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ABSTRACT
Parkinson’s disease is a chronic neurodegenerative illness that se-
verely affects the everyday life of a patient. The severity of Parkin-
son’s disease is assessed using the MDS-UPDRS scale. In this study,
we explore the feasibility of automatically evaluating bradykinesia,
a key symptom of Parkinson’s disease, from tapping videos recorded
on smartphones in everyday settings. We collected a dataset of 183
tapping videos, from 91 individuals. Videos were assessed by neu-
rologist into 5 classes of the MDS-UPDRS scale. For data extraction,
we employedMediaPipe Hand, which provides a time series of hand
skeleton movements. The data was preprocessed to eliminate noise
and subsequently used for either feature construction or directly in
neural networks. Utilizing manually created features in a multilayer
perceptron classifier resulted in 61 % accuracy and an F1 score of
0.61 on our test set. Employing a fully convolutional network, we
improved the accuracy to 78 % and the F1 score to 0.75. Additionally,
we developed the tool for visualising tapping and displaying key
data, providing detailed insights into tapping patterns.
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1 INTRODUCTION
Parkinson’s disease (PD) is a chronic neurodegenerative condition
that profoundly impacts daily life. PD affects 1-2 % [23] of the popu-
lation over the age of 65. Currently, there are more than 1.2 million
cases in Europe [4] and this number is forecast to double in the
near future due to the demographic problem of an aging popula-
tion. Its etiology remains incompletely understood, yet researchers
suggest that a combination of genetic and environmental factors
contributes to its development. Factors such as exposure to polluted
air, pesticides, heavy metals, and head injuries have been associated
with an increased risk of Parkinson’s disease. The most common
symptoms include bradykinesia, which is also the main symptom,
tremor, rigidity, impaired postural reflexes, and dementia. There
are also numerous other symptoms that can accompany the disease,
such as sleep disturbances, depression, loss of smell, and fatigue.

The standardized MDS-UPDRS [6] scale is used to assess the
stage of Parkinson’s disease. It consists of 4 sections that evaluate
both motor and non-motor issues experienced by patients. The
finger-tapping test is used to evaluate the severity of bradykinesia.
This test involves asking the individual to tap their index finger and
thumb as quickly as possible with a maximal span, assessing the

number of pauses, time taken, decrease in amplitude, and slowing
of speed, all contributing to the final score. It was estimated that
up to 25 % of clinical diagnoses of PD are incorrect, due to lack of
experience or attention during tests [3].

2 RELATEDWORK
First automated systems for PD detection were based on wearable
sensors like gyros and accelerometers [5, 17, 20, 22] or on elec-
tromyography sensors [11, 28]. The main issues with sensors are
that they are commercially unavailable, require precise placement,
and can interfere with tapping test. Therefore, some researchers
have utilized keyboard tapping [1, 19] or tapping on a smartphone
screen [7, 8] for data acquisition. Sadikov et al. [21] collected data
using digital spirometry, where participants traced an Archimedes
spiral on a touchscreen device. Advances in hardware and software
have made computer vision combined with machine learning a
viable alternative for PD recognition, allowing for home testing
using a computer or smartphone. Lainscsek et al. [13] used a non-
linear delay differential equation, with the structure selected by a
genetic algorithm. While other researchers used machine learning
techniques, most focused on manual feature creation and utilized
these features in classification models [10, 18, 29, 30] like support
vector machines (SVM) and random forests (RF), or regression mod-
els [9] like support vector regression (SVR) and XGBoost. Others
employed neural networks (NN) to automatically learn patterns
from time series data [2, 14]. Researchers used segmentation neural
networks or optical flow for hand data extraction, with MediaPipe
Hand [16] becoming popular in later works. Due to limited data,
most studies combined some classes, and only a few performed
full-scale classification [2, 9, 14, 30].

3 METHODOLOGY
First, we collected and labeled data and preprocessed it to eliminate
noise. We initially applied Support Vector Machine (SVM), Multi-
Layer Perceptron (MLP), and Random Forest (RF) with manual
feature extraction, then used a Fully Convolutional Network (FCN)
directly on the time series.

3.1 Dataset
Since datasets of tapping videos were not publicly accessible, we
assembled our own database. From each participant, we collected
two videos: one of the left-hand tapping and another of the right-
hand, as they are independent from each other and have their own
score. Videos were recorded at a resolution of 3840 x 2160 or 1920
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x 1080 at 60 or 30 fps. All PD patients were recorded in a clinical
setting, while some participants of the healthy group were recorded
in various other environments.

Table 1: Number of videos in each class.

MDS-UPDRS score 0 1 2 3 4 Sum

Number of videos 49 51 53 23 7 183
Percentage % 26 28 29 13 4 100

We excluded videos with significant tilts, incomplete hand vis-
ibility, and participants scoring above 0 on MDS-UPDRS without
confirmed PD. In total, we compiled 183 videos from 91 different in-
dividuals. The distribution of data between classes can be observed
in Table 1. As this study involves clinical data, ethical approval
was obtained as part of a larger research project approved by the
Neurological Clinic.

