
Influence of Graph Characteristics on Solutions of Feedback Arc
Set Problem

Ema Leila Grošelj
eg61487@student.uni-lj.si
University of Ljubljana,
Faculty of Computer

and Information Science,
Ljubljana, Slovenia

Tomaž Poljanšek
tp51101@student.uni-lj.si
University of Ljubljana,
Faculty of Computer

and Information Science,
Ljubljana, Slovenia

ABSTRACT
In this article we present Feedback Arc Set problem and how certain
graph characteristics impact the results of heuristic algorithms. We
then inspect how the most promising characteristic (treewidth)
helps in choosing the most appropriate heuristics for our graph.

KEYWORDS
graph, FAS, heuristics, treewidth, random forest classifier

1 INTRODUCTION
In this article, we tackled the feedback arc set problem, where the
goal is to find the smallest set of directed edges (arcs) in a directed
graph such that, when removed, the graph becomes acyclic (directed
acyclic graph - DAG). We were interested in determining which
characteristics of a graph suggest that a particular heuristic method
might perform poorly, providing a solution not close to optimum.

Due to the trivial nature, we were not interested in the impact of
graph size and aimed to normalize this effect. We collected graphs
from two existing graph datasets. From these, we built a database
of their strongly connected components.

The database of components was enriched with characteristics:
number of nodes and arcs, graph density, radius and diameter,
information on whether the graph is planar or bipartite, node con-
nectivity, transitivity and treewidth. We also added information
about distribution of some characteristics computed on individual
nodes (e.g., degree, different types of centrality).

2 FEEDBACK ARC SET
First, let us state that from now on, when we say ’graph’, we mean
a directed and strongly connected graph with 𝑛 nodes and𝑚 arcs.

Definition 2.1. Feedback arc set (FAS) of a graph 𝐺 = (𝑉 ,𝐴) is
𝐴
′ ⊆ 𝐴 such that 𝐺 ′ = (𝑉 ,𝐴 \𝐴′ ) is DAG. MFAS (minimum FAS)

is the smallest possible FAS.

In this article, we aim to approximate MFAS size using heuristics,
as FAS problem is one of Karp’s 21 famous NP-complete problems
[10]. Unfortunately, it also does not have an approximation scheme.
If a graph is already acyclic, its FAS is empty.

2.1 Upper Bound
Every arc in MFAS lies in at least one cycle. If an arc does not lie in
a cycle, it does not need to be removed from the graph. This would
contradict the minimality of MFAS. Thus, to break all cycles, it is
sufficient to remove one arc from each cycle. However, the FAS
composed of these arcs is not necessarily the MFAS, as removing

one arc can break multiple cycles simultaneously, requiring fewer
arcs to be removed than there are cycles. Therefore, the number of
cycles is an upper bound on the size of MFAS.

However, this bound can be very loose, as shown in [3], where
a graph with 𝑛 nodes and 𝑚 arcs can have up to 1.433𝑚 cycles,
and the number of arcs can be quadratic in the number of nodes,
i.e.,𝑚 = 𝑂

(
𝑛2

)
. In addition to being loose, counting the number of

cycles is computationally demanding. For example, the algorithm in
Python library Networkx [7] requires𝑂 ((𝑛 +𝑚) (𝑐 + 1)) time steps,
where 𝑐 is the number of cycles. This means number of cycles is
potentially exponential to number of vertices so we can only count
all cycles for small graphs in a reasonable time.

Another upper bound adequate also for large graphs is repre-
sented by the best result of the heuristics. This is much better since
it is computed much faster. Thus in this article we take the highest
heuristic result as an upper bound.

2.2 Lower Bound
For the lower bound, we can use disjoint cycles in the graph. They
provide a lower bound because we need to break all these (dis-
joint) cycles and due to disjointness, we cannot break two cycles
by removing one arc.

