Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Seven Components of Computational Thinking: Assessing the
Quality of Dr. Scratch Metrics Using 230,000 Scratch Projects

Gal Bubnic
gb78843@student.uni-1j.si
University of Ljubljana,
Faculty of Natural
Sciences and Engineering,
Ljubljana, Slovenia

ABSTRACT

Computational thinking has extended beyond traditional comput-
ing education recently and is becoming a broad educational move-
ment, focused on teaching and learning critical problem-solving
skills across various disciplines. Originating from computer science
and programming, the most common learning method still involves
educational programming languages like Scratch. Dr. Scratch is a
tool designed to assess Scratch projects based on seven components
of computational thinking, including abstraction, parallelism, logic,
synchronization, flow control, user interactivity, and data represen-
tation. This study examines the quality of Dr. Scratch measurement
scale. The proposed model considers computational thinking as a
latent variable with seven indicators. According to the results of
confirmatory factor analysis, five of the computational thinking
components were measured satisfactorily, while two were below
the accepted level. Based on the results, we recommend conducting
an exploratory factor analysis for the potential scale refinement.

KEYWORDS

computational thinking, Dr. Scratch, block-based programming,
assessment, confirmatory factor analysis

1 INTRODUCTION

Although the phrase computational thinking was introduced as
a computer science concept in the early 1980s, the concept was
popularized by Janette Wing in 2006 [19]. Wing described it as the
ability to solve problems, design systems, and understand human
behavior by leveraging fundamental computer science concepts.
Recently, computational thinking has extended beyond traditional
computing education into various interdisciplinary fields. It has
been integrated into K-12 education, fostering problem-solving
skills from an early age [10]. In addition, disciplines such as biology,
physics, and social sciences are adopting computational thinking
principles to tackle complex problems, analyze data, and model
systems. This broadening of scope highlights the versatility and
importance of computational thinking as one of the fundamental
skills for the 21st century [12].

Despite its widespread adoption, there is still no consensus on
the precise definition of computational thinking. Moreover, there
is no consensus concerning its definitive or necessary components
[5]. However, several studies have investigated the components
that form its foundation. Based on the literature review: 1) Kale-
lioglu et al. [9] advocated that the most important components
are abstraction, problem-solving, algorithmic thinking, and pattern

0
I
i
ool

University of Maribor Press

ISBN 978-961-286-914-4

Tomaz Kosar
tomaz.kosar@um.si
University of Maribor,
Faculty of Electrical
Engineering and Computer Science,
Maribor, Slovenia

49

Bostjan Bubnic
bostjan.bubnic@student.um.si
University of Maribor,
Faculty of Electrical
Engineering and Computer Science,
Maribor, Slovenia

recognition; 2) Bubnic and Kosar [5] identified abstraction and al-
gorithms as relevant, domain independent components; 3) Lyon
and J. Magana [11] argued that abstraction is the most definitional
term.

Since computational thinking originates from computer science
and programming, it is commonly learned and assessed today
through educational programming languages like Scratch. Scratch
was created by the Lifelong Kindergarten Group at the MIT Media
Laboratory to provide a new environment for beginner program-
mers. Scratch programs are created using scripts assembled by
dragging and dropping blocks, which symbolize various program-
ming elements, such as expressions, conditions, statements, and
variables. This approach helps avoiding common syntax errors,
which often frustrate students. The programming environment also
features interactive, 2-dimensional animations called sprites, which
move on the screen according to user input or script commands. In
addition, audio and video clips from webcams can be incorporated
into Scratch projects.

Following the creation of Scratch, its user base grew rapidly. Due
to its rapid expansion, the need for evaluation tools became more
evident. In response, researchers developed several tools aimed at
evaluating Scratch projects, such as Dr. Scratch [13] and Hairball [2].
Dr. Scratch is an on-line tool, which automatically assesses Scratch
projects based on seven components of computational thinking,
including abstraction (e.g. custom blocks), parallelism (e.g. two or
more simultaneous scripts), logic (e.g. logic operations), synchro-
nization (e.g. wait until), flow control (e.g. repeat until), user inter-
activity (e.g. input sound), and data representation (e.g. variables,
lists).

