
Proceedings of the
10th Student Computing Research Symposium

(SCORES’24)

Maribor, Slovenia
October 3, 2024

Niko Lukač
Iztok Fister
Štefan Kohek

(Eds.)

https://www.scores.si

https://www.scores.si

Proceedings of the
10th Student Computing Research Symposium

(SCORES’24)

Niko Lukač
Iztok Fister
Štefan Kohek

(Eds.)

October, 2024

Title Proceedings of the 10th Student Computing Research
Symposium (SCORES’24)

Editors Niko Lukač
(University of Maribor, Faculty of Electrical Engineering and Computer Science)
Iztok Fister
(University of Maribor, Faculty of Electrical Engineering and Computer Science)
Štefan Kohek
(University of Maribor, Faculty of Electrical Engineering and Computer Science)

Tehnical editors Štefan Kohek
(University of Maribor, Faculty of Electrical Engineering and Computer Science)
Jan Perša
(University of Maribor, University Press)

Design University of Ljubljana, Faculty of Computer and Information Science
University of Maribor, Faculty of Electrical Engineering and Computer
Science
University of Primorska, Faculty of Mathematics, Natural Sciences and
Information Technologies

Graphic material Sources are own unless otherwise noted.
The authors and Lukač, Fister, Kohek (editors), 2024

Conference 10th Student Computing Research Symposium (SCORES’24)

Location University of Maribor
Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, 2000 Maribor, Slovenia

Date October 3, 2024

Program Committee Niko Lukač (University of Maribor)
Štefan Kohek (University of Maribor)
Iztok Fister (University of Maribor)
Jan Popič (University of Maribor)
Klemen Berkovič (University of Maribor)
Slavko Žitnik (University of Ljubljana)
Timotej Knez (University of Ljubljana)
Domen Šoberl (University of Primorska)
Lucija Brezočnik (University of Maribor)
Grega Vrbančič (University of Maribor)
Jure Zabkar (University of Ljubljana)
Matjaž Krnc (University of Primorska)
Andrej Brodnik (University of Ljubljana)
Mario Gorenjak (University of Maribor)
Jani Dugonik (University of Maribor)
Peter Rogelj (University of Primorska)
Dušan Fister (University of Maribor)
Simon Kolmanič (University of Maribor)
Uroš Mlakar (University of Maribor)
Damjan Strnad (University of Maribor)
Marko Bizjak (University of Maribor)

Jorge Pérez Aracil (Universidad de Alcalá)
Selma Rizvic (University of Sarajevo)
Andres Iglesias (University of Cantabria)
Magda Gregorova (University of Applied Sciences Würzburg-Schweinfurt)
Janez Brest (University of Maribor)
Iztok Fister Jr. (University of Maribor)
Eneko Osaba (TECNALIA Research & Innovation)
Miklós Krész (University of Szeged)

Organizing Committee Niko Lukač (University of Maribor)
Iztok Fister (University of Maribor)
Štefan Kohek (University of Maribor)
Jan Popič (University of Maribor)
Klemen Berkovič (University of Maribor)
Andrej Nerat (University of Maribor)
Monika Ferk Ovčjak (University of Maribor)

Published by University of Maribor
University Press
Slomškov trg 15, 2000 Maribor, Slovenia
https://press.um.si, zalozba@um.si

Co-published by University of Maribor
Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, 2000 Maribor, Slovenia
http://www.feri.um.si, feri@um.si

Partners University of Primorska
Faculty of Mathematics, Natural Sciences and
Information Technologies
Glagoljaška 8, 6000 Koper, Slovenia
https://www.famnit.upr.si/en, info@famnit.upr.si

University of Ljubljana
Faculty of Computer and Information Science
Večna pot 113, 1000 Ljubljana, Slovenia
https://www.fri.uni-lj.si/en, dekanat@fri.uni-lj.si

Edition 1st

Publication type E-book

Published Maribor, Slovenia, October 2024

ISBN 978-961-286-914-4

DOI https://doi.org/10.18690/um.feri.6.2024

Available at https://press.um.si/index.php/ump/catalog/book/886

https://press.um.si
zalozba@um.si
http://www.feri.um.si
feri@um.si
https://www.famnit.upr.si/en
info@famnit.upr.si
https://www.fri.uni-lj.si/en
dekanat@fri.uni-lj.si
https://doi.org/10.18690/um.feri.6.2024
https://press.um.si/index.php/ump/catalog/book/886

Organisers and sponsors:

Inštitut za
računalništvo

© University of Maribor, University Press

Text © Authors & Lukač, Fister, Kohek (editors), 2024

This book is published under a Creative Commons 4.0 International licence (CC BY 4.0). This license
allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the creator. The license allows for commercial use.

Any third-party material in this book is published under the book’s Creative Commons licence un-
less indicated otherwise in the credit line to the material. If you would like to reuse any third-party
material not covered by the book’s Creative Commons licence, you will need to obtain permission
directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

Price Free copy

For publisher Prof. Dr. Zdravko Kačič, Rector of University of Maribor

Attribution Lukač, N., Fister, I., Kohek, Š. (eds.) (2024). Proceedings of the 10th Student
Computing Research Symposium (SCORES’24). University of Maribor,
University Press. doi: 10.18690/um.feri.6.2024

CIP - Kataložni zapis o publikaciji
Univerzitetna knjižnica Maribor

004(0.034.2)

STUDENT Computing Research Symposium (2024 ; Maribor)
 Proceedings of the 10th Student Computing Research Symposium [Elektronski vir] :
(SCORES'24) : Maribor, Slovenia, October 3, 2024 / Niko Lukač, Iztok Fister, Štefan Kohek
(eds.). - 1st ed. - E-knjiga. - Maribor : University of Maribor, University Press, 2024

