
Efficient Implementation of Spreadsheet User Application
Tjaša Repič

tjasa.repic@student.um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Aljaž Jeromel
aljaz.jeromel@um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Sašo Piskar
saso.piskar@dewesoft.com

DEWESoft d.o.o.,
Trbovlje, Slovenia

Domen Dolanc
domen.dolanc@dewesoft.com

DEWESoft d.o.o.,
Trbovlje, Slovenia

Niko Lukač
niko.lukac@um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

ABSTRACT
Processing measurement data is fundamental in the field of high-
tech instrumentation, where precision, collection, analysis, and
visualization of data are of great importance. Extensive amounts
of data ought to be displayed and processed to ensure smooth user
experience. Tabular displays are therefore common, being more
comprehensible for the average user. In this paper we propose a so-
lution, envisioned by the company Dewesoft - a spreadsheet editor
widget tailored for their data acquisition software DewesoftX, also
compatible with separate plugins within the software. Since using
commercially widespread tools to do so often results in setbacks
when seeking to integrate those within existing software, we’ve de-
veloped an application functionally comparable to other solutions
while complying with the company’s existing software standards.

KEYWORDS
spreadsheet, tabular data, optimisation, user experience, data visu-
alisation.

1 INTRODUCTION
We widely adopt spreadsheets for their familiarity and versatil-
ity, offering extensive features for data manipulation, statistical
calculations, data collection, and visualization. Their accessibility
makes them a preferred choice for both individuals and businesses.
However, spreadsheets also have notable drawbacks. They are sus-
ceptible to various input errors, including clerical mistakes, rule
violations, data-entry errors, and formula errors, which can signifi-
cantly distort the data. Additionally, spreadsheets are not inherently
designed for efficient data storage or seamless connectivity to rela-
tional databases, posing challenges in effective data management
and retention [1, 2].

In modern spreadsheet tools, providing a clear and efficient user
experience involves several essential elements. These include an
intuitive interface with a clean layout, consistent design, tool tips,
and help guides. User-friendly navigation is achieved through a
well-organized toolbar, robust search functionality, and keyboard
shortcuts. Data visualization and formatting are enhanced by fea-
tures like conditional formatting, and predefined styles. Compre-
hensive formula support includes auto-complete, error-checking

tools, and a rich library of functions. Robust data management
capabilities are also crucial, including import/export options, data
validation, and integration with other tools [3, 4].

Within the initial design phase of the proposed Spreadsheet
plugin solution, a crucial aspect of planning involved acquiring a
deeper understanding of the DewesoftX software for which the plu-
gin development was intended [5]. Processing measurement data
is a crucial aspect of the advanced test and measurement indus-
try, where the company Dewesoft operates [6]. A key component
of Dewesoft’s offering is the DewesoftX software. Many fields in
science, commerce and the like require precise measurement, data
collection, analysis and visualization. Handling such large volumes
of data can prove challenging and inefficient, reducing productivity,
convenience and increasing the risk of making mistakes. The soft-
ware in question has been designed specifically to solve this issue,
being used across multiple industrial and commercial sectors. It
supports a wide range of interfaces for data visualization, allowing
for the synchronized acquisition of data from nearly any analog
sensor, storage, and visualization within the same file.

When discussing tools designed to display tabular data, it is
essential to consider mathability. Mathability in spreadsheet tools
refers to their capacity to perform complexmathematical operations
with efficiency and accuracy. This capability is crucial as it ensures
precise calculations, boosts productivity, and accommodates various
applications across fields such as finance, engineering, and data
science [7].

Our solution enhances data handling and provides clearer visu-
alization, prioritizing environments where precise, synchronized
data acquisition is critical, such as the software itself, DewesoftX.
It is meant to integrate the spreadsheet tool within the software,
therefore offering more advanced data handling, synchronization
and visualization capabilities tailored to the user’s needs while
avoiding potential issues with safety, space and integration that
arise from using already existing tools. This paper presents its basic
functions and the thought process behind their implementation,
providing detailed explanations, as well as the results of duration
and memory usage of various supported functionalities.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.4
ISBN 978-961-286-914-4

15

https://doi.org/10.18690/um.feri.6.2024.4


Tjaša Repič, Aljaž Jeromel, Sašo Piskar, Domen Dolanc, and Niko Lukač

2 METHODOLOGY
The purpose of the following subsections is to provide a breakdown,
as well as a thorough explanation of the implementation process of
the spreadsheet user application.

2.1 Fundamental Features
2.1.1 Spreadsheet Widget Layout. To enhance data accessibility
during development and make the layout overview clearer, the
widget workspace was divided into three parts. The visual widget
is segmented into two primary regions. The first is the context
menu, containing various button shortcuts for features that will
be discussed further in this article. The software’s user interface
was originally developed in Delphi, using its own VCL (Visual
Component Library) [8]. VCL is built on the Win32 architecture,
sharing a similar structure but offering much simpler usage [9].