The objective of this study was to examine Dr. Scratch’s method
for measuring computational thinking. The motivation for this
study arises from the novelty of applying our method, particularly
on such a large dataset. Utilizing a publicly available dataset con-
taining over 230,000 Scratch projects, a latent variable model was
proposed. The model considers computational thinking as a latent
variable with seven indicators. Confirmatory factor analysis was
used to assess the quality of the proposed model. Our results showed
that five components of computational thinking were measured
satisfactorily, while two were below the accepted level.

2 BACKGROUND

After the creation of Scratch, researchers and educators have started
analyzing Scratch programs. However, evaluating programs in
Scratch proved to be challenging due to the platform’s block-based,
visual format and the wide range of programming approaches used

DOI: https://doi.org/10.18690/um.feri.6.2024.11


https://doi.org/10.18690/um.feri.6.2024.11

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Gal Bubni¢, Tomaz Kosar, and Bostjan Bubnic

%omputationah

\\ Thinking

© A 54
/%\

Abstraction

‘ Parallelism ‘ Logic

‘ Synchronization

Flow User Data

‘ Control

) C O C

T 1 1 1

-/

Interactivity Representation
e e
O O O

Figure 1: Latent variable model of Dr. Scratch with factor loadings derived from confirmatory factor analysis (CFA)

by beginners. These challenges led to the creation of tools for assess-
ing Scratch programs. Hairball [2] was one of the first tools created,
designed to analyze the code of Scratch projects for common pro-
gramming patterns and potential coding issues. Following Hairball,
Ninja Code Village [17] emerged as a platform, which offered more
interactive feedback by helping users improve their coding skills
through identifying areas in their projects that could be optimized
or corrected. Finally, Dr. Scratch [13] was introduced to provide
a more comprehensive evaluation, assessing computational think-
ing skills across seven indicators: abstraction, parallelism, logic,
synchronization, flow control, user interactivity, and data represen-
tation. Each component is measured on a scale from 0 to 3, with 0
being the lowest and 3 the highest. The final score is the sum of all
7 components, thus ranging from 0 to 21 [13].

Several studies have investigated the quality of the Dr. Scratch
metrics. A study by Moreno-Leén et al. [14] compared Dr. Scratch
scores with Halstead’s metrics and McCabe Cyclomatic Complexity,
where vocabulary and length were the selected measures. Ninety-
five Scratch projects were selected for the study, with a wide range
of Dr. Scratch scores, varying from 5 to 20. According to the results,
both complexity measures exhibited a strong positive correlation
with the scores from Dr. Scratch. Another study by Moreno-Leén
et al. [13] examined the ecological validity of Dr. Scratch. The
sample size consisted of 109 participants, aged between 10 and 14
years, from 8 different Spanish schools. Each participant submit-
ted a Scratch project to Dr. Scratch first. Based on the feedback,
students could improve their Scratch projects using the recommen-
dations and suggestions provided by the tool. The results showed a
statistically significant score increase based on the feedback by Dr.
Scratch. Convergent validity of Dr. Scratch was studied by Moreno-
Leon et al. [16]. Fifty-three Scratch projects were evaluated by 16
specialists with a solid understanding of computer science educa-
tion in the first stage of the experiment. More than 450 evaluations
were conducted. The same projects were graded by Dr. Scratch
in the second stage. A strong correlation was identified between
scores from Dr. Scratch and evaluations by computer science ed-
ucation specialists. Last but not least, a discriminant validity of
Dr. Scratch was demonstrated by Moreno-Leon et al. [15], who
examined 250 Scratch projects, which were segmented into five
categories, including games, art, music, stories, and animations.