Način dostopa (URL): https://press.um.si/index.php/ump/catalog/book/886
ISBN 978-961-286-914-4 (Pdf)

doi: 10.18690/um.feri.6.2024

COBISS.SI-ID 212751875

https://creativecommons.org/licenses/by/4.0/
Marina Bajić
Pravokotnik

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Editors’ Foreword

In the realm of computer science, where inno-
vation continually reshapes our understanding
of technology, the 2024 Student Computing Re-
search Symposium (SCORES 2024) marks an im-
portant moment of progress and collaboration.
This year, the Faculty of Electrical Engineering
and Computer Science at the University of Mari-
bor (UMFERI) leads the organization of SCORES,
in partnership with the University of Ljubljana
and the University of Primorska. These institu-
tions have came together to provide a platform
for undergraduate and graduate students, foster-
ing their contributions to the field. This year,
we are also honored to have the program com-
mittee extendedwith renowned international re-
searchers. Their expertise has enriched the con-
ference, ensuring a high standard of academic
rigor and a diverse range of perspectives.

SCORES 2024 is dedicated to supporting the
next generation of computer science postgradu-
ates, offering them a stage to present their re-
search, exchange ideas, and engage with the
challenges that lie ahead. Recent advancements
in artificial intelligence and data science have

underscored the need for fresh perspectives and
new approaches. This year’s symposium fea-
tures a diverse range of research, including ad-
vancements in emotion recognition technolo-
gies, computational problem-solving, and the ap-
plication of video analysis in healthcare. The
program also explores newmethods in skill mod-
eling, decision-making processes, and language
analysis in clinical settings. Additionally, it cov-
ers innovations in device localization techniques
and developments in object detection within dig-
ital environments.

As we review the ideas and research at
SCORES 2024, we see the beginnings of work
that will influence the future of computer sci-
ence. The ideas and innovations shared here are
not just academic exercises; they represent the
next steps in the evolution of technology, driven
by the vision and dedication of these talented
students.

Finally, special thanks to the Institute of Com-
puter Science at UM FERI as the main conference
sponsor, and the UM FERI leadership for the hos-
pitality.

Editors: Niko Lukač, Iztok Fister, Štefan Kohek

v

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

vi

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Conference Program

Plenary Speakers 1
1 SCORES’24: History, mission and vision

Iztok Fister
2 Evolutionary Computation: Overview, Trends and Perspectives

Bogdan Filipič

Section 1: Advances in Graph Theory and Algorithmic Solutions
Chairman: Štefan Kohek 3

3 Influence of Graph Characteristics on Solutions of Feedback Arc Set Problem
Ema Leila Grošelj, Tomaž Poljanšek

7 Learning Multi-Level Skill Hierarchies with Graphwave
Simon Bele, Jure Žabkar

11 Integration of Named Entity Extraction Based onDeep Learning forNeo4j GraphDatabase
Lea Roj, Štefan Kohek, Aleksander Pur, Niko Lukač

15 Efficient Implementation of Spreadsheet User Application
Tjaša Repič, Aljaž Jeromel, Sašo Piskar, Domen Dolanc, Niko Lukač

19 Improvement and Evaluation of a Heuristic Method for the Minimal Feedback Arc Set
Problem
Jure Pustoslemšek, Ema Črne, Nejc Rihter

Section 2: Image Processing, Computer Vision, and NLP Applications
Chairman: Grega Vrbančič 23

23 Counter-Strike Character Object Detection via Dataset Generation
Matija Šinko

33 Cross-Lingual False Friend Classification via LLM-based Vector Embedding Analysis
Mitko Nikov, Žan Tomaž Šprajc, Žan Bedrač

37 Analyzing Tourist Destinations in Belgrade using Geotagged Photos from Flickr
Vera Milosavljević, Dejan Paliska

41 Volleyball Game Analysis Using Computer Vision Algorithms
Marko Plankelj, Uroš Mlakar

Section 3: Machine Learning and Data Analytics in Various Domains
Chairman: Marko Bizjak 45

45 A Bayesian Approach to Modeling GPS Errors for Comparing Forensic Evidence
Nika Molan, Ema Leila Grošelj, Klemen Vovk

49 Seven Components of Computational Thinking: Assessing the Quality of Dr. Scratch
Metrics Using 230,000 Scratch Projects
Gal Bubnič, Tomaž Kosar, Bostjan Bubnic

53 Machine Learning Approaches to Forecasting the Winner of the 2024 NBA Champi-
onship
Hana Zadravec

57 Hit Song Prediction Through Machine Learning and Spotify Data
Andrej Natev

vii

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

61 A Data-Driven Approach for the Analysis of Ridership Fluctuations in Transit Systems
Jovan Pavlović, Miklós Krész, László Hajdu, András Bóta

Section 4: Machine Learning Applications in Neuroscience and Healthcare
Chairman: Uroš Mlakar 65

65 Automatic Assessment of Bradykinesia in Parkinson’s Disease Using Tapping Videos
Matjaž Zupanič, Dejan Georgiev, Jure Žabkar

69 Exploring Mathematical Decision-Making Through EEG Analysis
Riste Micev, Peter Rogelj

73 Analysis of Verbal Fluency in Slovenian Language in Patients With Schizophrenia
Mila Marinković, Polona Rus Prelog, Martina Zakšek, Jure Žabkar

Index of Authors 77

viii

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Plenary Speakers

Iztok Fister
University of Maribor,

Faculty of Electrical Engineering and Computer Science,
Maribor, Slovenia

SCORES’24: History, mission and vision

In this year, the International Student Conference in Computer Science celebrate its first
decade. The conference first emerged in 2014 at FERI Maribor and has continue to date.
The only interruption, that the conference experienced, was during the Corona crisis in
2020.