The second region, referred to as the spreadsheet rectangle or
"TableRect", encompasses all data and its layout within the widget,
including information about cells, columns, rows and the spread-
sheet title. A smaller section called the data rectangle or "DataRect"
additionally handles cell information. The context menu and the
spreadsheet workspace can be seen on Figure 1.

We also provide users with the option to save data for future use.
This is done by writing cell values, styles, merged cell information,
resized columns andmanually adjusted titles to a customDewesoftX
file format for saving the workspace which will further be referred
to as .DXS or setup file. The data can then be read from the setup
file after loading the workspace at a later time.

Figure 1: Separation between the context menu (blue) and
area within which the spreadsheets’s data is displayed
(green).

2.1.2 Cell Manipulation. Initially we have made an effort of defin-
ing essential functionalities that define the main purpose and value
of the application by dismantling related spreadsheet editors [10–
12]. The most fundamental feature of the spreadsheet grid is the
ability to insert and update data within the cells.

In order to grant each cell its own unique value we implemented
a hash function, which generates a hash value from two integer
inputs. These are determined by the cell’s position within the grid,

with the x value corresponding to the column and the y value
corresponding to the row. The row index masks the lower 16 bits of
the integer and shifts them 16 bits to the left. The column index is
masked in the same way and remains unshifted. Using the bitwise
OR operation, the two 16-bit values are combined into a single
32-bit integer. Implementation of a hash map designed to store
the 32-bit value grants us a key for each cell, allowing us to insert
and update data within the cell’s index by combining characters
received through user input into coherent values.

Where 𝑦 is the row index, 𝑥 is the column index, & represents
the bitwise AND operation, << represents the bitwise left shift
operation, | represents the bitwise OR operation, and 0𝑥𝐹𝐹𝐹𝐹 is
a hexadecimal constant representing the lower bits, the hash key
formula can be expressed as:

ℎ𝑎𝑠ℎ_𝑘𝑒𝑦 = ((𝑦&0𝑥𝐹𝐹𝐹𝐹 ) ≪ 16) | (𝑥&0𝑥𝐹𝐹𝐹𝐹 ) (1)
The hashmap provides 𝑂 (1) time complexity for retrieving data
from the selected cell, which is highly desirable, as it means that
the time required to perform an operation is constant and does not
depend on the size of the data set.

The Spreadsheet widget also supports cell splitting and merging.
Selected cells can be merged into a larger cell, which then behaves
like a standard cell. To facilitate this functionality, cells include an
additional parameter, "merged to", which records the cell to which
they are merged. By default, for cells that are not merged, this
parameter is set to -1.

A dedicated class manages cell selection within the spreadsheet,
defining it by specifying the starting and ending column and row
indexes. This enables users to efficiently apply operations to a range
of cells, rather than being limited to individual cells.

2.2 Spreadsheet Formatting
Allowing users to stylize components in a user application is im-
portant for several reasons, including enabling customization to
tailor the application’s appearance to the user’s individual prefer-
ences and allowing them to highlight important information and
organize content according to their needs. For this purpose, we
have incorporated various styling features into the spreadsheet
user application.

2.2.1 Spreadsheet Stylizing. To enhance customization, we intro-
duced a structure within the Style class containing eighteen prop-
erties applicable to all spreadsheet components, including cells,
selections, rows, and columns. Sixteen of these properties handle
styling aspects such as font family, size, color, cell background, bold,
italic, underline, border properties, and text alignment. Only user-
defined values are saved, optimizing file size and reading/writing
speeds. The remaining two properties include a property mask, as-
signing a binary value to each style feature, and a vector of integers
to prioritize styles across cells, rows, and columns, ensuring correct
application when styles intersect.

2.2.2 Resizing Columns and Rows. We further enhanced spread-
sheet customization by implementing the functionality for users to
resize columns according to their specific needs. To resize a column,
the user must trigger a mouse down event on the right edge of any
column. This interaction detects the user’s intention to change the
column width and memorizes the index it has been detected on,

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

16



Efficient Implementation of Spreadsheet User Application

then determines the mouse movement according to the following
equation:

𝑚𝑜𝑣𝑒𝑋 = 𝑥 −𝑂 [𝑟 − 1] − 𝐷𝑥 , (2)

where 𝑚𝑜𝑣𝑒𝑋 represents the horizontal distance the mouse has
moved during the column resizing operation, 𝑥 is the current hori-
zontal position of the mouse cursor. The offsets array 𝑂 holds the
horizontal positions of the left edges of each column that is cur-
rently displayed in the spreadsheet, while 𝑟 represents the selected
index intended to be resized. Lastly, 𝐷𝑥 represents the x-coordinate
of the data rectangle’s origin. This value is subtracted to ensure the
calculation is relative to the data area.

