
Integration of Named Entity Extraction Based on Deep Learning
for Neo4j Graph Database

Lea Roj
l.roj@um.si

University of Maribor,
Faculty of Electrical Engineering and

Computer Science,
Maribor, Slovenia

Štefan Kohek
stefan.kohek@um.si
University of Maribor,

Faculty of Electrical Engineering and
Computer Science,
Maribor, Slovenia

Aleksander Pur
pur.aleksander@gmail.com
Ministry of the Interior,
Ljubljana, Slovenia

Niko Lukač
niko.lukac@um.si

University of Maribor,
Faculty of Electrical Engineering and

Computer Science,
Maribor, Slovenia

Abstract
The increase in unstructured textual data has created a pressing
demand for effective information extraction techniques. This paper
explores the integration of Named Entity Extraction (NEE) using
deep learning within the Neo4j graph database. Utilizing the Rebel
Large Model, we converted raw text into structured knowledge
graphs. The primary objective is to evaluate the efficacy of this
integration by examining performance metrics, such as process-
ing time, graph growth, and entity representation. The findings
highlight how the structure and complexity of graphs vary with
different text lengths, offering insights into the potential of combin-
ing deep learning-based NEE with graph databases for improved
data analysis and decision-making.

Keywords
Named entity extraction, deep learning, Neo4j, graph database,
knowledge graphs

1 Introduction
The rise of digital news and social media has significantly increased
the importance of NEE. As more information is generated online,
extracting this information became critical for various applications,
such as search engines and recommendation systems [1]. NEE,
along with Relation Extraction (RE), is essential for transforming
unstructured text into structured data, enabling more effective data
analysis and decision-making. Building on the findings of a previous
work [2] that evaluated various hyper-parameters and analyzed
sensitivity performance, this paper takes a step further by exploring
the integration of NEE and RE within the Neo4j graph database.

Neo4j is a graph database that provides a powerful way to store
and query complex relationships between entities. This makes it
well-suited for applications involving interconnected data, such as
social networks, recommendation systems, and fraud detection. In
Neo4j, data is stored as nodes and relationships. Nodes represent
entities, while relationships represent the connections between
these entities. Both can have properties (key-value pairs) to store

additional information. Neo4j uses Cypher, a declarative query
language specifically designed for querying graph databases [3].

Integrating Named Entity Recognition (NER) based on deep
learning within Neo4j graph databases has been an area of active
research and development. Ni et al. [4] addresses the challenge of
translating natural language queries into graph database queries
for intelligent medical consultation systems. The authors developed
a Text-to-GraphQL model that utilizes a language model with a
pre-trained Adapter, enhancing the semantic parsing capabilities
by linking GraphQL schemas with corresponding natural language
utterances.
Fan et al. [5] wrote about geological hazards, a deep learning-based
NER model that was used to construct a knowledge graph from
literature. This model addresses challenges such as diverse entity
forms, semantic ambiguity, and contextual uncertainty. The result-
ing knowledge graph, stored in Neo4j, enhances the usability of
geological research data.
Chaudhary et al. [6] propose a system that converts raw text into
a knowledge graph using Neo4j, addressing inefficiencies in tradi-
tional tools like Spacy, NLTK, and Flair. Their method combines
entity linkage and RE to convert unstructured data into a knowledge
graph, leveraging graph-based NER and Linking for a contextual
understanding of data. The implementation utilizes the REBEL
[7] model for RE. In comparison with our approach, they use the
BLINK [8] model for entity disambiguation and linking. Meanwhile
we focus on efficient entity normalization by querying Wikipedia.
Furthermore, while Chaudhary et al.’s system emphasizes improve-
ments for processing large untagged datasets using graph-based
NER and linking, we achieve comparable results using traditional
NER through Spacy while focusing on entity filtration and knowl-
edge enrichment. We also performed several graph analytics in
Neo4j, providing deeper insights and analysis.

The objective of this paper is to demonstrate the implementa-
tion process of integrating NEE into the Neo4j graph database. It
aims to evaluate the effectiveness of this integration and analyze
various performance metrics. Specifically, the paper will measure
the processing time required to extract named entities from text
and represent them in Neo4j, analyze graph growth in relation to

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.3
ISBN 978-961-286-914-4

11

https://doi.org/10.18690/um.feri.6.2024.3

Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač

text length, evaluate average total neighbors score based on text
length, and analyze how many entities are actually shown in graph
and how many are filtered out.