The keynote focuses on the history, mission, and the future of the Student Conference
that startedwith the name Student Computer Science Research Conference (StuCoSRec)
in 2014, and was renamed in 2022 under the initiative of the then organizer FRI Ljubljana
to Student Computing Research Symposium (SCORES).

Right from the start, the primary mission of the conference was to connect the students
of the most important Computer Science Faculties in Slovenia (i.e., FERI MB, FRI LJ, and
FAMNIT KP) and to foster them in publishing either the results of their seminar or in-
dividual research projects publicly. In line with this, the location of the conference was
changed each year according to the current organizer. These conferences are also the
place for making new acquaintances among students that could remain active through-
out their whole life.

In the last three years, the conference experienced a lot of improvements as follow: in-
troducing the keynote speakers and the best paper award, the reviewer process was es-
calated, while the conference organization went through a radical automation. Also the
Heads of the home Faculties have started to treat it as their own property. At the FERI
Faculty, the Institute of Computer Science even put itself in the role of the main sponsor
of this conference.

When looking into the future, we can observe that the conference is gaining more and
more importance in Computer Science, with students being aware of the importance of
the flow of knowledge and experience. As a result, this conference, that is free of charge,
could bring students the new views on the problems being solved and also open new
ways of finding solutions. Therefore, the Steering Committee needs take care of broader
internationalization.

Finally, I wish the conference a long life and as smooth a path as possible in obtaining
much new and high-quality papers.

1

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Bogdan Filipič
Jožef Stefan Institute,
Ljubljana, Slovenia

Evolutionary Computation: Overview, Trends and Perspectives

Evolutionary computation is a computational intelligencemethodology dealingwith the-
oretical studies, design and applications of search and optimization algorithms, known as
evolutionary algorithms. These algorithms mimic biological evolution when iteratively
searching for solutions to a given problem. They are well-suited for solving black-box op-
timization problems where no mathematical formulation is available and problem prop-
erties are unknown. In this presentation, we first outline different types of evolutionary
algorithms and a unified approach at handling them, as well as their advantages and dis-
advantages. We then illustrate their capabilities with examples of successful applications
to challenging real-world problems. Next, we overview current trends in evolutionary
computation, including the efforts of the community in moving beyond metaphor-based
algorithms, recent approaches to problem characterization aimed at better problem un-
derstanding, and machine learning of algorithm performance prediction. We conclude
with future perspectives, highlighting the need for further research on understandability
and explainability in evolutionary computation, and potential utilization of generative
artificial intelligence techniques.

2

Influence of Graph Characteristics on Solutions of Feedback Arc
Set Problem

Ema Leila Grošelj
eg61487@student.uni-lj.si
University of Ljubljana,
Faculty of Computer

and Information Science,
Ljubljana, Slovenia

Tomaž Poljanšek
tp51101@student.uni-lj.si
University of Ljubljana,
Faculty of Computer

and Information Science,
Ljubljana, Slovenia

ABSTRACT
In this article we present Feedback Arc Set problem and how certain
graph characteristics impact the results of heuristic algorithms. We
then inspect how the most promising characteristic (treewidth)
helps in choosing the most appropriate heuristics for our graph.

KEYWORDS
graph, FAS, heuristics, treewidth, random forest classifier

1 INTRODUCTION
In this article, we tackled the feedback arc set problem, where the
goal is to find the smallest set of directed edges (arcs) in a directed
graph such that, when removed, the graph becomes acyclic (directed
acyclic graph - DAG). We were interested in determining which
characteristics of a graph suggest that a particular heuristic method
might perform poorly, providing a solution not close to optimum.

Due to the trivial nature, we were not interested in the impact of
graph size and aimed to normalize this effect. We collected graphs
from two existing graph datasets. From these, we built a database
of their strongly connected components.

The database of components was enriched with characteristics:
number of nodes and arcs, graph density, radius and diameter,
information on whether the graph is planar or bipartite, node con-
nectivity, transitivity and treewidth. We also added information
about distribution of some characteristics computed on individual
nodes (e.g., degree, different types of centrality).

2 FEEDBACK ARC SET
First, let us state that from now on, when we say ’graph’, we mean
a directed and strongly connected graph with 𝑛 nodes and𝑚 arcs.

Definition 2.1. Feedback arc set (FAS) of a graph 𝐺 = (𝑉 ,𝐴) is
𝐴
′ ⊆ 𝐴 such that 𝐺 ′ = (𝑉 ,𝐴 \𝐴′) is DAG. MFAS (minimum FAS)

is the smallest possible FAS.

In this article, we aim to approximate MFAS size using heuristics,
as FAS problem is one of Karp’s 21 famous NP-complete problems
[10]. Unfortunately, it also does not have an approximation scheme.
If a graph is already acyclic, its FAS is empty.

2.1 Upper Bound
Every arc in MFAS lies in at least one cycle. If an arc does not lie in
a cycle, it does not need to be removed from the graph. This would
contradict the minimality of MFAS. Thus, to break all cycles, it is
sufficient to remove one arc from each cycle. However, the FAS
composed of these arcs is not necessarily the MFAS, as removing

one arc can break multiple cycles simultaneously, requiring fewer
arcs to be removed than there are cycles. Therefore, the number of
cycles is an upper bound on the size of MFAS.