50

3 METHOD

To assess the quality of the Dr. Scratch measurement scale, we first
obtained a dataset of Scratch projects !, which was constructed
by Aivaloglou et al. [1]. The authors collected data from more
than 250,000 Scratch projects, from more than 100,000 different
users. After collecting data from the Scratch repository, authors
also analyzed the collected projects with Dr. Scratch. As a result, the
dataset comprises 231,050 Scratch projects, which were successfully
evaluated using Dr. Scratch metrics [1].

After obtaining the dataset, a Grades table was extracted. A la-
tent variable model was constructed based on the data in the Grades
table. Latent variable models are statistical models that relate a set
of unobservable (latent) variables and a set of observable (indicator)
variables [4]. In our study, computational thinking was introduced
as a latent variable with seven indicators, namely, abstraction, par-
allelism, logic, synchronization, flow control, user interactivity, and
data representation. We used confirmatory factor analysis to ex-
amine the validity, reliability, and factor structure of the proposed
measurement model. The model is presented in Figure 1.

4 DATA ANALYSIS AND RESULTS

Confirmatory factor analysis (CFA) was conducted using IBM AMOS
26. We used Microsoft Excel and IBM SPSS for calculating means,
standard deviations, composite reliabilities (CR), and average vari-
ances extracted (AVE). The model with estimates for factor loadings
is presented in Figure 1.

The y? value (y? (14) = 66,057) was significant, and the RMSEA
was greater than the suggested threshold of 0.08 (RMSEA = 0.143).
This would suggest that we had no statistical support for accepting
the proposed model. However, in line with representative literature
[e.g., 3], ¥? may not be the only appropriate standard, particularly
when sample sizes are large. Accordingly, we used additional fit
indices to assess the goodness of fit, including GFI, RMR, NFI, IFI,
and CFIL. GFI was above 0.9 and RMR was lower than 0.1, which
indicated a good fit of our model [8]. Furthermore, NFI, IFI, and CFI
were all slightly below 0.9, but still acceptable. According to these
results, we concluded that the overall model-data fit was acceptable.
The measurement model fit indices are presented in Table 1.

Thttps://github.com/TUDelftScratchLab/ScratchDataset



Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Seven Components of Computational Thinking: Assessing the Quality of Dr. Scratch Metrics Using 230,000 Scratch Projects

Table 1: Model fit indices for Dr. Scratch model

GFI
0.919

RMR
0.058

(X%
0.001

x* df
66,057 14

CFI
0.870

RMSEA
0.143

NFI
0.870

IFI
0.870

df degrees of freedom, GFI goodness of fit index, RMR root mean square residual, NFI normed fit index, IFI incremental fit index, CFI comparative fit index, RMSEA root mean

square error of approximation

Table 2: Means, Standard Deviations, Loadings, Composite Reliabilities (CR), and Average Variances Extracted (AVE) for Dr.

Scratch model

Latent Indicator M SD Loadings CR AVE
Abstraction 1.057 0.796 0.63
Parallelism 1.148 1.079 0.65
Logic 0.756 1.092 0.71

CT Synchronization 1.233 1.074 0.66 0.821 0.402
Flow Control 1.887 0.610 0.58
User Interactivity 1.563 0.530 0.42
Data Representation 1.273 0.682 0.74

The standardized factor loadings, composite reliability (CR), and
average extracted variance (AVE) are presented in Table 2. Standard-
ized factor loadings for abstraction, parallelism, synchronization,
logic, and data representation were all higher than 0.6, varying from
0.63 to 0.74. Such results pointed toward satisfactory convergent
validity of these components [7]. On the other hand, factor loadings
for user interactivity and flow control were below the acceptable
level of 0.6. CR was higher than the suggested threshold of 0.8 (CR =
0.82), which confirmed the reliability of the computational thinking
construct [7]. On the other hand, AVE was lower than 0.5 (AVE =
0.40), which indicated that the convergent validity of the proposed
measurement model might be weaker than anticipated.

