconditions: Access to application, valid credentials, web application is accessible.
Post conditions: -
Main: Scenarios
Success scenario:

1. Customer log-in to application.
2. Customer selects “Stats” tab.
3. With drop-down menu customer selects service. Bar graph of that

specific service is displayed.

Extensions: -
Frequency of use: Customer demand an insight approximately once per month
Status: Finished
Owner: Customer
Priority: high

23.4 Data model
23.4.1 Narrative description of data model

The CH23_Person table stores the primary personal data and user role type. When the person is
a customer, he has a record created in the CH23_Customer table, where his address and phone
number are stored in addition to the keys. The CH23_FlatRate table stores information about the
flat rate, namely the name and price. Data about individual services, their name, price, and offered
units are stored in the CH23_Service table. Individual services assigned to flat rates are stored in
the CH23_FlatRateService table, where we know the allocated quantity in addition to the keys. If
the customer purchases a flat rate, information about this is stored in the CH23_CustomerFlatRate
table, including the start and end date. Consumed units from the flat rate are registered in the
CH23_UsageLog table, where we know which customer used which service within which flat
rate, along with the date and quantity. In addition to the flat rate, the customer can purchase extra
services recorded in the CH23_ExtraService table and their amount.

23.4.2 Logical data model
Logical data model is presented in Figure 23.2.

23.4.3 Relational data model
Relational data model is presented in Figure 23.3.

23.5 User authentication and user roles
In the description above, we have identified three user roles. After logging in, the application makes
content available to the user according to his role. However, the login process itself is the same for
all users. APEX offers us several ways to manage users and authenticate them. In the following list,
we present a few selected methods:

• Database account,

23.5 User authentication and user roles 351

Figure 23.1: Use Case Diagram.

• LDAP server,
• Oracle APEX account,
• Social platform login,
• Custom.
In the Oracle APEX tool, we choose the authentication method - Authentication Scheme - in

the Shared Components \ Authentication Schemes sub page. In this sub page, we find a list of
existing login schemes, and we can also create a new login scheme here. When creating a new
scheme, we can choose one of the above-mentioned authentication methods. For the needs of our
application, we chose the most general method, Custom.

The main part of Custom authentication is the so-called authentication function. The input to
this function is the username and password the user enters on the login page, and the output is a
boolean value. As expected, the function returns true if the given name and password match an
existing user and false otherwise. In Listing 23.1, we can see a header of such a function. Therefore,
when creating a Custom login scheme, we need to provide the name of such a function. That is,
such a function must already exist.

CREATE OR REPLACE FUNCTION authenticate_user
(p_username IN varchar2,
p_password IN varchar2)
RETURN boolean;

Listing 23.1: Header of an authentication function.

We implement the body of the authentication function using the PL/SQL language, i.e., it is
up to us to decide how we authenticate the user. That is the reason why the Custom method is
the most general. We can, for example, contact an external authentication service using REST
API, search for a user in a local database, or leave authentication to another local process. In our
application, we have chosen the commonly used procedure of searching and verifying the user in
the local database.

23.5 User authentication and user roles 352

Figure 23.2: Logical data model.

We can see the CH23_Person table in the data model we presented above. The email and
password columns are relevant for authentication. The user’s email also serves as a unique
login name. The password column contains user passwords stored in a secure hashed form. The
description of secure password storage is beyond the scope of this chapter. The reader can find out
more about it in the literature. Nevertheless, before entering data or editing the password column
in the CH23_Person table, it is necessary to hash the password. For this purpose, we created an
auxiliary function hash_password, the header of which we can see in Listing 23.2. This function
takes the username and password in plaintext form and generates a password in a secured hashed
format which can be stored in the database.

Listing 23.2: The header of the auxiliary function hash_password.

CREATE OR REPLACE FUNCTION hash_password
(p_username IN varchar2,
p_password IN varchar2)
RETURN varchar2;

We solved automatic password hashing when working with the CH23_Person table by creating
triggers for the CH23_Person table. The triggers hash the plaintext password using the above-
described hash_password function before inserting or updating the password column. It will
ensure that all passwords in the CH23_Person table are stored securely – not even the database
administrator has access to the actual password. In Table 23.3, we can see a sample of the data
stored in the CH23_Person table. Interestingly, two users listed in the table have the same password.
However, we cannot determine this fact based on securely stored passwords.

Implementation of the authentication function is now simple. In this function, we first search
the CH23_Person table for the user’s password with the given username. We then hash the
password that the user entered with the hash_password function. If both hashes match, the user
authentication succeeds, and we return true from the function. On the other hand, if the hashes do
not match or there is no user with the given name in the CH23_Person table, we return false.

The disadvantage of the Custom method we chose is the greater initial difficulty in creating
a database, within which it is necessary to develop auxiliary functions and triggers. On the other

23.5 User authentication and user roles 353

Figure 23.3: Relational data model.

