Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Hit Song Prediction Through Machine Learning and Spotify Data

Andrej Natev
89221050@student.upr.si
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Koper, Slovenia

ABSTRACT

This study predicts hit songs using metadata from the Spotify
API[8]. The dataset includes over 20 genres, each with 40 songs,
equally divided between hits and flops, gathered using spotipy[7].
Prediction is based on the popularity feature, rated from 0-100.
Models were trained on features like danceability, energy, loud-
ness, speechiness, valence, and tempo. The dataset was split using
train_test_split (10%, 20%, 33%) and kfold cross-validation with k val-
ues of 2, 5, and 10. Models were trained, evaluated, and tested, with
kfold cross-validation showing the best accuracy and the least over-
fitting. Scikit-learn’s classifiers, ensemble models, and MLPClas-
sifier were used, with PassiveAggressiveClassifier and AdaBoost
showing 60% accuracy. Ensemble methods like extra trees and ran-
dom forest, along with neural networks, performed well. Gaussian
Process, Naive Bayes, and ridge classifiers stood out among stan-
dard models. These results suggest that enhanced models, especially
neural networks and decision tree ensembles, could improve hit
prediction. Future work may explore frequency and lyric analysis.

KEYWORDS

music, genre, song, Spotify, machine learning, classification, ensem-
ble model, support vector, neural networ, artificial intelligence

1 INTRODUCTION

This research delves into the intersection of music and data science,
leveraging the Spotify Web API[8] in conjunction with the Spotipy
library[7], and machine learning models. By harnessing these tools,
the study[2] aims to extract and analyze track data across various
genres. The primary objective is to find machine learning models
capable of categorizing songs into two distinct groups: "hit" and
"flop", based on a range of audio features. Popularity is a feature in
Spotify’s Web API[8], that represents a song’s popularity the past
three days from the day of extraction. It is an integer that ranges
from 0-100, such that a flop is any song below 60 popularty and
everything above is a hit song.

2 MATERIALS, MODELS, METHODS

2.1 Materials

In this study([2], firslt two datasets from Kaggle were utilized: "Most
Streamed Songs 2023"[6] and "30000 Spotify Songs"[5]. These datasets
provided a rich source of music metadata for analysis, with one of
them being a training dataset and the other a evaluating dataset.
Later, both of them were discarded because of the chance of over-
fitting. So then Spotipy[7], a Python library, was used for data
extraction from the Spotify Web API[8]. Pandas and NumPy were
employed for data manipulation, while the Scikit-learn[3] library

0
I
i
ool

University of Maribor Press

ISBN 978-961-286-914-4

57

Box Plot

10 —_

08

06

Ong O0mMNO OMoN o 00 D@D OO

Values
@ o @ O

04

QO 0I0 COapdaD OO CHEEED O IS GO T

02

0.0 o ——

° = T

1 2 3 5 6 7 8

Figure 1: Box Plot for Feature Outliers

facilitated feature engineering, preprocessing, data splitting, model
implementation, and evaluation. And also MatPlotLib was used to
be able to visually analyze the features and to present the results.

2.2 Most Accurate Models

2.2.1 MLPClassifier with ReLU and Logistic Activation Functions.
The MLPClassifier is a neural network model with multiple layers
of interconnected nodes. It uses the ReLU (Rectified Linear Unit)
activation function, which outputs the input directly if positive or
zero otherwise, helping to avoid the vanishing gradient problem.
The logistic (sigmoid) activation function, which maps the input
into a range between 0 and 1, is particularly useful for binary classi-
fication tasks. These activation functions enable the MLPClassifier
to capture complex data patterns, improving prediction accuracy.[3]

2.2.2 ExtraTreesClassifier with Gini and Entropy Criteria. The Ex-
traTreesClassifier is an ensemble method that builds many decision
trees using randomized splits of the training data. It uses Gini im-
purity or entropy as criteria to evaluate the quality of splits within
the trees. Gini measures the likelihood of misclassification, while
entropy measures uncertainty. By averaging predictions from mul-
tiple trees, ExtraTreesClassifier reduces overfitting and improves
generalization, making it a robust choice for classification tasks.[3]

DOI: https://doi.org/10.18690/um.feri.6.2024.13

https://doi.org/10.18690/um.feri.6.2024.13

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Andrej Natev

TTS accuracy per percentage

Logistic Regression

Passive Aggressive Classifier

Ridge Classifier

‘AdaBoost Classifier

-—10%
- 2%
-

RandomForest Classifier
Entropy Criterion

SV Classifier
Linear Kernel

MLP Glassifier
Logistic Act. Func.

MLP Classifier
ReLu Act. Func.