The next section details the workflow from text pre-processing
to graph visualization in Neo4j. The Results showcases the findings,
including charts that visualize the performance metrics. Finally, the
Conclusion summarizes the benefits and purpose of the integration,
highlights key findings from the study, and suggests potential areas
for future research and development.

2 Methodology
The workflow from text pre-processing till graph construction in
Neo4j is represented in figure 1. The entire process consists of mul-
tiple crucial steps including text pre-processing, NEE, RE, entity
normalization and filtration, and finally generation and visualiza-
tion of the knowledge graph in Neo4j. The details of these steps
have been in depth discussed in our previous paper [2].

Text pre-processing NEE

RENormalization

Entity Filtration Generate Graph

Visualize Graph in Neo4jAnalysis in Neo4j

Figure 1: Workflow

Text pre-processing involves segmenting the text into manage-
able spans, with span length defining the number of words in each
segment and overlap length ensuring coherence between consec-
utive spans. The length penalty manages the impact of longer se-
quences, while the number of beams allows simultaneous explo-
ration of multiple sequences to find the best one. The number of
returns specifies how many sequences are returned after the beam
search.

NEE identifies and classifies entities by tokenizing the text, with
each token corresponding to a unique word ID. The Rebel Large
Model, a sequence-to-sequence model based on the T5 architecture,
is employed for RE tasks [7]. This model leverages deep learning
techniques to process up to 512 tokens as input and generates
triplets consisting of a subject (head), object (tail), and the rela-
tionship type between them. Using a transformer-based encoder-
decoder architecture, these triplets are extracted from textual spans,
where each relationship is first predicted in token form and then
decoded into text.

Based on the previous paper, this paper proposes improvements
in normalization and entity filtration, as follows. Entity names are
first standardized by converting text to lowercase and removing
common prefixes, followed by verification via Wikipedia’s API.
Non-contributive entities, such as dates or overly generic terms,
are identified and excluded using pattern recognition and catego-
rization techniques. The system checks for duplicates or highly

similar entities to prevent clutter, merging or discarding them as
needed. Cosine similarity measures are used to assess and reinforce
thematic links between entities, enhancing the overall coherence
of the knowledge base.

2.1 Knowledge graph within Neo4j
A knowledge graph is generated from the extracted and filtered
entities, and relations. This structured representation helps in visu-
alizing the connections and relationships within the text. Finally,
the knowledge graph is stored and visualized in Neo4j.

In the integration process, the data obtained using NER is saved
to a graph database through the Neo4j driver. Afterwards, the
method iterates over entities in the knowledge base to determine
category for each entity. Using the ’MERGE’ Cypher command the
method either finds an existing node (based on the name) or creates
a new node if none exists. Attributes such as ’url,’ ’summary,’ and
’category’ are then added to each node.

MERGE (e:Entity {name: $entity })

ON CREATE SET e.url = $url, e.summary = $summary

SET e.category = coalesce(e.category , $category)

After adding the entities, we processed each relationship defined
in the knowledge base. We ensured that both entities involved in
the relationship were present in the database and then created a
relationship between the entities using the ’MERGE’ command if it
didn’t already exist.

MATCH (head:Entity {name: 'EntityName1 '}),

(tail:Entity {name: 'EntityName2 '})

MERGE (head)-[r:RELATIONSHIP_TYPE]->(tail)

The knowledge graph is visualized in Neo4j to provide an in-
tuitive and interactive representation of the extracted knowledge.
Using Cypher queries, users can explore the graph, examine re-
lationships, and derive insights from the interconnected data. To
display the graph in the Neo4j application, we use the following
Cypher query.

MATCH (n)-[r]->(m) RETURN n, r, m

This query retrieves all nodes (n, m) and the relationships (r)
between them, displaying the graph structure in the Neo4j interface.
The directed edges in the graph illustrate the relationships, provid-
ing a clear visual representation of the underlying knowledge.