Table 23.3: Sample data stored in the CH23_Person table.
PERSONID EMAIL PASSWORD ROLE
5 DUIS.A@OUTLOOK

.CA
$2a$12$EfSjb2zSiKjqWCoZ47mQeOY
6IPoHP/6LvECZxGEWjFZIZcXTF
3UgGasd

’a’

11 LOBORTIS@OUTLO
OK.EDU

$2a$12$IUqALTj3reLAoTdtC5SNde
2.C5A.DOm..7pFw9UBnIsaf7gS
NcZyapql

’c’

14 AC.FERMENTUM@
AOL.NET

$2a$12$GuaO7Tjp.65d7NYLiEjSze
O6VWQfDz8eXja7dWubcjy77aZD
AKRTutyq

’m’

hand, the advantage is that we, the application developers, control the entire authentication process.
Another advantage is that the implementation used is easily scalable. If, for example, we would
like to use an external service for authentication in the future, we would need to change the
implementation of the authentication function so that it contacts the external service instead of the
local database.

The second important task related to user management is user role management. While the
login process was the same for all users, we needed to make different parts of the application
access based on the user’s role when managing roles. Role management is closely related to user
management. First, all possible user roles must be specified in the Oracle APEX environment. We
can find role management in the Shared Components \ Application Access Control subpage. In
this subpage, we see a list of existing roles, and we can also create a new role here. For each new
role, it is necessary to specify its static identifier, which we will use later when assigning the role to
individual users. In our application, we use roles with the following static identifiers:

• ADMIN,
• CUSTOMER,
• MANAGER.
We assign a role to a user using PL/SQL code. In Listing 23.3, we can see a sample code for

assigning the role CUSTOMER (static role identifier) to the user LOBORTIS@OUTLOOK.EDU.
We used another set of triggers for the Person table to automate this process. The Role column

23.6 Application interfaces 354

in this table can take values from the set {’a’, ’m’, ’c’} that agree with the initial letters of the
above-defined roles. In the body of the trigger, before inserting or updating data, we set the
appropriate role for the given user according to the value of the Role column using code similar to
the code in Listing 23.3.

Listing 23.3: PL/SQL Code that associates a given user with a given role.
APEX_ACL.REPLACE_USER_ROLES (
p_application_id => 151905,
p_user_name => ’LOBORTIS@OUTLOOK.EDU’,
p_role_static_ids => wwv_flow_t_varchar2(’CUSTOMER’));

RETURN boolean;

The last step of implementing user roles in the application is to display different subpages
based on the logged-in user’s role. For each subpage that is intended only for a specific user role, it
is necessary to select the user role for which the given subpage is intended in the Page Designer
settings of the page in the Security \ Authorization Scheme section. This step ensures that users
with other roles cannot access that subpage. For example, the Home page of our application is
specific in that it does not require a login to view it. We also set this behaviour in the Security
section with the Authentication item, where we select the Page Is Public option.

The settings described above will ensure that the user only has access to the subpages of his
role. However, all users will still see all subpages in the navigation menu - even those they do not
have access. Such behaviour is certainly not desirable. For the application to show users only the
subpages to which they have access, it is necessary to adjust the navigation menu settings. We can
set this in the Shared Components \ Navigation and Search \ Navigation Menu subpage. Here,
in the Authorization Scheme column for each item in the menu, it is necessary to set the user role
to which the given item will be displayed.

23.6 Application interfaces
The application’s design is to create individual subpages that will provide the proposed services.
The primary page is the home page, which provides an overview of the offered services and the
portfolio of flat-rate services. It is possible to use this page to present the company and the services
provided, which the customer can purchase. This page is accessible without logging in for all
visitors. The main page offers one more important functionality: access to the administration after
logging in. By administration, we mean a set of subpages divided according to the type of account
to which one is logging in - customer, manager, or admin. So, for each of them, it is necessary to
create separate subpages that cover the proposed functionality of the services of the individual role.

The customer page provides an overview of the current status of ordered services and extra
services in individual fields. Another extra tab enables the purchase of particular services by
selecting the type of service from the combo box. Another functionality provides displaying and
generating invoices, which can be solved with a pop-up window, in which, after opening, the
invoice is displayed in the form of a report, which allows the configuration of saving and printing in
PDF format. The report for the invoice is called by a particular script summarizing the data for the
service provided in the given month. Another critical part of the customer page is the service usage
overview with details such as quantity, type of service, and time. This table enables this review
to be filtered and sorted using the filter specification and sorting by individual columns. Such
functionality can be beneficial for the client when he wants to get, for example, an overview of the
number of SMS he sent in a given period. Finally, the customer is provided with the functionality of
displaying statistics in graphs in a particular folder. This functionality is handled on a separate page,
which is attached to the customer’s page by a tab, and it is possible to switch between individual
functionalities. The statistics page contains a demonstration of the graphic representation of the
logos. Such a representation is a suitable representation for showing change over time. For example,

23.7 Scripts 355

we can easily display minutes called up during individual months, the number of SMS sent, or the
amount of transferred data in the ordered program.