We proceed with the operation by applying the following equa-
tion:

𝑟𝑒𝑠𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜 = max
(

𝑚𝑜𝑣𝑒𝑋

𝑐𝑒𝑙𝑙𝑊 𝑖𝑑𝑡ℎ
, 0.1

)
(3)

The equation calculates the ratio of the mouse movement to the cell
width. It then ensures that this ratio is not less than 0.1 by using the
max function. The calculated ratio is then set as the new column
width on the resize index. Additionally, note that the cell width is
the default width of the cells, which is calculated based on the font
size settings.

2.3 Undoing and Redoing Spreadsheet Actions
Within the context of the spreadsheet application, we defined the
undo and redo functionality as a state machine capable of switching
between the current and previous states after applying a change to
the spreadsheet and calling one of said operations.

To track state changes, we have designed and implemented the
"TableAction" structure. Different state changes require modifica-
tions to various types of data. The TableAction structure simplifies
the process by encapsulating the type of action triggered along with
parameters necessary for adjustment. We have provided detailed
definitions of various Spreadsheet actions as shown in 1.

The spreadsheet actions are managed within the respective undo
and redo vectors whose maximum size is set to twenty actions.
Upon triggering an add action event, the initial state prior to the
change is recorded in the undo vector, while the post-change state,
along with its corresponding action type, is recorded in the redo
vector. When the user initiates an undo or redo event, either via the
context menu or keyboard shortcuts, the Algorithm 1 is executed.

To summarize, the algorithm begins by verifying the feasibility
of the state change, ensuring that there is at least one recorded
action in the action counter. If this condition is met, the action
counter is adjusted appropriately. The algorithm then executes
the necessary statements based on the type of action, ensuring
that the corresponding data is modified accordingly. Finally, the

visible state of the spreadsheet is updated to reflect these changes.
Data: Action History
Result: Undo or Redo Action

1 UndoOrRedo(isRedo) if no actions available then
2 return;
3 end
4 get action, adjust counter;
5 if action is Insert/Update then
6 set cell, edit value;
7 else if action is SetStyle then
8 apply styles;
9 else if action is Resize then
10 apply size changes;
11 else if action is Merge/Split then
12 update merge states;
13 else if action is TextPaste then
14 apply text;
15 else if action is Sort then
16 apply sorting;
17 else if action is Paste then
18 apply data and styles;
19 end
20 update visible cells;

Algorithm 1: Undo/Redo algorithm.

3 RESULTS
The measurements leading to the results presented in this paper
were conducted on a system equipped with an AMD Ryzen 9 3900x
12-Core Processor and 64GB of RAM. It is also important to note
that DewesoftX version 2024.2 was used when conducting these
measurements.

For the testing, we evaluated three spreadsheet functionalities
across three progressively larger cell selections. The functionalities
tested included pasting values into cells (see Table 1), undoing and
redoing font colour changes (see Table 2), and loading from and
saving to the setup file with the font colour state being set (see
Table 3 and Table 4). The cell selection ranges used for these tests
were 5x5, 25x25, and 50x50.

The data used in these experiments comprised text, numeric
values, and dates, with font colour applied as specified. Each evalu-
ation was conducted ten times under identical conditions, and the
results were averaged to ensure accuracy.

Table 1: Evaluation of Cell Value Pasting.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 4.4 0.812
25x25 16.1 13.238
50x50 44.1 50.179

Within Table 1 the data shows that memory usage increases
significantly with the size of the cell selection, from 4.4 MB for 5x5
to 44.1 MB for 50x50. The duration also increases with the size of the
cell selection, from 0.812 ms for 5x5 to 50.179 ms for 50x50. A larger
selection is expected to be more memory-intensive than its smaller
counterpart. Interestingly, a selection 100 times larger is only 10

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

17



Tjaša Repič, Aljaž Jeromel, Sašo Piskar, Domen Dolanc, and Niko Lukač

times more memory-intensive. This can be explained by the fact
that the memory required for the basic widget to display correctly
is also involved within the measurement and is independent of the
amount of data stored in the spreadsheet. It’s also worth noting
that the duration does not increase linearly.

Table 2: Evaluation of Undoing/Redoing the Font Colour
Property State.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 0.134 0.292
25x25 0.722 1.157
50x50 1.5 5.766

Within Table 2, memory usage increases modestly with larger
cell selections, from 0.134 MB for 5x5 to 1.5 MB for 50x50. The dura-
tion also increases, from 0.292 ms for 5x5 to 5.766 ms for 50x50. The
memory and time required to undo/redo font colour changes grow
as the cell selection range expands. Comparing the measurements
of the undo/redo function with the paste-into-cells function, we
can conclude that the memory usage for the former is greater than
that for the latter.