3.2 Preprocessing
Since datasets were collected without any professional equipment
we were dealing with different illuminations, angles, camera tilts,
distances between camera and hand, noise, and motion blur. Videos
were cut, so only hand is visible, due to privacy and faster pro-
cessing. We used Mediapipe Hand [16] to extract the thumb and
index finger positions and computed the Euclidean distances be-
tween their endpoints to generate time series data. Occasionally,
there were single-frame misses where Mediapipe detected previous
and next frames but missed the current one. We used linear inter-
polation to fill these gaps, but avoided interpolating longer gaps
to preserve tapping integrity. To reduce noise caused by inaccu-
rate detections from MediaPipe, we implemented a combination of
low-pass and moving average filter. Filtering also helped to elimi-
nate tremor which is not part of MDS-UPDRS, but masked tapping.
We balanced filtering and signal preservation using weaker filters.
The Low-pass filter addressed high-frequency noise from tremors
and MediaPipe Hand’s misalignment, which caused slight shifts
between frames even when the hand was still. We implemented
the Butterworth low-pass filter due to its flat response. The cutoff
frequency set uniquely for each input based on a specified influence
percentage k, as defined by the equation: 𝑓cutoff = 𝑓𝑚𝑎𝑥+ bandwidth∗𝑘2 .
Additionally, a moving average with a window size of 5 was used to
further smooth the data and reduce erroneous detections, such as
spikes. We restricted tapping sequences to a maximum of 15 taps,
as the MDS-UPDRS scale does not require longer sequences and
participants may tire during extended sessions. We also applied
min-max normalization to account for varying distances between
the camera and the hand. The finalised graphs of the processed
data are depicted in Figure 1.

3.3 Feature Engineering
In the 1st methodwe created a larger number of features following
the MDS-UPDRS scale to comprehensively describe finger tapping.
In addition to Euclidean distances between the endpoints of the
thumb and index finger, we included distances between the last
joints and absolute wrist movement as additional time series data.
We hypothesized that these metrics could provide supplementary

but limited insights into finger tapping, although movements in
these areas are typically less pronounced. The time series of dis-
tances represents the amplitude spectrum, from which we derived 4
additional spectra: velocity, acceleration, frequency, and spectrum
of amplitude peaks. Additionally, we included the spectrum of abso-
lute wrist movement. From these 6 spectra, we extracted 193 statis-
tical features. Our goal was to capture dependencies at global and
local levels, describing hesitations, slowdowns, amplitude decreases,
data distributions, tapping energy, and other characteristics.

In 2nd method we designed features closely aligned with the
MDS-UPDRS scale, categorizing them into 3 parts reflecting its
criteria. The first part assesses hesitations and freezes, the second
part measures reduced speed and the third part evaluates decreased
amplitudes. In our final analysis, we utilized 145 features, with
90 being coefficients from linear regressions to assess reductions
in amplitudes and velocities of finger tapping. These coefficients
were derived from local maxima of amplitudes and velocities. The
remaining 55 features were derived from amplitudes, velocities,
their extremes, and autocorrelated velocities and amplitudes.

Figure 1: Amplitude graphs of finger tapping.

3.4 Neural network
We opted for FCN due to its simplicity and efficiency, leaving the
exploration of more complex models for future work. We tested the
FCN presented by Li et al. [14], using preprocessed time series data
directly as input. Since the selected FCN is limited to processing
equally long inputs, we padded our time series data with 0 at the
end. We later modified the FCN by adding convolutional layers,
dropout layers, early stopping, and adjusted input layers to handle
2D inputs consisting of amplitudes and velocities. The architecture
of our extended FCN is shown in Figure 2.
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Figure 2: FCN for classification of bradykinesia.

4 EVALUATION
We created a visualization tool for analyzing finger-tapping dy-
namics, featuring a built-in video player with a MediaPipe Hand
skeleton overlay. Velocity and amplitude graphs on the right side
indicate the current frame with a vertical red line (Figure 3). Taps
are denoted by red dots and the tool includes a freeze labelling op-
tion. This interactive analysis of tapping dynamics could be useful
for neurologists in diagnosing and monitoring motor disorders.

All tests were conducted using 10-fold cross-validation due to the
relatively small dataset. The F1 score was calculated as the Macro
F1= 1

𝐶

∑𝐶
𝑖=1 F1𝑖 , where 𝐶 is the number of classes and F1𝑖 is the

F1 score for class 𝑖 . In Methods 1 and 2, we used SelectKBest [26]
for feature selection. As score functions we tried ANOVA F-test
[24] and mutual information for a discrete target [25], with the
latter performing better overall. By experimenting with various fea-
ture counts, we identified the optimal number that maximized the
model’s F1 score. Results are detailed in Table 2. Overall, SVM per-

Figure 3: Tool for detailed visualization of finger tapping.

formed the worst in Methods 1 and 2, while RF and MLP achieved
the best results, likely due to their superior ability to model com-
plex patterns. Method 1 outperformed Method 2 across all metrics.
Approximately 83 % and 73 % of misclassifications from Methods 1
and 2, respectively, differed from the reference tapping scores by
exactly 1 class. The FCN from Figure 2 significantly outperformed
Methods 1 and 2, achieving a 77 % accuracy. FCN excels at capturing
both local and global dependencies in signals by using filters of
varying sizes.