23.6.1 Application design
This chapter displays screenshots of the application forms of different user roles.

After the manager logs in to the application, the functionality of managing customers is
provided on separate tabs that are part of the manager’s page. The first functionality is adding a new
customer, where the manager can add and create a new customer account. Next, we use the customer
management component to edit customer information, which is designed in the data grid. This
component also provides the functionality of simple reporting or exporting customer information
to other third-party applications, if necessary. Finally, the customer display tab demonstrates a
simplified form of displaying an overview of customer information. This grid is configured so that
it does not allow editing of individual items, but it has the possibility of creating reports and exports
from this list.

The last page that needs to be created is the page for the application administrator. On this page,
we provide the service of managing managers in an editable data grid, enabling export reports and
filter functionality.

An important part is the creation of the login form. In our application, we are considering
placing this form on a particular page, which is always called when entering secure pages, where it
is necessary to authenticate as soon as possible.

23.7 Scripts
Please find required scripts for sequences (CUSTOMER_SEQ and PERSON_SEQ), triggers
(BI_CUSTOMER, BI_PERSON and BU_PERSON) and functions (HASH_PASSWORD and
AUTHENTICATE_USER) are provided in learning resources.

23.8 Creating a home page
In Create a Page, you can choose from various templates, a blank page, or feature pages with
predefined functionalities, such as Login, About page, and Configuration Options. First, you need
to fill in basic information, such as a page number and name and choose a page model, such as
Normal, Modal Dialog, or Drawer. You can also fill in additional information, such as setting a
navigation entry for the page (whether it will be a top entry or nested in an existing entry) and
choosing an icon shown in a dashboard menu.

After clicking on Create Page, the dashboard for editing information and content of the page is
displayed. The main content of the page (Body) is divided into regions.

Each region can contain HTML or various contents, such as static HTML or predefined content.
Our Login region contains a button to redirect a page into the user´s login form. In the

Behaviour property of the button, we have defined Action, which was set as Redirect to Page in this
Application. Then we set Target to a predefined login page. Since it is not necessary to show this
button when the user is already logged in, we need to hide the button by setting the Type as User is
the Public User (user has not authenticated). Finally, we created Flat rate plans as a static content
region containing HTML code, for which we can define CSS.

23.9 Creating a customer page
We created this page using similar steps as when creating a home page. When a page is created, we
continue to develop a layout of a customer´s page, which is divided into several regions, such as
for displaying the current state of services, buying extras, showing invoices, and displaying logs.

The Current state region consists of two subregions, which display numerical data – the

23.10 Creating a manager page 356

current price of consumed units of flat rate and extras. The SQL query is used to obtain these data.
You can find scripts for consumed units of flat rate and consumed units of extra services in learning
resources (file CH23_QUERY.sql).

The Buy extra region contains a number field, a select list, and a button. It is possible to set an
amount and to select which extra service we want to buy. It is operated using a button that executes
a process running a PL/SQL code (INSERT INTO CH23_EXTRASERVICE VALUES (:BUY_TYPE,
(SELECT customerid FROM CH23_CUSTOMER JOIN CH23_PERSON USING (personid) WHERE
email = :APP_USER), sysdate, :BUY_AMOUNT);)

The Show invoices region consists of a button used for generating invoices. In the Behaviour
property of the button, we have defined Action, which was set as Redirect to Page in this Application.
Then we set Target to a predefined customer invoice page, which was set to be modal. On this page,
a classical report, which can also be printed, is displayed using an SQL query provided in learning
resources (file CH23_QUERY.sql, query for an invoice report).

The Log region contains an interactive report for displaying a usage log by using SQL query
provided in learning resources (file CH23_QUERY.sql, query usage log)

Tab Stats is a new page consisting of three regions, such as Minutes, SMS, and Data. The
region type is set to be Static Content, including Chart components displaying charts from series.
Its source is defined by SQL query. By default, the colour of the chart bars is set to be uniform. It
can be adjusted in SQL query (see file CH23_QUERY.sql, query Statistics) in learning resources.

23.10 Creating a manager page
In the manager page, we used similar methods and components to create subpages. Each subpage
is created as a new page, such as Add customer, Manage customers, and View customers.

Page Add customer contains a simple form that is created from components. The process
of adding a new customer is executed by PL/SQL code: INSERT INTO CH23_PERSON (EMAIL,
PASSWORD, FIRSTNAME, LASTNAME, ROLE) VALUES (:CUSTOMER_EMAIL, :CUSTOMER_PASSWORD,
:CUSTOMER_FIRSTNAME, :CUSTOMER_LASTNAME, ’C’);

Page Manage customers is created with two interactive grids: Manage persons and Manage
current customers. Interactive grids are connected to the process of editing and saving changes.
The type of the process is set to be Interactive Grid – Automatic Row Processing (DML).