Table 3: Evaluation of Loading from Setup where Font Colour
Property is set.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 97.8 1.769
25x25 117.6 33.173
50x50 123.6 132.758

For Table 3 memory usage increases with larger cell selections,
from 97.8 MB for 5x5 to 123.6 MB for 50x50. The duration, however,
shows an increase from 1.769 ms for 5x5 to 132.758 ms for 50x50,
indicating that loading from setup becomes more time-consuming
with larger selections.

Table 4: Evaluation of Saving to Setup where Font Colour
Property is set.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 0.234 3.752
25x25 0.293 66.618
50x50 0.356 260.720

Lastly for Table 4, memory usage shows a slight increase with
larger cell selections, from 0.234 MB for 5x5 to 0.356 MB for 50x50.
The duration increases significantly with the size of the cell selec-
tion, from 3.752 ms for 5x5 to 260.720 ms for 50x50. This indicates
that saving to setup is considerably more time-consuming as the
cell selection size grows.

As expected, the results indicate that both memory usage and
duration generally increase with larger cell selection ranges across

all functionalities. Pasting values and saving to setup are particu-
larly resource-intensive, whereas undoing and redoing font colour
changes show a moderate increase in resource requirements. Load-
ing from setup shows a notable increase in duration with larger
selections, highlighting the complexity of handling larger datasets.

4 CONCLUSION
In this paper, we proposed a solution for handlingmeasurement data
in high-tech instrumentation through a computationally efficient
spreadsheet editor widget. This widget is tailored for integration
with Dewesoft’s data acquisition software, DewesoftX, aiming to
offer functionality comparable to commercial spreadsheet tools
while ensuring compatibility with existing software standards. The
solution focuses on enhancing data accessibility and user experi-
ence by providing an intuitive interface, robust navigation, and
comprehensive formatting and state manipulation features.

In future development, we aim to enhance advanced matha-
bility features essential for an efficient spreadsheet application.
Specifically, we plan to implement a formula system within the
widget, enabling users to input formulas and perform calculations
directly within the spreadsheet. Additionally, we intend to incor-
porate conditional cell formatting, which automatically changes
the appearance of cells based on their content to improve data
visualization and analysis. We will also continue refining the exist-
ing features, taking user feedback into consideration to ensure the
highest quality user experience possible.

ACKNOWLEDGMENTS
We are deeply thankful to Dewesoft and its representatives for their
collaboration on this project, without which this paper would not
have been possible.

REFERENCES
[1] F. Nurdiantoro, Y. Asnar, and T. E. Widagdo. The development of data collection

tool on spreadsheet format. Proceedings of 2017 International Conference on Data
and Software Engineering, ICoDSE 2017, 2018-January:1–6, Jul. 2017.

[2] Srideep Chatterjee, Nithin Reddy Gopidi, Ravi Chandra Kyasa, and
Prakash Prashanth Ravi. Evaluation of open source tools and develop-
ment platforms for data analysis in engine development. SAE Technical Papers,
pages 1–11, Jan. 2015.

[3] Sabine Hipfl. Using layout information for spreadsheet visualization. Proceedings
of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best Practice
for Spreadsheet Users in the New Europe, pages 1–13, 2004.

[4] Bernard Liengme. A Guide to Microsoft Excel 2013 for Scientists and Engineers.
Academic Press, London, United Kingdom, 2013.

[5] Dewesoft. Introduction | Dewesoft X Manual EN. https://manual.dewesoft.com/
x/introduction, 2024. Accessed: 18-08-2024.

[6] Dewesoft. DewesoftX Award-Winning Data Acquisition and Digital Signal
Processing Software. https://dewesoft.com/, 2024. Accessed: 21-08-2024.

[7] P. Biro and M. Csernoch. The mathability of spreadsheet tools. 6th IEEE Con-
ference on Cognitive Infocommunications, CogInfoCom 2015 - Proceedings, pages
105–110, Jan. 2016.

[8] Embarcadero Technologies. VCL Overview - RAD Studio. https://docwiki.
embarcadero.com/RADStudio/Sydney/en/VCL_Overview, 2024. Accessed: 18-
08-2024.

[9] Thomas Lauer. Porting to Win32™: A Guide to Making Your Applications Ready
for the 32-Bit Future of Windows™. Springer-Verlag New York Inc., New York,
NY, USA, 1996.

[10] Isaac Alejo. Google Sheets Tutorial Guide. Google Books, Online, 2024. Accessed:
18-08-2024.

[11] LibreOffice Documentation Team. LibreOffice 4.1 Calc Guide. Google Books,
Online, 2024. Accessed: 08-08-2024.

[12] Karl Mernagh and Kevin Mc Daid. Google sheets vs microsoft excel: A compari-
son of the behaviour and performance of spreadsheet users. Proceedings of the
Psychology of Programming Interest Group (PPIG) 2014 Conference, 2014.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

18