However, this bound can be very loose, as shown in [3], where
a graph with 𝑛 nodes and 𝑚 arcs can have up to 1.433𝑚 cycles,
and the number of arcs can be quadratic in the number of nodes,
i.e.,𝑚 = 𝑂

(
𝑛2

)
. In addition to being loose, counting the number of

cycles is computationally demanding. For example, the algorithm in
Python library Networkx [7] requires𝑂 ((𝑛 +𝑚) (𝑐 + 1)) time steps,
where 𝑐 is the number of cycles. This means number of cycles is
potentially exponential to number of vertices so we can only count
all cycles for small graphs in a reasonable time.

Another upper bound adequate also for large graphs is repre-
sented by the best result of the heuristics. This is much better since
it is computed much faster. Thus in this article we take the highest
heuristic result as an upper bound.

2.2 Lower Bound
For the lower bound, we can use disjoint cycles in the graph. They
provide a lower bound because we need to break all these (dis-
joint) cycles and due to disjointness, we cannot break two cycles
by removing one arc.

Note that not all (exhaustive) sets of disjoint cycles in a graph
are equally strong. For instance, consider a graph with arcs
𝐴 = {(1, 2), (2, 3), (3, 2), (3, 1), (1, 3)}. This graph has three cycles
and two sets of disjoint cycles: {(1, 2, 3)} and {(1, 3), (2, 3)}. The
idea is that by removing the cycle (1, 2, 3) from the graph, we also
break all other cycles (exhausting the disjoint cycles).

The set of disjoint cycles we get will depend on thewaywe search
for one cycle within each iteration. If we introduce randomness
in selecting the starting node and the order of nodes during the
search, we obtain a random algorithm.When running the algorithm
multiple times, we only consider the largest set as we aim for a
tighter lower bound. In this article we ran search for disjoint cycles
10 times.

3 DATA
3.1 Data Sources
We collected graphs from two sources.

In [8] they used different generation methods to build a col-
lection of large weighted multi-digraphs that included different
topologies. Graphs there were nicely divided in groups: De Bruijn
graphs, Delaunay 3D graphs, Kautz graphs, Triangulation graphs,
Small world graphs and Random graphs. They derived them from
ISPD98 Circuit Benchmark Suite [2].

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.1
ISBN 978-961-286-914-4

3

https://doi.org/10.18690/um.feri.6.2024.1

Ema Leila Grošelj and Tomaž Poljanšek

A collection of graphs presented in [5] was intended for the
problem of optimum cycle mean and ratio. It consists of graphs
from ISPD98 Circuit Benchmark Suite [2] and random graphs that
they generated themselves. In these article we refer to them as
unclassified.

We read all these graphs, broke them into strongly connected
components, as breaking them into such components is usually
the first step in heuristics. We wanted to ensure that the sizes of
the components (e.g., many small ones and one large one) did not
obscure the impact of other interesting characteristics. We then
stored the components in 𝑝𝑖𝑐𝑘𝑙𝑒 format for faster re-reading. If
a graph contained loops (self-directed arcs), we removed them
beforehand and added them to the result at the end, as not all
heuristics supported graphs with loops. Sixteen graphs with either
more than 5000 nodes or more than 10000 arcs were classified as
’large’ graphs and omitted from the study. Thus, the main database
contained 11925 graphs.

3.2 Graph Characteristics
For every graph in our database we saved the number of nodes,
number of arcs, graph density, planarity, bipartiteness, diameter,
radius, node connectivity (minimum number of nodes that need
to be removed to disconnect the graph), transitivity (probability
that the ends of two arcs that share a common node are themselves
connected), and treewidth (see Subsection 3.2.1).

For nodes, we calculated degree, closeness centrality (inverse
average shortest path length from the node to all other nodes),
betweenness centrality (frequency with which a node is part of the
shortest paths between other nodes), degree centrality (the fraction
of nodes it is connected to), clustering coefficient (how many trian-
gles a node is part of out of the possible triangles), node centrality
(node influence within the network, considering both the number
of neighbors and neighbors of neighbors), and PageRank (a rank
obtained by the PageRank algorithm measuring the importance of
a node). For each graph, we recorded the min, max, median, and
interquartile range of these values.

3.2.1 Treewidth. Treewidth represents how close a graph is to
being a tree, with trees having a treewidth of 1. It represents the
minimum width of the largest component across all tree decom-
positions of the graph. The treewidth of an undirected graph was
extended to directed graphs in [9].

According to [6], for a directed graph 𝐺 , it holds that

𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑_𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ(𝐺) ≤ 𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ(𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 (𝐺)) .

Equality is achieved when all arcs are bidirectional. Two heuristics,
𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ_𝑚𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒 and 𝑡𝑟𝑒𝑒𝑤𝑖𝑑𝑡ℎ_𝑚𝑖𝑛_𝑓 𝑖𝑙𝑙_𝑖𝑛 implemented
in NetworkX library [7], provide an upper bound for the treewidth,
which also serves as an upper bound for ’directed treewidth’. The
minimum degree heuristic method repeatedly selects and removes
the node with the lowest degree, while the minimum fill-in heuristic
method selects the node, whose removal minimizes the number of
added arcs needed to make its neighborhood a clique.

4 HEURISTICS
We have tested five different heuristics.

Figure 1: Increase in the number of nodes (left) and arcs
(right) in the line graph.