2.2 Knowledge Graph Analysis in Neo4j
After constructing the knowledge graph in Neo4j, various metrics
and analyses were applied to explore the structure within the graph.
One such metric is the Total Neighbors score, which measures the
closeness of nodes by counting their unique neighbors. It is based
on the idea that a highly connected node is more likely to gain new
links. The metric is calculated using the following formula:

𝑇𝑁 (𝑥,𝑦) = |𝑁 (𝑥) ∪ 𝑁 (𝑦) |, (1)

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

12

Integration of Named Entity Extraction Based on Deep Learning for Neo4j Graph Database

where N(x) and N(y) represent the sets of nodes adjacent to x and
y, respectively. The Total Neighbors score measures the closeness
of two nodes based on the number of unique neighbors they have.
If a score is equal to 0 it indicates no closeness between the nodes,
while higher scores indicate greater closeness [9].

The gds.alpha.linkprediction.totalNeighbors function
from the Neo4j Graph Data Science (GDS) library calculates the
total neighbors score between the two matched nodes (p1 and p2).

3 Results
The analysis was conducted using the text about Pablo Escobar
from Wikipedia. For this paper, the original text was divided into
sections of varying lengths to examine how text length influences
the analysis results. Figure 2 displays a generated graph with a text
length of 304 words. The graph was created using specific parame-
ters that influence its structure and content. These parameters were
heuristically determined to be span length = 30, length penalty
= 0, number of beams = 5, number of returns = 2, and overlap
length = 10. On the same set of parameters we measured processing
time, similarity score based on total neighbors, and analyzed graph
growth.

Madellin

twinned
administrative body

located in the
administrative
territorial entity

Rionegro

Murder

Subclass of

Massacre

Ecuador

Bolivia

Peru

United States

shares
border with

diplomatic
relation

Colombia

procuct or
material produced

Drug cartel

manufacturer

Cocaine

founded by

product or
material produced

Madellin
CartelPolitician

Universidad
Autonoma

Latinoamericana

Illegal drug
trade

Liberal party

2 December
1993

1 December
1949

Drug lord

occupation

date of birth

date of death

member of
political party

field of work

educated at

occupation member of

country of
citizenship

Pablo
Escobar

shares border with

shares
border with

Figure 2: Generated graph with text length = 304 words

In Figure 3, the time required for graph generation is shown
to increase linearly with the number of words in the text. This

linearity is confirmed by a regression analysis, which yields an 𝑅2

value of 0.9984, indicating an almost perfect fit.

0 300 600 900 1,200 1,500 1,8000

30

60

90

120

150

180

210

240

270

Number of Words

Ti
m
e
[s
]

Influence of text length on graph generation time

Data Points
Regression Line

Figure 3: Influence of text length on execution time.

Figure 4 demonstrates the influence of text length on the num-
ber of recognized entities. As the number of words in the text
increases, there is a corresponding increase in both the number
of nodes shown and the number of entities that are recognized
but not displayed. This pattern indicates that longer texts result
in the recognition of more entities, although not all are displayed.
The decision to display or exclude entities is determined by several
processes designed to maintain the clarity and relevance of the
graph. These processes include the combination and unification of
similar entities, the removal of isolated entities, and the filtering
out of date-related entities. These processes are essential for main-
taining the graph’s relevance and clarity, preventing clutter from
redundant or less significant entities.

28 81 142 244 304 398 475 614 712 954115
2
159
3
179
9
190
6

0

50

100

150

200

Number of Words in Text

N
um

be
ro

fE
nt
iti
es

Comparison of Recognized Entities vs. Visualized Entities in Graph Based on Text Length

Number of Recognised Entities in Text Number of Entities Shown in Graph

Figure 4: Comparison of recognized and visualized entities
based on text length.

The following analyses represent the average similarity score for
all possible pairs of entities (n1, n2) in the graph. For that is used a
link prediction algorithm (totalNeighbors) to assess how connected

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

13

Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač

two entities are based on their neighbors. The purpose of this is to
measure how interconnected the entities are throughout the entire
graph. High scores generally appear between nodes directly related
through historical, contextual, or thematic associations. On the
other hand dates provide low similarity scores with entities, likely
indicating less direct connection or relevance to these specific dates
in the dataset.