5 DISCUSSION
Our data set was diverse, assembled by tapping videos of differ-
ent people among all MDS-UPDRS classes. Since the dataset was
collected without any professional equipment we were dealing
with different illuminations, angles, camera tilts, distances between

hand and camera, noise, and motion blur. That required a robust
approach, with filtering being an important part. To balance noise
reduction and signal preservation, we opted for milder filtering.

Table 2: Results were obtained via 10-fold cross-validation.
FCN refers to Li et al.’s neural network [14], while FCN+
denotes our modified version (Figure 2). MLP was used for
Method 1, while RF was used for Method 2.

Model Accuracy % F1 % Precision % Recall %
FCN 72 62 84 63
FCN+ 77 75 88 75
Method 1 61 62 67 58
Method 2 60 55 67 58

Due to the low capture speed and fast movement of fingers, mo-
tion blur was present in the videos. To address this, we tested two
NNs for motion blur removal: Ghost-DeblurGAN [15] and PDV_net
[27]. However, both methods introduced artefacts in the frames,
prompting us to discontinue their use. We also experimented with
upscaling the resolution to 200 % of the original size using Video2x
[12]. This aimed to enhance image clarity, potentially improving
MediaPipe Hand’s skeleton detection precision and reducing noise.
Testing on a smaller upscaled subset showed minimal differences
in classification performance but significantly increased processing
time, prompting us to abandon this approach due to time constraints.
Similarities were observed across different classes of tapping, as
shown in Figure 1, where the graphs appear similar. Various factors
contribute to the overlapping of classes. Small differences in tap-
ping styles between adjacent classes mean even minor decreases in
velocity or amplitude can significantly impact the final classifica-
tion. Normalization contributes to reduced differentiation between
classes by masking tapping instances with low amplitudes. How-
ever, it is necessary to account for variations in recording distances
and resolutions. Additionally, recording angles can distort actual
finger distances, leading to misleading data representation. Another
factor for class overlap is the possibility of human errors in video
assessments. However, within the same class, tapping behaviours
can vary significantly. For example, in class 4, participants often
showed varying abilities: some managed to perform a few taps
despite severe difficulties, while others were unable to tap at all.

Direct comparisons with related research may be challenging
due to the use of different datasets. When comparing our Methods 1
and 2 with the method by Yu et al. [30], who derived features based
on MDS-UPDRS, we achieved lower scores. They reported 80 %
accuracy and 79 % recall on a test set of only 15 videos recorded as
close to a 90-degree angle as possible. Frame interpolation they used
might distort tapping details with artificial data, risking the reliabil-
ity of their classification outcomes. Islam et al. [9] investigated SVR,
LightGBM, and XGBoost regressor, achieving up to 55 % accuracy.
This is lower than the 61 % accuracy we achieved with Method 1,
possibly due to their larger database of 489 videos, less effective
preprocessing and a feature set of 65 features that may not fully
capture tapping dynamics. The FCN presented by Li and colleagues
[14] achieved 72 % accuracy on our dataset, compared to the 80 % re-
ported by the authors. We attribute the slightly lower classification
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performance on our data to its complexity and heterogeneity, over
37 % smaller size, and the use of 10-fold cross-validation compared
to their 5-fold approach. However, by enhancing the FCN (Figure 2)
we improved prediction accuracy to 77 %. Alam et al. [2] reported
81 % accuracy and F1 score of 0.81 on their test set using a graph
neural networks (GNN).

6 CONCLUSION
In conclusion, Method 1 with MLP provided the best performance
between the manual methods, with better overall metrics and 10 %
fewer misclassifications differing by one class from the reference
value. The modified FCN+ (Figure 2 ) further improved accuracy to
77 %. Results are expected, since with manual time-invariant feature
extraction it is challenging to capture all unique patterns at various
scales in a tapping sequence of around 400 frames. In the future,
we plan to expand the dataset, as our class with an MDS-UPDRS
score of 4 had a limited population. Increasing the dataset will
help achieve more precise results and provide more data to create
an unseen test set. Due to only one labeler, we plan to involve
another neurologist to cross-validate our dataset and eliminate
potential human errors. We also plan to explore regression models
on extracted features to predict continuous severity scores, offering
a more detailed evaluation of bradykinesia.Given neural networks’
superior performance, we aim to explore graph neural networks
(GNN) for handling all data points extracted by MediaPipe.
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