4.1 SmartAE
We implemented the SmartAE algorithm from article [4]. First, we
order the nodes, for example by indegree. Then remove outgoing
arcs pointing to unvisited nodes in that order until the graph be-
comes acyclic. After obtaining an acyclic graph, we attempt to
re-add removed arcs one by one if they do not cause cycles.

4.2 DiVerSeS - Using FVS Heuristics
The size of the FAS equals the size of the FVS (feedback vertex
set, dual problem) on the line graph. The line graph is obtained by
mapping arcs to nodes. In the line graph, two nodes representing
arcs from original graph (𝑢, 𝑣) and (𝑤, 𝑥) are connected with arc
(𝑢𝑣,𝑤𝑥) if 𝑣 = 𝑤 , meaning each arc in the line graph represents a
directed path of length two in the original graph. This transforma-
tion is described in [12]. Line graphs are typically larger, making
the problem harder. Increase in size on subsample of grafs from our
database is depicted in Figure 1.

After transformation, we ran the winning FVS solver DiVerSeS
from the PACE 2022 challenge [1], which dealt with FVS on directed
graphs. We gave it 5 seconds to return a solution. If no solution
was found, we ran it for 10 and then 40 seconds. Even then some
graphs remained unsolved.

4.3 Graph hierarchy based approaches
We ran algorithms from [11]. Goal is to break cycles while still pre-
serving logical structure (hierarchy) as much as possible. Hierarchy
information identifies which edges need to be removed. Heuristics
differ in a way they determine hierarchy based on different features.

We decided to test 3 approaches: greedy (FAS Greedy), PageRank
rating (PageRank SCC) and Bayesian skill rating system (TrueSkill
SCC), giving us another 3 heuristics. FAS Greedy was ran 5 times
as it uses randomness and is also by far the fastest.

5 METHODOLOGY
We ran heuristics on the dataset and saved size of FAS and running
time. 1 For each graph we determined heuristic method that found
tha smallest FAS. On a tie, heuristic method with lower running
time won.

For determining which graph features are most important in
determining which heuristic method is the best to use, we used
1Implementations and dataset can be found at https://github.com/elgroselj/FAS.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

4

Influence of Graph Characteristics on Solutions of Feedback Arc Set Problem

Figure 2: Best solvers.

Figure 3: Best solvers by categories.

random forest classifier: it is stable and not to difficult to explain.
We trained and evaluated model using 5-fold cross-validation.

Then we evaluated feature importances. Firstly we used model’s
attribute 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑠 , that represents accumulation of
the impurity decrease within each tree. We also tested importance
of features using permutation test - that is we randomly permuted
values in one column at a time and observed performance degrada-
tion.

6 RESULTS
6.1 Heuristics
As shown in Figure 2, the DiVerSeS solver was the best on majority
of the graphs. However, for some graph groups other heuristics gave
better results as shown in Figure 3. Turns out that on 𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑑
graphs method FAS Greedy reported the best result. On Kautz
graphs we recommend to use the method PageRank SCC, while
DiVerSeS method dominated on all other graph groups.

If we closely examine differences between lower and upper
bounds in Figure 4 we see that in most cases solutions are well
constrained - that is lower and upper bound are relatively close,
giving us a narrow interval of possible FAS sizes. We prooved opti-
mality in 26.9% of examples. In Figure 5 we see that in most cases
ratios between worst and best solutions is lower than two. We have
clipped the graph in Figure 5 to show the great majority of ratios,
however there are some individual cases where ratio is quite high
(most extreme example has ratio of 17.3). For these examples it

Figure 4: Gap between lower and upper bound.

Figure 5: Histogram of the ratios between upper and lower
bound.

is good to know which heuristics works best as it makes a lot of
difference.

6.2 Classification and features
In classification with random forest classifier we achieved the ac-
curacy of 0.932. This is significant improvement over the majority
classifier (predicts DiVerSeS as the winner for all inputs) with an
accuracy of 0.707. Feature importance provided by model’s fea-
ture_importance attribute is shown in Figure 6, while permuta-
tion_importance is shown in Figure 7. Features with very little
importance are left out.

We can see that treewidth is the most important characteristic
according to both figures. This is not very surprising since with
edges removal we create acyclic graph or a tree. Characteristics
pagerank_max, number of arcs 𝑚 and Katz centrality_min also
have a significant importance. It is also notable that while number
of nodes 𝑛 has accumulated a lot of impurity decrease according
to model’s feature importance, it lacks at being innovative in the
sense that permuting it randomly does not affect the success much,
which suggests that 𝑛 does not provide new information.

Figure 8 shows us that DiVerSeS generally does the best for
graphs with treewidth at least 10 (this is also true for graphs with
treewidth ≥ 100). For less than that FAS Greedy heuristic method
gives the best results.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

5

Ema Leila Grošelj and Tomaž Poljanšek

Figure 6: Feature importance. Figure 7: Permutation importance.

Figure 8: Histograms of treewidths by best solvers.

7 CONCLUSIONS
Treewidth is themost important graph characteristic in determining
the best heuristic for graph. Number of arcs and Katz centrality
also have significant impact. For graphs with higher treewidth we
recommend using DiVerSeS and for lower treewidth FAS Greedy
heuristic.

ACKNOWLEDGEMENTS
We sincerely thank assist. prof. dr. Uroš Čibej for his advice, guid-
ance and for introducing us to this topic.

REFERENCES
[1] 2022. PACE2022. https://pacechallenge.org/2022/tracks/. [Accessed 26-05-2024].
[2] Charles J Alpert. 1998. The ISPD98 circuit benchmark suite. In Proceedings of the

1998 international symposium on Physical design. 80–85.