Note that not all (exhaustive) sets of disjoint cycles in a graph
are equally strong. For instance, consider a graph with arcs
𝐴 = {(1, 2), (2, 3), (3, 2), (3, 1), (1, 3)}. This graph has three cycles
and two sets of disjoint cycles: {(1, 2, 3)} and {(1, 3), (2, 3)}. The
idea is that by removing the cycle (1, 2, 3) from the graph, we also
break all other cycles (exhausting the disjoint cycles).

The set of disjoint cycles we get will depend on thewaywe search
for one cycle within each iteration. If we introduce randomness
in selecting the starting node and the order of nodes during the
search, we obtain a random algorithm.When running the algorithm
multiple times, we only consider the largest set as we aim for a
tighter lower bound. In this article we ran search for disjoint cycles
10 times.

3 DATA
3.1 Data Sources
We collected graphs from two sources.

In [8] they used different generation methods to build a col-
lection of large weighted multi-digraphs that included different
topologies. Graphs there were nicely divided in groups: De Bruijn
graphs, Delaunay 3D graphs, Kautz graphs, Triangulation graphs,
Small world graphs and Random graphs. They derived them from
ISPD98 Circuit Benchmark Suite [2].

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.1
ISBN 978-961-286-914-4

3

https://doi.org/10.18690/um.feri.6.2024.1


Ema Leila Grošelj and Tomaž Poljanšek

A collection of graphs presented in [5] was intended for the
problem of optimum cycle mean and ratio. It consists of graphs
from ISPD98 Circuit Benchmark Suite [2] and random graphs that
they generated themselves. In these article we refer to them as
unclassified.

We read all these graphs, broke them into strongly connected
components, as breaking them into such components is usually
the first step in heuristics. We wanted to ensure that the sizes of
the components (e.g., many small ones and one large one) did not
obscure the impact of other interesting characteristics. We then
stored the components in 𝑝𝑖𝑐𝑘𝑙𝑒 format for faster re-reading. If
a graph contained loops (self-directed arcs), we removed them
beforehand and added them to the result at the end, as not all
heuristics supported graphs with loops. Sixteen graphs with either
more than 5000 nodes or more than 10000 arcs were classified as
’large’ graphs and omitted from the study. Thus, the main database
contained 11925 graphs.

3.2 Graph Characteristics
For every graph in our database we saved the number of nodes,
number of arcs, graph density, planarity, bipartiteness, diameter,
radius, node connectivity (minimum number of nodes that need
to be removed to disconnect the graph), transitivity (probability
that the ends of two arcs that share a common node are themselves
connected), and treewidth (see Subsection 3.2.1).

For nodes, we calculated degree, closeness centrality (inverse
average shortest path length from the node to all other nodes),
betweenness centrality (frequency with which a node is part of the
shortest paths between other nodes), degree centrality (the fraction
of nodes it is connected to), clustering coefficient (how many trian-
gles a node is part of out of the possible triangles), node centrality
(node influence within the network, considering both the number
of neighbors and neighbors of neighbors), and PageRank (a rank
obtained by the PageRank algorithm measuring the importance of
a node). For each graph, we recorded the min, max, median, and
interquartile range of these values.

3.2.1 Treewidth. Treewidth represents how close a graph is to
being a tree, with trees having a treewidth of 1. It represents the
minimum width of the largest component across all tree decom-
positions of the graph. The treewidth of an undirected graph was
extended to directed graphs in [9].

According to [6], for a directed graph 𝐺 , it holds that

𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑_𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ(𝐺) ≤ 𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ(𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 (𝐺)) .

Equality is achieved when all arcs are bidirectional. Two heuristics,
𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ_𝑚𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒 and 𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ_𝑚𝑖𝑛_𝑓 𝑖𝑙𝑙_𝑖𝑛 implemented
in NetworkX library [7], provide an upper bound for the treewidth,
which also serves as an upper bound for ’directed treewidth’. The
minimum degree heuristic method repeatedly selects and removes
the node with the lowest degree, while the minimum fill-in heuristic
method selects the node, whose removal minimizes the number of
added arcs needed to make its neighborhood a clique.