Page View customers contains an Interactive Report to display data without editing them. This
report is created using SQL query (see file CH23_QUERY.sql, query Customers).

23.11 Supplementary learning material
You can find the following supplementary learning material:

• script for creating and populating tables
• script for dropping tables
• exported packaged application
• video which demonstrate how to generate application

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter23
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

23.11.1 Exported application
Exported application is packaged. Installation creates tables as well it populates data. De-installation
removes all data base objects used in this application.

Packaged application is tested and it will run in new workspace if the following requirements
are meet:

https://beeapex.eu/course/view.php?id=23

23.12 Questions 357

• add APEX user before running application. Only in development and testing workspace
navigate to Shared Components > Application Access Control > Add User Role Assignment;
enter APEX user and set this user roles Administrator, Contributor and Reader. In production
consultation with skilled personnel before deployment in a must.

If user is not granted appropriate role than imported application will crash. It is necessary to
clear web browser cookie (i.e. Firefox: Settings > Cookies and Site Data > Manage Data) after
application crashes due to unmet requirements.

23.11.2 Video guides
Video guide shows all steps in application development.

23.12 Questions
1. Which subpage is used for creating a new login scheme?
2. Name at least two authentication methods for user management.
3. Throughout the implementation, various items were referenced in the Select statements. How

can you identify those items?

23.13 Answers
1. In the Oracle APEX tool, we choose the authentication method - Authentication Scheme - in

the Shared Components => Authentication Schemes sub page.
2. There are multiple methods, which can be used for user authentication, like LDAP server,

Database account, Oracle APEX account, etc.
3. Items in the Select statements are referenced using a colon at the beginning of the item name.

23.13 Answers 358

Figure 23.4: Customer dashboard.

23.13 Answers 359

Figure 23.5: Customer dashboard – Invoice modal window.

Figure 23.6: Customer dashboard – Invoice in PDF.

Figure 23.7: Customer dashboard – Stats of minutes.

23.13 Answers 360

Figure 23.8: Customer dashboard – Stats of SMS.

Figure 23.9: Customer dashboard – Stats of data.

23.13 Answers 361

Figure 23.10: Manager dashboard – Add customer.

23.13 Answers 362

Figure 23.11: Manager dashboard – Manage customer.

Figure 23.12: Manager dashboard – View customers.

23.13 Answers 363

Figure 23.13: Manager dashboard – Customer export.

Figure 23.14: Manager dashboard – Customer export in XLS file.

23.13 Answers 364

Figure 23.15: Administrator dashboard.

Figure 23.16: A landing page with login.

Figure 23.17: Login page.

23.13 Answers 365

Figure 23.18: Regions of the body.

Figure 23.19: List of content.

Figure 23.20: HTML code of a static region.

24. Car rental case

ATHANASIS ANGEIOPLASTIS, GEORGE MYLLIS, ALKIVIADIS TSIMPIRIS AND DIM-
ITRIOS VARSAMIS

24.1 Business view of the case
Renting a car can be a convenient way to explore new destinations, but there are some potential
pitfalls to be aware of. It’s important to understand that car rental is more similar to booking a hotel
room than booking an airline ticket. When renting a car, there are two types of charges: those you
pay when you pick up the car, and prepaid prices.

For first-time renters, it’s usually best to book a Pay Later rate, which allows for greater
flexibility in case you need to change your plans. This type of rental rate does not typically have a
cancellation penalty, which can be helpful if unforeseen circumstances arise.

To avoid additional charges, it’s important to carefully review the rental agreement and any
additional fees that may be incurred, such as insurance or additional driver fees. Additionally, be
sure to inspect the vehicle carefully before leaving the rental lot and report any damage to the rental
company immediately to avoid being held responsible for it later.

By understanding the rental process and potential fees, you can ensure a smooth and stress-free
rental experience and fully enjoy the freedom and flexibility that renting a car can offer while
traveling.

24.2 Problem definition
Renting a car may seem daunting with all the rules and conditions, but they exist for a good reason.
A brand new car costs an average of about 36,000 EURO, so when you rent a car, you’re essentially
paying a small fraction of its overall value for the temporary use of the vehicle.

While it’s crucial to have adequate car rental insurance in case of an accident or unforeseen
circumstances, most rental experiences are incident-free. However, it’s still important to carefully
read the rental agreement, understand the terms and conditions, and inspect the vehicle for any
damage before accepting it to avoid any potential issues.

By following these guidelines, you can have a safe and enjoyable rental experience without any
unexpected surprises. And remember, the rules and conditions are in place to protect both you and
the rental car company, so it’s always best to adhere to them for a smooth rental experience.