[3] Andrii Arman and Sergei Tsaturian. 2017. The maximum number of cycles in a
graph with fixed number of edges. arXiv preprint arXiv:1702.02662 (2017).

[4] C. Cavallaro, V. Cutello, andM. Pavone. 2023. Effective heuristics for finding small
minimal feedback arc set even for large graphs. In CEUR Workshop Proceedings,
Vol. 3606. https://ceur-ws.org/Vol-3606/paper56.pdf

[5] Ali Dasdan. 2004. Experimental analysis of the fastest optimum cycle ratio and
mean algorithms. ACM Transactions on Design Automation of Electronic Systems
9, 4 (2004), 385–418. https://doi.org/10.1145/1027084.1027085

[6] Frank Gurski, Dominique Komander, and Carolin Rehs. 2021. How to compute
digraph width measures on directed co-graphs. Theoretical Computer Science 855
(2021), 161–185.

[7] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring network
structure, dynamics, and function using NetworkX. In Proceedings of the 7th
Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and
Jarrod Millman (Eds.). Pasadena, CA USA, 11–15.

[8] Michael Hecht, Krzysztof Gonciarz, and Szabolcs Horvát. 2021. Tight localiza-
tions of feedback sets. Journal of Experimental Algorithmics (JEA) 26 (2021),
1–19.

[9] Thor Johnson, Neil Robertson, Paul D Seymour, and Robin Thomas. 2001. Di-
rected tree-width. Journal of Combinatorial Theory, Series B 82, 1 (2001), 138–154.

[10] Richard M Karp. 2010. Reducibility among combinatorial problems. Springer.
[11] Jiankai Sun, Deepak Ajwani, Patrick K. Nicholson, Alessandra Sala, Alessandra,

and Srinivasan Parthasarathy. 2017. Breaking cycles in noisy hierarchies. In
Proceedings of the 2017 ACM on Web Science Conference. 151–160.

[12] Jin-Hua Zhao and Hai-Jun Zhou. 2016. Optimal disruption of complex networks.
arXiv preprint arXiv:1605.09257 (2016).

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

6

Learning Multi-Level Skill Hierarchies with Graphwave
Simon Bele

sb95099@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

Jure Žabkar
jure.zabkar@fri.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

ABSTRACT
We introduce a novel framework for learning multi-level skill hi-
erarchies in reinforcement learning environments by leveraging
structural similarities in state-space graphs. To obtain structural
embeddings, we use the Graphwave algorithm, which places struc-
turally similar states in close proximity in the latent space. In the
latent space, we perform hierarchical clustering of states while
respecting the topology of the state-space graph. At different levels
of the hierarchy we learn the options that represent the skills; a
skill at each level of the hierarchy is defined using the skills from
the level below. We compare our approach with the state-of-the-
art method across several environments. Our results show that
structural embeddings can speed up option learning significantly
in certain domains.

KEYWORDS
skill hierarchy, reinforcement learning, options, structural similar-
ity, graph embeddings

1 INTRODUCTION
In Reinforcement Learning (RL), an agent learns to make decisions
by interacting with an environment; it operates on the principles of
trial and error and obtains positive or negative feedback (rewards)
from the environment. The overall goal of the agent is to maximize
the cumulative rewards. Traditional RL approaches can struggle
with scalability and efficiency as the complexity of the environment
increases or the task become increasingly difficult.

A possible way to tackle this challenge is to introduce skill hi-
erarchies in RL [1, 6]. Skill hierarchies enable the decomposition
of complex tasks into simpler sub-tasks, usually improving the
generalization of learned behaviors across different scenarios. This
usually leads to a more efficient learning process but also produces
more robust and interpretable actions.

Traditional approaches in developing these hierarchies have pri-
marily focused on single-level structures, where skills are often
defined through predefined policies or through the clustering of
state transitions without considering the deeper structural relation-
ships between these transitions. Recently, Evans et al. [3] introduced
a method for learning skill hierarchies based on Louvain clustering
of the state-space graph, which optimizes its modularity.

In this paper, we introduce an approach that goes beyond modu-
larity: we use the Graphwave algorithm that identifies structural
similarities within a graph. We cluster structural embeddings in
latent space, thus providing a more robust foundation for skill learn-
ing. Our approach also preserves the topology of the state graph

and so enables us to learn the options framework on the obtained
clustering.

We evaluate our method by comparing it to the approach of
Evans et al. [3]. We integrate our code into their framework and
observe the learning efficiency on four domains. We show that in
three out of four, our method performs significantly better while
in the Four Rooms domain that features extreme modularity, the
approach of Evans et al. outperforms ours.

2 RELATEDWORK
A common approach in reinforcement learning involves modeling
the underlying Markov Decision Process (MDP), wherein a policy
𝜋 : 𝑆 ×𝐴→ [0, 1] is learned to maximize a reward function. Specifi-
cally, the action-value function𝑄𝜋 (𝑠, 𝑎) for a policy 𝜋 encapsulates
the expected reward for states in the environment. The action-value
function adheres to the Bellman equations, and the task can thus be
rephrased as optimizing these equations to find the optimal policy.

The options framework in reinforcement learning is a well-
established method for reasoning across multiple levels of tem-
poral abstraction, effectively implementing Semi-Markov Decision
Processes [4, 8].

An option is defined by a 3-tuple𝜔 = (𝐼𝜔 , 𝜋𝜔 , 𝛽𝜔), where 𝐼𝜔 ⊆ 𝑆
represents the subset of the state space in which the option is exe-
cutable, 𝜋𝜔 : 𝑆 ×𝐴→ [0, 1] is a policy determining the probability
of taking action 𝑎 in state 𝑠 , and 𝛽𝜔 : 𝑆 → [0, 1] specifies the termi-
nation condition, indicating the probability of option termination
in a given state.