4 HEURISTICS
We have tested five different heuristics.

Figure 1: Increase in the number of nodes (left) and arcs
(right) in the line graph.

4.1 SmartAE
We implemented the SmartAE algorithm from article [4]. First, we
order the nodes, for example by indegree. Then remove outgoing
arcs pointing to unvisited nodes in that order until the graph be-
comes acyclic. After obtaining an acyclic graph, we attempt to
re-add removed arcs one by one if they do not cause cycles.

4.2 DiVerSeS - Using FVS Heuristics
The size of the FAS equals the size of the FVS (feedback vertex
set, dual problem) on the line graph. The line graph is obtained by
mapping arcs to nodes. In the line graph, two nodes representing
arcs from original graph (𝑢, 𝑣) and (𝑤, 𝑥) are connected with arc
(𝑢𝑣,𝑤𝑥) if 𝑣 = 𝑤 , meaning each arc in the line graph represents a
directed path of length two in the original graph. This transforma-
tion is described in [12]. Line graphs are typically larger, making
the problem harder. Increase in size on subsample of grafs from our
database is depicted in Figure 1.

After transformation, we ran the winning FVS solver DiVerSeS
from the PACE 2022 challenge [1], which dealt with FVS on directed
graphs. We gave it 5 seconds to return a solution. If no solution
was found, we ran it for 10 and then 40 seconds. Even then some
graphs remained unsolved.

4.3 Graph hierarchy based approaches
We ran algorithms from [11]. Goal is to break cycles while still pre-
serving logical structure (hierarchy) as much as possible. Hierarchy
information identifies which edges need to be removed. Heuristics
differ in a way they determine hierarchy based on different features.

We decided to test 3 approaches: greedy (FAS Greedy), PageRank
rating (PageRank SCC) and Bayesian skill rating system (TrueSkill
SCC), giving us another 3 heuristics. FAS Greedy was ran 5 times
as it uses randomness and is also by far the fastest.

5 METHODOLOGY
We ran heuristics on the dataset and saved size of FAS and running
time. 1 For each graph we determined heuristic method that found
tha smallest FAS. On a tie, heuristic method with lower running
time won.

For determining which graph features are most important in
determining which heuristic method is the best to use, we used
1Implementations and dataset can be found at https://github.com/elgroselj/FAS.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

4



Influence of Graph Characteristics on Solutions of Feedback Arc Set Problem

Figure 2: Best solvers.

Figure 3: Best solvers by categories.

random forest classifier: it is stable and not to difficult to explain.
We trained and evaluated model using 5-fold cross-validation.

Then we evaluated feature importances. Firstly we used model’s
attribute 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠 , that represents accumulation of
the impurity decrease within each tree. We also tested importance
of features using permutation test - that is we randomly permuted
values in one column at a time and observed performance degrada-
tion.

6 RESULTS
6.1 Heuristics
As shown in Figure 2, the DiVerSeS solver was the best on majority
of the graphs. However, for some graph groups other heuristics gave
better results as shown in Figure 3. Turns out that on 𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑑
graphs method FAS Greedy reported the best result. On Kautz
graphs we recommend to use the method PageRank SCC, while
DiVerSeS method dominated on all other graph groups.

If we closely examine differences between lower and upper
bounds in Figure 4 we see that in most cases solutions are well
constrained - that is lower and upper bound are relatively close,
giving us a narrow interval of possible FAS sizes. We prooved opti-
mality in 26.9% of examples. In Figure 5 we see that in most cases
ratios between worst and best solutions is lower than two. We have
clipped the graph in Figure 5 to show the great majority of ratios,
however there are some individual cases where ratio is quite high
(most extreme example has ratio of 17.3). For these examples it

Figure 4: Gap between lower and upper bound.

Figure 5: Histogram of the ratios between upper and lower
bound.

is good to know which heuristics works best as it makes a lot of
difference.