24.3 Use cases 367

24.3 Use cases
24.3.1 Narrative description of use case

The goal of this project is to develop a functional application that simulates the operation of a car
rental shop. The application will utilize the Oracle APEX platform to manage and store customer,
car, and rental information in detail.

The application is designed to be user-friendly for the owner of a car rental shop, allowing them
to manage all necessary information, including rentals, available cars for rent, and customer details.
Users will be able to make rentals by selecting a car based on criteria such as make, model, year,
and fuel type, and all necessary details required to complete the rental will be displayed.

Additionally, the application will display data such as current rentals, available cars for rent,
and customer details in detail. The current rentals will be displayed to the user in tables, depending
on which tab the user is in.

Overall, this application will provide an efficient and organized system for managing a car
rental shop, with detailed information available at the click of a button. The user-friendly interface
and comprehensive data management tools will make running a car rental shop simpler and more
efficient.

24.3.2 Semi-structured description
This project aims to develop of a user-friendly application that utilizes Oracle APEX to manage
detailed information on customers, cars, and rentals for a car rental shop. The application will
enable users to make rentals based on specific criteria, display necessary rental information, and
provide comprehensive data management tools to display current rentals, available cars for rent, and
customer details. By providing an efficient and organized system for managing a car rental shop,
this application will make running a car rental shop simpler and more efficient. The semi-structure
description is provided in Table 24.1.

24.3.3 Use case diagram
The above story is depicted on use case diagram (see Figure 24.1).

24.4 Data model
24.4.1 Narrative description of data model

The educational project is implemented using three tables to represent the entities involved: the cars
table, the customers table, and the car rental table. These tables contain all the necessary attributes
and data needed for managing the car rental process through the APEX application.

1. Cars Table
• id identity number and primary key,
• make car manufacturer
• carmodel the model of the car,
• fuel type benzine, diesel, LNG or electric
• doors how many doors the car have
• color the color of the car
• rent price the cost of a daily rental of the specific car
• carphoto a photo of the car

2. Customers Table
• id identity the number and primary key of the customer,
• fname the first name of the customer,
• lname the last name of the customer,
• address the address of the customer,

24.4 Data model 368

Table 24.1: Use case description: accessing cars, customers and car rent reservation
Keyword Value
ID: Ch24-01
Title: Access to list of cars and costumers, ability to add and remove data and

create a new car rental reservation by selecting preferred dates and calcu-
lating the cost.

Description: The user will utilize the APEX application to access and view the cars
that belong to the company, as well as all of the customers who have
previously made a booking. Both cars and customers are described by a set
of attributes. Additionally, the user will have the ability to create, update,
and delete data for both categories, allowing for efficient management
of the car rental system. Furthermore the user is able to create a new
car rental reservation by adding the car, customer, and dates. The system
calculates the total cost of the reservation based on the selected dates and
updates the results accordingly. The final report presents the reservation
details, including the car, customer, rental dates, and total cost.

Primary Actor: User administrator
Preconditions: User has an admin account for APEX instance.
Post conditions: After updating and selecting a car and customer, the user will be able to

create a car rental reservation within the APEX instance. After completing
a car rental reservation and calculating the total cost.

Main Scenario
Success Scenario:

1. Open a web browser and sign in to the car rental application.
2. Select the menu item or page navigation labeled Cars or costumers.
3. To add a car, click on the “Create” button, and for customers, do the

same.
4. To edit a car or customer entry, click on the pencil symbol associated

with that specific entry.
5. To add or update data, click the “Apply Changes” button. To delete

data, click on the “Delete” button.
6. Select menu item or page navigation rent car.
7. To create a new rent click create.
8. To add car to the reservation click on carid and select from the list

of available cars.
9. To add costumer to the car reservation click on custid and select

from the list.
10. To set the dates of the reservation click on rent date and select the

preferred start date of the reservation.
11. Then click on the return date field and select the date when the car

rental will end.
12. When the car is returned, the total cost of the reservation is calculated

based on the number of days rented and any additional charges. If
there is damage to the car, an extra cost will be added to cover the
repair costs.

13. The final cost is presented to the customer along with a detailed
breakdown of charges in the rental report.

Extensions: None
Frequency of Use: The number of reservations per day varies depending on the tourist season,

but on average, we receive approximately five reservations per day.
Status: Finished
Owner: User
Priority: moderate

24.4 Data model 369

Figure 24.1: Use case diagram.