5 DISCUSSION

Dr. Scratch is an assessment tool for evaluating Scratch projects
based on seven components of computational thinking. This study
employed confirmatory factor analysis to evaluate the quality of
the Dr. Scratch measurement scale. To construct a measurement
model, computational thinking was introduced as a latent vari-
able with seven indicators, corresponding to seven components of
computational thinking used by Dr. Scratch. While several studies
have previously examined validity and reliability of Dr. Scratch on
smaller samples, our study utilized a large sample of more than
230,000 Scratch projects.

According to the results of the confirmatory factor analysis, fac-
tor loadings of abstraction, parallelism, synchronization, logic, and
data representation were above the selected threshold of 0.6. Such a
threshold indicates that at least 36% of the variance in the aforemen-
tioned components is explained by computational thinking. In this
context, we consider that five computational thinking components
were measured satisfactorily. In addition, Hair et al. [7] suggested
that, ideally, a factor loading should be at least 0.7. In this case, 49%
of the variance in the observed variable is explained by the latent.
According to our results, only data representation and logic surpass
the 0.7 threshold. In this context, data representation tends to be
the prime component on the Dr. Scratch scale.

51

Factor loading for flow control was slightly below the threshold
(0.58), while a value for user interactivity was only 0.42. Conse-
quently, only 18% of the variance in the user interactivity is ex-
plained by computational thinking. Accordingly, flow control and
user interactivity where not measured effectively. User interactivity
tends to be the weakest component on the Dr. Scratch scale.

Based on the results, CR of the proposed model (CR = 0.82)
demonstrated sound reliability and high level of internal consis-
tency. This suggests that seven components consistently measure
computational thinking. However, AVE was below 0.5 (AVE = 0.4),
showing that, on the average, only 40% of the variance of the com-
putational thinking components is explained by computational
thinking. Values of CR and AVE revealed a discrepancy between
internal consistency and the amount of variance explained by the
computational thinking. Such a discrepancy could be attributed to:
low indicator quality, low factor loadings or measurement errors
[6]. Regarding the low indicator quality, the high CR suggests that
the indicators are reliably measuring the same construct, but the
low AVE indicates that the indicators may not be capturing the
construct very well. This means that while Dr. Scratch assessment
items are consistent with each other, they do not explain much of
the variance of the computational thinking. Concerning potential
low factor loadings, loadings for user activity and flow control were
lower than anticipated. Since AVE is a function of the squared factor
loadings, lower loadings can result in a lower AVE even when CR
is high. Regarding the potential presence of a measurement error, a
lower than expected AVE could be due to high measurement error
in the indicators. Namely, even if the indicators are internally con-
sistent, significant measurement errors can reduce the proportion
of variance explained by the construct.

5.1 Limitations

The results are primarily limited to the data extracted from publicly
available dataset, which includes only projects submitted into the
Scratch repository up until 2017. It is possible that the programming
habits of Scratch users have evolved over time. Another limitation



Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

exists, because Scratch projects were not randomly selected from
Scratch repository. Instead, a scraper program collected the most
recent projects available at the time it was running [1]. According
to Aivaloglou et al. [1], this limitation was somehow mediated
by collecting a large dataset, which comprises around 1.3% of 19
million shared Scratch projects.

Another limitation of our approach stems from the fact that Dr.
Scratch was designed as a formative assessment, rather than a diag-
nostic tool or measurement scale. To fully and comprehensively as-
sess computational thinking, Dr. Scratch needs to be supplemented
with other types of tools, such as a computational thinking test
[18].

6 CONCLUSION

This study evaluated the quality of Dr. Scratch measurement scale
using a publicly available dataset with more than 230,000 Scratch
projects submitted to the Scratch repository up until 2017. Accord-
ing to the results of the confirmatory factor analysis, five computa-
tional thinking components were measured satisfactorily, whereas
two were below the accepted level. In addition, lower than antic-
ipated average variance extracted indicated potential issues with
the measurement model, such as weak indicators. To address these
concerns, we plan to further investigate Dr. Scratch scale in the
future, using the same dataset. Exploratory factor analysis could be
a valuable starting point for potential scale refinement. In addition,
it would be beneficial to conduct the same analyses on Scratch
projects submitted after 2017 and compare the results.