In Figure 5, the average Total Neighbors score between all nodes
is represented. The values are relatively stable, mostly ranging
between 1.5 and 2.0. This suggests a moderate level of similarity
between entities across different text lengths, without extreme
variation. This stability suggests that the entities within each text
maintain a consistent level of connectivity, regardless of text length.

0 500 1,000 1,500 2,0001

1.5

2

2.5

3

Text Length

Si
m
ila
rit
y
Sc
or
e

Average Similarity Score vs. Text Length

Figure 5: Average Total Neighbors Score between all nodes

Figure 6 highlights only ten strongest connections in the graph,
which is particularly useful for identifying the most significant
or central entities. Score increases with text length, particularly
noticeable in texts longer than 900 words. This indicates that longer
texts tend to have more instances of highly interconnected nodes.
This is due to the increased probability of recurring entities in
longer texts, which leads to more common neighbors. The text
with the shortest length (28 words) has the lowest similarity score
(3.2). This suggest that very short texts lack sufficient content to
establish strong connections between entities. The highest scores
for both average and top ten similarities occur in the longest texts
(1593, 1799, 1906 words). This supports the idea that more extensive
content provides more opportunities for entities to connect or relate.

4 Conclusion
The results demonstrate that text length significantly impacts the
performance and outcomes of NEE within Neo4j using deep learn-
ing techniques. As text length increases, so does the processing time
for graph visualization, due to the need to extract and manage a
larger number of entities and relationships. Moreover, the analysis
of graph structure revealed that longer texts tend to produce more
nodes, both displayed and recognized but not shown. This suggests
that while longer texts provide more data, they also introduce chal-
lenges in managing graph complexity, which complicates graph
management and requires the consolidation of similar entities and
filtering of less relevant ones to maintain clarity. Furthermore the

0 500 1,000 1,500 2,0000

10

20

30

Text Length

Si
m
ila
rit
y
Sc
or
e

Only 10 Highest Scores vs. Text Length

Figure 6: Average of ten highest Total Neighbors Scores

stability of the average similarity scores across various text lengths
suggests a consistent level of connectivity among entities, with a
noticeable increase in the strength of connections in longer texts.
This supports the hypothesis that longer texts offer more opportuni-
ties for entity interconnections, which is crucial for tasks requiring
comprehensive data analysis and decision-making.

In conclusion, integrating NEE with graph databases presents a
promising approach for transforming unstructured text into struc-
tured knowledge. However, the complexity introduced by varying
text lengths must be carefully managed to optimize both the per-
formance and the utility of the resulting knowledge graphs. Future
work could focus on exploring other NEE methods to further en-
hance the efficacy of this integration.

Acknowledgments
The authors acknowledge the support of the STALITA project,
financed by Ministry of the Interior, Slovenia.

References
[1] Ing Michal Konkol. Named entity recognition. Pilsen: PhD thesis, University of

West Bohemia, 2015.
[2] Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač. Sensitivity analysis of

named entity extraction based on deep learning.
[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. Foundations of modern query languages for graph databases.
ACM Comput. Surv., 50(5), sep 2017.

[4] Pin Ni, Ramin Okhrati, Steven Guan, and Victor Chang. Knowledge graph and
deep learning-based text-to-graphql model for intelligent medical consultation
chatbot. Information Systems Frontiers, 26(1):137–156, 2024.

[5] Runyu Fan, Lizhe Wang, Jining Yan, Weijing Song, Yingqian Zhu, and Xiaodao
Chen. Deep learning-based named entity recognition and knowledge graph
construction for geological hazards. ISPRS International Journal of Geo-Information,
9(1), 2020.

[6] Shikha Chaudhary, Hirenkumar Vyas, Naveen Arora, and Sejal D’Mello. Graph-
based named entity information retrieval from news articles using neo4j. In 2024
11th International Conference on Computing for Sustainable Global Development
(INDIACom), pages 320–324, 2024.

[7] Pere-Lluís Huguet Cabot and Roberto Navigli. Rebel: Relation extraction by
end-to-end language generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2370–2381, 2021.

[8] Martin Josifoski Sebastian Riedel Luke Zettlemoyer Ledell Wu, Fabio Petroni.
Zero-shot entity linking with dense entity retrieval. In EMNLP, 2020.

[9] Neo4j. Total Neighbors Algorithm, 2024. Accessed: 2024-06-25.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

14