• zipcodethe zip code of the address,
• city the city of the customer,
• cardid the id license or id card of the customer
• telephone-work a telephone of customers work
• mobile mobile phone
• email the email of the customer
• comments comments related with the behavior of the person as a customers

3. CarRental Table
• id identity the number and primary key of the rental table
• carid id connection field between car table and rental table
• custid id connection field between customer table and rental table
• rent date rental date
• return date return date,
• damage description of a damage of the car if it happens
• damage cost the damage cost
• total cost the total cost of the rental

24.4.2 Logical data model
Logical data model as shown in Figure 24.2.

24.4.3 Relational data model
Relational data model as shown in Figure 24.3.

24.4.4 SQL Script
The tables we have created for our application are CH24_CARS, CH24_CUSTOMERS and
CH24_RENTCAR.The fields of each table are described below:

24.4 Data model 370

Figure 24.2: Logical model of the Car Rental Project

drop table ch24_cars;
drop table ch24_customers;
drop table ch24_rentcar;
-- create tables
create table ch24_cars (

id number generated by default on null as identity
constraint ch24_cars_id_pk primary key,

make varchar2(12 char) not null,
carmodel varchar2(8 char) not null,
fuel_type varchar2(10 char),
doors integer not null,
color varchar2(6 char),
rent_price number default ’100’,
carphoto varchar2(512 char)

)
;

create table ch24_customers (
id number generated by default on null as identity

constraint ch24_customers_id_pk primary key,
fname varchar2(10 char) not null,
lname varchar2(50 char) not null,
address varchar2(100 char) not null,
zipcode varchar2(10 char),
city varchar2(10 char) default ’SERRES’,
cardid varchar2(20 char),
telephone_work varchar2(10 char),
mobile varchar2(10 char),
email varchar2(50 char),
comments varchar2(512 char)

)
;
create table ch24_rentcar (

id number generated by default on null as identity
constraint ch24_rentcar_id_pk primary key,

carid_id number
constraint ch24_rentcar_carid_id_fk
references ch24_cars on delete cascade,

custid_id number

24.5 Application interfaces 371

Figure 24.3: Relational Model of the Car Rental Project

constraint ch24_rentcar_custid_id_fk
references ch24_customers on delete cascade,

rent_date date not null,
return_date date not null,
damage varchar2(50 char),
damage_cost number,
totalcost number

)
;

-- table index
create index ch24_rentcar_i1 on ch24_rentcar (carid_id);
create index ch24_rentcar_i62 on ch24_rentcar (custid_id);

24.5 Application interfaces
The user, who is the owner of the car rental business, needs to provide their credentials to access the
application. The application is using Application Express Accounts authentication. The owner’s
credentials are the same as the WORKSPACE credentials shown in Figure 24.4. The application
simulates the operation of a car rental shop and includes customer, car, and rental management. It

24.5 Application interfaces 372

Figure 24.4: Log in to the app.

provides detailed information on these entities using a friendly web-based application based on the
Oracle APEX platform, as shown in Figure 24.5.

Figure 24.5: Home page of the app.

The template in Figure 24.6 is designed for managing the information related to cars in a
car rental shop. The user, who is the owner of the shop, can store and manage all the necessary
information about the cars, such as make, model, year, fuel type, and also upload a photo of the car
to show its condition. On the following Figure 24.7, it is explained how to add a column to your car
form that will allow showing photos of the cars. To achieve this, you need two auxiliary columns to
save the information in your table, one for the mime and one for the file name. The column that will
store the photo should be set to storage type BLOB. In our case, the column name is CARPHOTO.

In the application page designer, you need to go to the report for the CAR template and configure
the CARPHOTO column as a file browser. Then change the settings of the storage type to "BLOB
column specifier in item source attributes".

Next, you need to go to the form for the CAR template and configure the CARPHOTO
column as a Display image. Configure the BLOB attributes by connecting the table GRP2-
CARS, the column CARPHOTO, and the primary key ID. Finally, the columns MIMETYPE and
FILENAME should be set to hidden.

Similarly, data related to customers can be managed (see Figure 24.8).

24.6 Supplementary learning material 373

Figure 24.6: Cars template

In the rental table as shown in Figure 24.9, the user can select a car based on criteria such as
maker, model, and year. The rental is then connected to the customer and all the necessary details
needed to make a rental such as the car, customer, rental start and end dates, and the total cost will
be displayed. The user can also add an additional cost if the car has any damage after it has been
returned. Once the rental is complete, the total cost will be calculated and presented in the final
report.

24.6 Supplementary learning material
You can find the following supplementary learning material:

• exported application
• video guides

All supplementary learning material is available on public BeeAPEX project page. Login as a guest
user (no password is required). Find textbook in Books section, scripts in folder Part 2 > Chapter24
in the Scripts section and video guides in Collection of video guides. Material for short courses is
in Short courses section.

24.6.1 Exported applications
Exported application is packaged. Installation creates tables, index, function, procedure and trigger
as well it populates data. De-installation removes all data base objects used in this application.