6.2 Classification and features
In classification with random forest classifier we achieved the ac-
curacy of 0.932. This is significant improvement over the majority
classifier (predicts DiVerSeS as the winner for all inputs) with an
accuracy of 0.707. Feature importance provided by model’s fea-
ture_importance attribute is shown in Figure 6, while permuta-
tion_importance is shown in Figure 7. Features with very little
importance are left out.

We can see that treewidth is the most important characteristic
according to both figures. This is not very surprising since with
edges removal we create acyclic graph or a tree. Characteristics
pagerank_max, number of arcs 𝑚 and Katz centrality_min also
have a significant importance. It is also notable that while number
of nodes 𝑛 has accumulated a lot of impurity decrease according
to model’s feature importance, it lacks at being innovative in the
sense that permuting it randomly does not affect the success much,
which suggests that 𝑛 does not provide new information.

Figure 8 shows us that DiVerSeS generally does the best for
graphs with treewidth at least 10 (this is also true for graphs with
treewidth ≥ 100). For less than that FAS Greedy heuristic method
gives the best results.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

5



Ema Leila Grošelj and Tomaž Poljanšek

Figure 6: Feature importance. Figure 7: Permutation importance.

Figure 8: Histograms of treewidths by best solvers.

7 CONCLUSIONS
Treewidth is themost important graph characteristic in determining
the best heuristic for graph. Number of arcs and Katz centrality
also have significant impact. For graphs with higher treewidth we
recommend using DiVerSeS and for lower treewidth FAS Greedy
heuristic.

ACKNOWLEDGEMENTS
We sincerely thank assist. prof. dr. Uroš Čibej for his advice, guid-
ance and for introducing us to this topic.

REFERENCES
[1] 2022. PACE2022. https://pacechallenge.org/2022/tracks/. [Accessed 26-05-2024].
[2] Charles J Alpert. 1998. The ISPD98 circuit benchmark suite. In Proceedings of the

1998 international symposium on Physical design. 80–85.

[3] Andrii Arman and Sergei Tsaturian. 2017. The maximum number of cycles in a
graph with fixed number of edges. arXiv preprint arXiv:1702.02662 (2017).

[4] C. Cavallaro, V. Cutello, andM. Pavone. 2023. Effective heuristics for finding small
minimal feedback arc set even for large graphs. In CEUR Workshop Proceedings,
Vol. 3606. https://ceur-ws.org/Vol-3606/paper56.pdf

[5] Ali Dasdan. 2004. Experimental analysis of the fastest optimum cycle ratio and
mean algorithms. ACM Transactions on Design Automation of Electronic Systems
9, 4 (2004), 385–418. https://doi.org/10.1145/1027084.1027085

[6] Frank Gurski, Dominique Komander, and Carolin Rehs. 2021. How to compute
digraph width measures on directed co-graphs. Theoretical Computer Science 855
(2021), 161–185.

[7] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and
Jarrod Millman (Eds.). Pasadena, CA USA, 11–15.

[8] Michael Hecht, Krzysztof Gonciarz, and Szabolcs Horvát. 2021. Tight localiza-
tions of feedback sets. Journal of Experimental Algorithmics (JEA) 26 (2021),
1–19.

[9] Thor Johnson, Neil Robertson, Paul D Seymour, and Robin Thomas. 2001. Di-
rected tree-width. Journal of Combinatorial Theory, Series B 82, 1 (2001), 138–154.

[10] Richard M Karp. 2010. Reducibility among combinatorial problems. Springer.
[11] Jiankai Sun, Deepak Ajwani, Patrick K. Nicholson, Alessandra Sala, Alessandra,

and Srinivasan Parthasarathy. 2017. Breaking cycles in noisy hierarchies. In
Proceedings of the 2017 ACM on Web Science Conference. 151–160.

[12] Jin-Hua Zhao and Hai-Jun Zhou. 2016. Optimal disruption of complex networks.
arXiv preprint arXiv:1605.09257 (2016).

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

6