ACKNOWLEDGMENTS

The authors would like to acknowledge Marcos Roman-Gonzélez
and Gregorio Robles, the creators of Dr. Scratch, for their valuable
suggestions to improve this work.

REFERENCES

[1] Efthimia Aivaloglou, Felienne Hermans, Jestis Moreno-Ledn, and Gregorio Rob-
les. 2017. A dataset of scratch programs: scraped, shaped and scored. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 511-514.

[2] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects. In
Proceeding of the 44th ACM technical symposium on Computer science education.
215-220.

[3] Kenneth A Bollen. 1989. Structural equations with latent variables. John Wiley &
Sons.

[4] Kenneth A Bollen. 2014. Structural equations with latent variables. John Wiley &
Sons.

[5] Bostjan Bubnic and Tomaz Kosar. 2019. Towards a Consensus about Computa-
tional Thinking Skills: Identifying Agreed Relevant Dimensions.. In PPIG. 69-83.

[6] Claes Fornell and David F Larcker. 1981. Evaluating structural equation mod-
els with unobservable variables and measurement error. Journal of marketing
research 18, 1 (1981), 39-50.

[7] ] Hair, B Black, B Babin, and R Anderson. 2010. Multivariate data analysis, 7th
Edition. Pearson Prentice Hall.

[8] Litze Hu and Peter M Bentler. 1999. Cutoff criteria for fit indexes in covariance
structure analysis: Conventional criteria versus new alternatives. Structural
equation modeling: a multidisciplinary journal 6, 1 (1999), 1-55.

[9] Filiz Kalelioglu, Yasemin Giilbahar, and Volkan Kukul. 2016. A framework for

computational thinking based on a systematic research review. Baltic Journal of

Modern Computing 4, 3 (2016), 583.

Michael Lodi and Simone Martini. 2021. Computational thinking, between Papert

and Wing. Science & education 30, 4 (2021), 883-908.

Joseph A Lyon and Alejandra J. Magana. 2020. Computational thinking in higher

education: A review of the literature. Computer Applications in Engineering

Education 28, 5 (2020), 1174-1189.

[10]
[11]

52

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

Gal Bubni¢, Tomaz Kosar, and Bostjan Bubnic

Ana Melro, Georgie Tarling, Taro Fujita, and Judith Kleine Staarman. 2023. What
else can be learned when coding? A configurative literature review of learning
opportunities through computational thinking. Journal of Educational Computing
Research 61, 4 (2023), 901-924.

Jests Moreno-Leon, Gregorio Robles, and Marcos Roman-Gonzalez. 2015. Dr.
Scratch: Automatic analysis of scratch projects to assess and foster computational
thinking. RED. Revista de Educacion a Distancia 46 (2015), 1-23.

Jests Moreno-Ledn, Gregorio Robles, and Marcos Roman-Gonzalez. 2016.
Comparing computational thinking development assessment scores with soft-
ware complexity metrics. In 2016 IEEE global engineering education conference
(EDUCON). IEEE, 1040-1045.

Jesuis Moreno-Ledn, Gregorio Robles, and Marcos Roman-Gonzalez. 2017. To-
wards data-driven learning paths to develop computational thinking with scratch.
IEEE Transactions on Emerging Topics in Computing 8, 1 (2017), 193-205.

Jestis Moreno-Leon, Marcos Roman-Gonzalez, Casper Harteveld, and Gregorio
Robles. 2017. On the automatic assessment of computational thinking skills:
A comparison with human experts. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. 2788-2795.

Go Ota, Yosuke Morimoto, and Hiroshi Kato. 2016. Ninja code village for scratch:
Function samples/function analyser and automatic assessment of computational
thinking concepts. In 2016 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 238-239.

Marcos Roman-Gonzalez, Jesiis Moreno-Leon, and Gregorio Robles. 2019. Com-
bining assessment tools for a comprehensive evaluation of computational think-
ing interventions. Computational thinking education (2019), 79-98.

Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33-35.