24.6.2 Video guides
Video guide show every step in application development.

24.7 Questions
1. How can you add an icon in your app logo when you have already created the app?
2. How can you add images to your report pages?

https://beeapex.eu/course/view.php?id=24

24.8 Answers 374

24.8 Answers
1. In your app environment, choose Shared Components then choose User Interface At-

tributes click on Edit in the pop up window and add the image of your preference.
2. First, you need to set the data type of your column as BLOB. Then, in the Application Page

Designer for your report template, configure the column as a file browser and change the
Storage Type to BLOB column specifier in item Source Attributes. Next, go to the form of
this template in the App Builder environment and configure the column as a Display image.
Then, configure the BLOB attributes by connecting the table, column, and primary key ID
that is related to this column.

24.8 Answers 375

Figure 24.7: How to make a column with photos.

24.8 Answers 376

Figure 24.8: Customers data.

Figure 24.9: Rent car template.

Bibliography

Articles
[1] Hill Kim. “Altruistic cooperation during foraging by the Ache, and the evolved human

predisposition to cooperate”. In: Human Nature 13 (Mar. 2002), pages 105–128. DOI: 10.100
7/s12110-002-1016-3 (cited on page 174).

Books
[2] Roy Fielding and Richard N. Taylor. Principled design of the modern Web architecture.

Edited by Mehdi Jazayeri andAlexander L. Wolf Carlo Ghezzi. Association for Computing
Machinery, 2010. ISBN: 978-1-58113-206-9. DOI: 10.1145/337180.337228 (cited on page 95).

[3] Dariusz Jemielniak and Aleksandra Przegalinska. Collaborative society. MIT Press, 2020
(cited on page 174).

[4] OMG. Business Process Model and Notation (BPMN), Version 2.0. 2011. URL: http://www.o
mg.org/spec/BPMN/2.0 (cited on pages 243, 244).

[5] OASIS OPEN. Universal Business Language Version 2.1, OASIS Standard, 04 November
2013. 2013. URL: http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.pdf (cited on
page 242).

[6] A. Osterwalder and Y. Pigneur. Business model generation: a handbook for visionaries, game
changers, and challengers. Volume 1. John Wiley and Sons, 2010 (cited on pages 37, 38).

https://doi.org/10.1007/s12110-002-1016-3
https://doi.org/10.1007/s12110-002-1016-3
https://doi.org/10.1145/337180.337228
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0
http://docs.oasis-open.org/ubl/os-UBL-2.1/UBL-2.1.pdf

Index

abstraction level, 49
access control, 80
APEX docker, 44
application builder, 79
application interfaces, 215, 223, 229, 238,

255, 274, 283, 298, 312, 337, 354,
371

application logic, 81
application programming interface, API, 95
application report, 94
attribute, 50
AutoREST, 96

bill-of-material, 288
business process management, 242
business view of the case, 209, 219, 226, 232,

242, 271, 277, 288, 302, 331, 348,
366

calendar, 81
car rental, 366
cardinality, 50
chart, 81
column, 52
computation, 81
create application, 81
create application wizard, 79
create page wizard, 80
CRUD operation, 95, 96

data exchange, 89
data manipulation, 60, 61
data model, 49, 214, 222, 229, 233, 250, 273,

278, 292, 303, 333, 350, 367
Data Modeler, 58, 59
data structure, 49
data type, 50
data workshop, 89, 93
database management system, 49
database system, 48
DB, 49
DB layer, 49, 63
DB schema, 51
DBMS, 49

DBS, 48
DDL, 57
DML, 60
domain, 50
DQL, 61

entity, 50
entity instance, 52
entity relationship diagram, ERD, 49
ER, 49
ER diagram, 49
export data, 93
export wizard, 93

first normal form, 1NF, 55
Flows for APEX, 245
foreign key, 52

how to benefit from gallery of applications
and plug-ins, 184

how to collaborate in team, 174
how to exchange data in APEX, 89
how to generate first draft of application, 107
how to manage forms, 148
how to manage menus, 171
how to manage packaged and multilingual

applications, 192
how to manage reports, 128
how to navigate in APEX, 77
how to prepare a database, 48
how to start Oracle APEX, 35
HTTP request, 95, 96
HTTP response, 95
https://apex.oracle.com, 43

import data, 89
interactive report, 81
intranet, 209
item, 81

list, 81
list of values, LOV, 196
load wizard, 90

INDEX 379

logical data model, 49, 214, 222, 229, 233,
250, 273, 278, 293, 306, 335, 350,
369

logical model, 49

multilingual, 197
multiple languages, 197

normalization, 54

object browser, 60, 61, 93
office hours scheduling, 331
on-premise, 42
Oracle Academy, 47
ORACLE APEX, 77
Oracle Cloud Infrastructure, 46
Oracle REST Data Service, ORDS, 95

packaged application, 192
page, 81, 82
page creation, 80
page designer, 81, 82
page type, 81
PL/SQL, 193
problem definition, 209, 219, 226, 232, 245,