To hierarchically cluster the state space, one can derive higher-
level options over lower-level options, where the initiation set of
the higher-level option is the union of initiation sets of lower-level
options, thereby enabling options at multiple time scales.

Training options across multiple time scales necessitates gen-
eralizing the usual Bellman equations to be defined over options
rather than actions, termed intra-option learning [7].

The MDP induces a state transition graph, with nodes represent-
ing states and edges denoting possible actions between states.

Several approaches leverage the state transition graph of the
underlying MDP to learn skills. A notable advancement by Xu et al.
[9] employs the Louvain graph clustering algorithm to partition the
state transition graph into clusters, subsequently defining options
as traversals across the aggregate graph of these clusters.

Previous efforts to create single-level skill hierarchies have pri-
marily utilized different measures of centrality or various graph
partitioning algorithms.

Evans et al. [3] introduce a multi-level skill hierarchy trained on
the entire hierarchical clustering of Louvain. Due to the intractable
problem of modularity maximization, the greedy-natured Louvain

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.2
ISBN 978-961-286-914-4

7

https://doi.org/10.18690/um.feri.6.2024.2

Simon Bele and Jure Žabkar

algorithm optimizes for moving nodes between partitions at each
step if and only if this move results in a positive modularity gain.
This can be seen as a local approach to modularity optimization.
They employ macro-Q learning [5] and intra-option learning [7] to
train hierarchical agents.

The above approach is novel in producing the first multi-level
skill hierarchy, where it is produced automatically with no human
intervention. Through it they obtain options reflecting optimizing
for modularity, which they show to be useful for navigating at the
top-most level of the skill hierarchy.

3 METHODOLOGY
3.1 Structural similarity embeddings
To obtain an embedding of nodes that places structurally similar
nodes in close proximity within the latent space, we employ Graph-
wave [2], a methodology that provides strict guarantees regarding
the separation of structurally equivalent nodes.

Consider an undirected graph 𝐺 = (𝑉 , 𝐸) with its graph Lapla-
cian defined as 𝐿 = 𝐷 −𝐴, where 𝐷 is the degree matrix and 𝐴 is
the adjacency matrix. Let the eigenvector decomposition of 𝐿 be
given by

𝐿 = 𝑈Λ𝑈𝑇 , (1)

where𝑈 is the matrix of eigenvectors and Λ is the diagonal matrix
of eigenvalues.

By applying a heat diffusion wavelet 𝑔𝑠 (𝜆) = 𝑒−𝜆𝑠 , define the
spectral graph wavelet centered at node 𝑎 as

Ψ𝑎 = 𝑈 Diag(𝑔𝑠 (𝜆1), . . . , 𝑔𝑠 (𝜆𝑁))𝑈𝑇 𝛿𝑎, (2)

where 𝛿𝑎 is the Dirac delta function at node 𝑎.
To circumvent computational intractability [2], the wavelet is

treated as a probability distribution over the graph:

𝜙𝑎 (𝑡) = 1
𝑁

𝑁∑︁
𝑚=1

𝑒𝑖𝑡Ψ𝑚𝑎 , (3)

for time point 𝑡 . The empirical characteristic function is then sam-
pled and transformed into a vector embedding:

𝜒𝑎 = [Re(𝜙𝑎 (𝑡𝑖)), Im(𝜙𝑎 (𝑡𝑖))]𝑡1,...,𝑡𝑑 , (4)

with 𝑑 being the number of samples.
This resulting 2𝑑-dimensional embedding ensures that struc-

turally equivalent nodes in the graph will be at most a predefined 𝜖
distance apart in the 𝓁2 norm, thereby providing rigorous guaran-
tees on the proximity of such nodes [2].

3.2 Clustering
To hierarchically cluster nodes based on their embeddings, our
approach utilizes an agglomerative clustering algorithm.

This algorithm iteratively merges the nearest clusters based
on the average linkage criterion. To maintain the integrity of the
graph’s topology, clusters are only compared if there exists a direct
path between them that bypasses other clusters. The height of the
hierarchy was chosen to match the height of Louvain for the sake
of fair comparison between the two approaches [3], but could also
be defined through any dendrogram cutting strategy.

3.3 Option learning
For the sake of comparisons with Evans et al. [3], we similarly
construct the skill hierarchy as follows.

Let ℎ represent the number of partitions produced by our algo-
rithm when applied to the state transition graph. Each of these ℎ
partitions defines a skill layer, forming an action hierarchy with
ℎ levels of abstract actions above primitive actions. Each hierar-
chy level consists of skills designed to efficiently navigate between
clusters of the state transition graph.

We define options for moving from cluster 𝑐𝑖 to cluster 𝑐 𝑗 is
defined by: initiation states in 𝑐𝑖 , a policy to navigate from any
state in 𝑐𝑖 to a state in 𝑐 𝑗 , and termination upon reaching 𝑐 𝑗 .

Leveraging the hierarchical structure of the partitions, we define
skills at each level of the hierarchy using the skills from the pre-
ceding level. At each hierarchy level, the policies for higher-level
actions call actions (either options or primitive actions) from the
level below, with primitive actions only invoked directly at the base
level.