Figure 2: Bar Graph for TTS Accuracy Percentages

2.2.3 GradientBoostingClassifier. GradientBoostingClassifier in-
crementally builds a strong classifier by sequentially adding weak
learners, typically decision trees. Each new model is trained on the
residual errors of the previous models, allowing the ensemble to
focus on earlier mistakes. This process iteratively reduces error,
enhancing accuracy and robustness. GradientBoostingClassifier is
particularly effective in complex prediction tasks requiring high
precision.[3]

2.2.4 PassiveAggressiveClassifier. PassiveAggressiveClassifier is a
linear model suited for large-scale learning tasks, especially in
online learning. It updates parameters only when misclassification
occurs (passive) and aggressively corrects errors when they do. This
combination allows the model to adapt quickly, making it efficient
for real-time classification tasks where speed is crucial.[3]

2.2.5 AdaBoostClassifier. AdaBoostClassifier is an ensemble method
that builds a strong classifier by combining multiple weak classifiers.
It adjusts the weights of misclassified instances in each iteration,
focusing subsequent classifiers on difficult cases. By concentrating
on previous errors, AdaBoostClassifier progressively improves ac-
curacy, making it a powerful tool for various classification tasks.[3]

2.2.6 RidgeClassifier. RidgeClassifier is a linear model that uses
L2 regularization to prevent overfitting by penalizing the magni-
tude of coefficients. This regularization is particularly useful in
high-dimensional spaces where features outnumber observations.
RidgeClassifier balances bias and variance, making it effective for
classification tasks requiring generalization to unseen data.[3]

2.2.7 LogisticRegression. LogisticRegression is a linear model for
binary classification tasks. It models the probability of class mem-
bership by applying the logistic function to a linear combination of
input features. Trained by maximizing the likelihood of observed

58

data, LogisticRegression effectively handles cases where the feature-
target relationship is approximately linear, making it widely used
for various classification scenarios.[3]

2.2.8 SVC (Linear Kernel). SVC with a linear kernel is a supervised
learning model that constructs a hyperplane in a high-dimensional
space to separate classes. The linear kernel computes the dot prod-
uct of feature vectors, making it effective for linearly separable
data. By maximizing the margin between classes, SVC with a linear
kernel provides reliable and interpretable classification results.[3]

2.3 Methods

2.3.1 Data Understanding. The first step in our methodology in-
volved understanding the datasets and the task at hand. Initially,
songs were obtained from the Spotify Web API[8] based on their
popularity ratings, ensuring a balanced representation of hits and
flops. The popularity feature served as a crucial criterion for cat-
egorizing songs as hits or flops, with hits defined as songs with
a popularity score of 60 or above, and non-hits as songs with a
popularity score below 60.

2.3.2 Data Extraction. Data extraction was conducted using the
Spotipy library along with the Spotipy-random add-on. The extrac-
tion process involved sourcing track data directly from the Spotify
Web API[8]. In addition to leveraging Spotipy-random, genres were
carefully selected to ensure diversity and fairness in the broad
range of the features’ values. These genres ranged from unpopular
to popular and encompassed different audio features to ensure dis-
tributivity across the dataset.

During the extraction process, it was observed that songs with pop-
ularity ratings above 85 and below 60 were particularly challenging
to find, even when considering genres that were both unpopular
and popular. This highlights the inherent difficulty in obtaining

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Hit Song Prediction Through Machine Learning and Spotify Data

TTS accuracy per percentage

ExtraTrees Classifier
Entropy Criterion

ExtraTrees Classifier
Gini Criterion

GradientBoosting Classifier

- roud
m—Strategic Krold

MLP Classifier

ReLuAct Func. GradeintProcess Classifier

PassiveAgressive Classifier

Figure 3: Bar Graph for CV Accuracy Percentages

a balanced dataset, especially when targeting specific popularity
ranges.

2.3.3 Data Preparation. Following data acquisition, the dataset
was prepared for analysis by incorporating audio features obtained
from the Spotify API[8]. These features included danceability, en-
ergy, key, loudness, mode, speechiness, acousticness, instrumental-
ness, liveness, valence, and tempo. Additionally, data types were
adjusted to ensure categorical representation for key, mode, time
signature, and hit categories. After which another dataset was made
that contained the same features but just scaled using the default
StandardScaler from scikit-learn[3].

2.3.4 Model Training and Evaluation. During the model training
and evaluation phase, it was observed that KFold and StratifiedK-
Fold cross-validation techniques[3] encountered difficulties when
handling larger splits due to the relatively small size of the dataset.
With only 1299 songs available and an almost 50/50 balance between
hits and non-hits, the dataset size posed challenges for these cross-
validation methods to effectively cover all instances Despite these
challenges, various machine learning models, including ensemble
models and standard classifiers, were trained on the dataset. The
performance of each model was evaluated using Train-Test-Split[3]
(TTS) with varying test sizes (10%, 20%, and 33%), as well as KFold
and StratifiedKFold cross-validation techniques with different fold
splits (2, 3, 5, and 10).

3 RESULTS

The study[2] aimed to predict hit songs using machine learning
algorithms trained on Spotify API metadata. Results revealed vary-
ing accuracies across different models and evaluation techniques.