271, 277, 288, 302, 332, 348, 366

query builder, 63
Quick SQL, 59, 61, 109, 192

RDB, 51
RDB schema, 52, 54
RDB schema generation, 52
RDBS schema management, 57
region, 81
relation, 51
relational data model, 214, 223, 229, 237,

251, 274, 280, 293, 306, 335, 350,
369

relational DB schema, 51
relational model, 49, 51
relational model generation, 52
relationship, 50
representational state transfer, REST, 95
resource handler, 96
resource module, 96
resource template, 96
REST, 95
RESTful access, 95
RESTful service, 95

sample and starter apps, 184

second normal form, 2NF, 55
sequence, 253
skill level, 41
small innovation system, 232
SQL aggregation, 62
SQL ALTER TABLE, 60
SQL COUNT, 62
SQL CREATE TABLE, 60
SQL data definition language, 60
SQL data definition language, SQL-DDL, 57
SQL data manipulation language, SQL-DML,

60
SQL data query language, SQL-DQL, 61
SQL DELETE, 61
SQL Developer Data Modeler, 49
SQL DROP TABLE, 60
SQL INSERT, 61
SQL JOIN, 62
SQL ORDER BY, 62, 63
SQL Script, 112
SQL SELECT, 62, 94
SQL SUM, 62
SQL TO_CHAR(), 62
SQL UPDATE, 61
SQL WHERE clause, 61, 62
SQL workshop, 60
SQL-DDL, 57, 60, 192
SQL-DQL, 61
stateless REST, 95
stored function, 253
structured query language, SQL, 57

table, 51
telecommunication services, 348
third normal form, 3NF, 56

use case diagram, 210, 220, 227, 233, 246,
273, 278, 292, 303, 333, 349, 367

use case, UC, 38
Use cases, 289
use cases, 210, 220, 227, 232, 246, 272, 278,

303, 332, 348, 367
user authorisation, 226
user feedback, 80

validation, 81
Virtual Box Appliance, 43

web application, 48, 82
web application development process, 77
workflow model, 249

DOIhttps://doi.org/10.18690/um.fov.5.2024
ISBN978-961-286-902-1

Keywords:Low-code programming,application development,web applications,Oracle APEX,practical examples

LOW CODE PROGRAMMING WITH APEX HOW TO AND PRACTICAL CASES
ROBERT LESKOVAR, ALENKA BAGGIA (EDS.)University of Maribor, Faculty of Organizational Sciences,Kranj, Sloveniarobert.leskovar@um.si, alenka.baggia@um.si
The textbook introduces Oracle Application Express (APEX), a low-code platform for building data-driven web applications. It aims to equip readers with the skills to fully utilize APEX for real-world business challenges. Part I covers the basics of APEX in twelve chapters, including environment setup, database preparation, navigation, data exchange, application creation, report and form management, and team collaboration. Part II presents twelve business cases that provide a comprehensive understanding of application development from a business, data, and user interface perspective. Each case include business view, problem definition, use cases, data models, and application interfaces. The textbook is designed for approximately 75 hours of study and is suitable for both experienced developers and beginners. Additional resources on the project website such as exported applications, scripts, data and video tutorials offer enhanced learning experience.

The textbook introduces Oracle Application Express (APEX), a low-code platform for building data-driven web applications. It aims to equip readers with the skills to fully utilize APEX for real-world business challenges. Part I covers the basics of APEX in twelve chapters, including environment setup, database preparation, navigation, data exchange, application creation, report and form management, and team collaboration. Part II presents twelve business cases that provide a comprehensive understanding of application development from a business, data, and user interface perspective. Each case include business view, problem definition, use cases, data models, and application interfaces. The textbook is designed for approximately 75 hours of study and is suitable for both experienced developers and beginners. Additional resources on the project website such as exported applications, scripts, data and video tutorials offer enhanced learning experience.

Low code programming with APEX How to and practical casesEditors: Robert Leskovar and Alenka Baggia

	Acknowledgement
	Preface
	Contributors
	I How to in APEX
	1 How to start Oracle APEX?
	2 How to prepare a database?
	3 How to Navigate in APEX?
	4 How to exchange data in APEX?
	5 How to generate a first draft of the application?
	6 How to manage reports?
	7 How to manage forms?
	8 How to transform text reports into charts?
	9 How to manage menus?
	10 How to collaborate in a team?
	11 How to benefit from a gallery of applications and plug-ins?
	12 How to manage packaged and multilingual applications?

	II Constructing application in APEX
	13 Intranet news for employees
	14 GreenDi - Catalog of plants
	15 GreenDi - User Authorisation and Management
	16 Small Innovation System
	17 Business process management
	18 GreenDi – Exchange of Plants and Seeds
	19 Book review management system
	20 Bill-of-material and cost calculation
	21 Nutrition and diet management
	22 Office Hours Scheduling
	23 Telco case
	24 Car rental case
	Bibliography
	Index