Notably, the AdaBoost Classifier and Passive Agressive Classifier
achieved the highest accuracy of 60% on a test size of 33%, followed
by the RandomForest (entropy criterion), and Ridge Classifiers,

59

and Logistic Regression that demonstrated stable performance on
the same test size. The MLP (logistic activation function) and the
SupportVector Classifier demonstrated the highest nad the most
constant through out all test sizes, 10%, 20% and 30%.

Regarding the cross-validation techniques, the stratified kfold had
a constant lower accuracy throughout all models and throughout
all kfolds, 2, 3, 5, and 10. ExtraTrees Classifier had the highest
accuracy with both techniques and using both the gini criterion
and the entropy criterion, with an an almost 60%. It was followed
by the GradientProcess Classifier that had a percent higher accu-
racy than similarly named the GradientBoosting Classifier. Other
notable mentions using the cross-validation techniques are the Pas-
sive Agressive Classifier, and the MLP Classifier with the ReLu
activation function with a very similar accuracy.

4 DISCUSSION

The findings of this study[2] shed light on the possibility of ma-
chine learning algorithms to be used to predict hit songs based
on Spotify metadata[8]. While some models exhibited promising
accuracy rates for a really general approach to the problem, devia-
tions from expected outcomes were observed, prompting deeper
analysis. The AdaBoost Classifier achieved the highest accuracy,
but only in the train-test-split. Additionally, the MLPClassifier with
identity and logistic activation functions showed accuracy, sug-
gesting the potential of neural network architectures in capturing
nonlinear relationships within the data. Theoretical implications
suggest the need for further investigation into ensemble models and
neural networks, and hyperparameter tuning to optimize model
performance.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Andrej Natev

Table 1: Model Accuracy Comparison

Accuracy (%)
Model Train-Test-Split | k-fold CV
RandomForestClassifier (Entropy) | 57.69 / 54.62 / 52.68 | 56.12
AdaBoostClassifier 60.00 / 55.38 / 52.91 | 53.58
ExtraTreesClassifier 48.46 / 51.54 / 55.24 | 56.81
ExtraTreesClassifier (Entropy) 54.62 /55.38 / 54.31 | 57.81
MLPClassifier (Identity) 50.00 / 58.46 / 53.85 | 55.66
MLPClassifier (Logistic) 58.46 / 58.46 / 54.78 | 55.50

4.1 Previous Research

Compared to prior research endeavors, which often grappled with
issues of data imbalance and feature scaling, this study’s results rep-
resent a significant improvement. The utilization of a more balanced
dataset, coupled with standardized feature scales, has led to more
reliable and interpretable models. The transition from overfitted
models, which yielded inflated accuracy rates, to robust and gen-
eralizable models underscores the importance of methodological
rigor in data science research.[1]

5 CONCLUSION

In summary, this study[2] investigated the application of machine
learning algorithms for hit song prediction using Spotify metadata[8].
Through rigorous experimentation and evaluation, we have demon-
strated the potential of various classifiers and ensemble methods in
categorizing songs into hits and non-hits with reasonable accuracy
for a general approach. The findings contribute to the existing body
of research by providing insights into the performance characteris-
tics of different models and the impact of algorithmic parameters
on predictive outcomes.

Despite achieving competitive accuracy rates, the study[2] also
revealed nuances and deviations from expected results, making an
even bigger need for further investigation.

Moving forward, it is imperative to address open questions sur-
rounding the generalizability of models across diverse music genres,
the robustness of predictions over time, and the incorporation of ad-
ditional features such as lyrics and user-specific preferences. More-
over, future research should focus on refining model architectures,
exploring ensemble models and neural networks, and optimizing
hyperparameters to enhance predictive efficacy.

ACKNOWLEDGMENTS

Special recognition is also extended to the Google Developer Stu-
dent Club of the University of Primorska for organizing multiple
events focused on ML&AL It was during these events that the seeds
of the initial research, which had overfitting issues, were sown.[4]

REFERENCES

[1] Andrej Natev. 2023. Initial Notebook. https://www.kaggle.com/code/andrejnatev/
hit-song-prediction

[2] AndrejNatev. 2024. Main Notebook. https://www.kaggle.com/code/andrejnatev/spotify-

api-spotipy-hit-song-prediction.

[3] David Cournapeau. 2007. Scikit-learn Documentation. https://scikit-learn.org/
stable/index.html

[4] GoogleDSC University of Primorska. 2023. ML&AI Summit.
community.dev/university-of-primorska-koper-slovenia/

https://gdsc.

60

[5] Joakim Arvidsson. 2023. 30000 Spotify Songs dataset. https://www.kaggle.com/
datasets/joebeachcapital/30000- spotify-songs

[6] Nidula Elgiriyrwithana. 2023. Most Streamed Songs 2023 dataset. https://www.
kaggle.com/datasets/nelgiriyewithana/top-spotify-songs-2023

[7] Paul Lamere. 2014. Spotipy Documentation. https://spotipy.readthedocs.io/en/2.
24.0/

[8] Spotify. 2013. Spotify Web API Documentation. https://developer.spotify.com/
documentation/web-api