4 EVALUATION
4.1 Domains
The skill hierarchy is evaluated in four environments (Figure 1), the
first three of which are different examples of the rooms environment.
An empty room, two rooms connected by a bottleneck and four
rooms as in [3]. The agent is given a starting position and a goal
position and attempts to navigate between them as effectively as
possible. The last domain we look at is the Towers of Hanoi, a
classic mathematical puzzle. It involves moving a set of disks from
one peg to another, following specific rules.

Each of the rooms environments feature four basic movements:
north, south, east, and west. These movements steer the agent in
the chosen direction unless obstructed by a wall, in which case the
agent stays in place. Each action incurs a penalty of -0.001, with
a bonus of +1.0 awarded upon reaching the goal state. Each run
begins from a designated start state and aims for a goal state.

The Towers of Hanoi involves four disks of varying sizes posi-
tioned on three pegs. An episode commences with all disks stacked
on the leftmost peg. Actions involve moving the top disk from one
peg to another, ensuring no larger disk is placed on a smaller one.
Each action incurs a -0.001 penalty, with an additional +1.0 reward
granted upon achieving the goal state, which is when all disks are
stacked on the rightmost peg.

4.2 Structural Skill Hierarchy
The hierarchy obtained through the above clustering method will
cluster structurally similar nodes together.

To showcase an example, we show the hierarchical clustering
of Two Rooms (Figure 2), at the lowest level the walls of the room
as well as the bottleneck state are clustered together. The corners
of the room are given their own individual clusters and then the
center of the room is partitioned symmetrically with respect to the
bottleneck state. The second level then merges most of the interiors
of the individual rooms while still giving the corner states their
individual clusters. The final level then merges the corner states
into the walls of the room and gives three clusters which are the

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

8

Learning Multi-Level Skill Hierarchies with Graphwave

(a) Empty room (b) Two rooms (c) Four rooms (d) Towers of Hanoi

Figure 1: The environments used in the experiments. (a) Empty Room: A simple environment with no obstacles. (b) Two Rooms:
An environment divided into two connected rooms. (c) Four Rooms: A more complex environment divided into four connected
rooms. (d) Towers of Hanoi: A classic puzzle environment where the goal is to move disks between pegs according to specific
rules.

Figure 2: Hierarchical clustering of the Two Rooms environment at various levels. The lowest level (left-most image) clusters
walls and bottleneck states, the second level (middle image) merges room interiors while keeping corners separate, and the
final level (right-most image) combines corners into walls, resulting in three main clusters.

two interiors of the rooms and the final cluster essentially contains
these two rooms.

4.3 Results
To compare with Evans et al. [3], in the analysis, we created options
by building the full state transition graph and then learned their
policies offline using macro-Q learning [5].

We trained all hierarchical agents with macro-Q learning and
intra-option learning [7]. Shaded areas in the learning curves show
the standard error, based on 40 independent trials.

The parameters set were the same as in [3], a learning rate of
𝛼 = 0.4, a discount factor of 𝛾 = 1, and initial action values of
𝑄0 = 0. An 𝜖-greedy strategy with 𝜖 = 0.1 was used for exploration.
The shown learning curves represent evaluation performance. Post
each training epoch, the policy was assessed (with exploration and
learning disabled) in a separate environment instance.

We observe (Figure 3) that on the domain of Empty Room we
quickly converge to a rewarding strategy before eventually seeing
the Louvain skill hierarchy catch up. In the Two Room environment
we observe much faster convergence as well as Louvain starting
to catch up relatively slowly. The Four Rooms domain favours the
Louvain skill hierarchy clearly, one might deduce this due to it
being more important to traverse between rooms quickly which

is optimally done through a clustering that relies on modularity.
We outperform the Louvain skill hierarchy in the Towers of Hanoi,
converging faster and having it catch up.

5 CONCLUSIONS
In this paper, we introduced a novel approach to hierarchical skill
learning by leveraging Graphwave to obtain structural embeddings
of the states. By clustering the states and preserving the topology of
the state-space graph, we enabled efficient option learning, where
options represent skills at various levels of abstraction. In our exper-
iments, we compared the proposed approach to the state-of-the-art
method by Evans et al. [3] and showed that our method can speed
up the learning process significantly in some cases.

However, in some domains, optimizing for modularity obviously
yields better skill hierarchies and faster option learning. It remains
an open question for future research to determine which properties
of a domain’s state-space graph are more suited for each method.
This question is related to another open challenge, namely the
characterizations of a useful skill: for a given complex task, what
defines a proper skill hierarchy.

Future work could also explore incrementally building the state-
space graph and deriving the optimal skill hierarchy for the partially
observed graph. This approach may influence how confidently the

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

9

Simon Bele and Jure Žabkar

Figure 3: The following figure illustrates the performance of hierarchical agents using Louvain and Graphwave skill hierarchies
in different environments: Empty Room, Two Rooms, Four Rooms, and Towers of Hanoi. We observe that in the Empty Room
environment, both skill hierarchies converge quickly to a rewarding strategy, with Graphwave performing better initially but
Louvain catching up over time. In the Two Rooms environment, Graphwave converges significantly faster than Louvain. The
Four Rooms domain favors the Louvain skill hierarchy, likely due to the importance of quickly traversing between rooms using
a clustering that relies on modularity. In the Towers of Hanoi, Graphwave outperforms Louvain, showing faster convergence
and maintaining an advantage throughout. The provided plots show the reward progression over epochs for each environment,
highlighting the differences in performance and convergence rates between the Louvain and Graphwave skill hierarchies.

partitioning is constructed over time, as new information becomes
available and the graph evolves. One can develop algorithms that
dynamically adjust the skill hierarchy based on the current state
of the graph, ensuring that the hierarchy remains optimal as the
environment changes. One may also pursue a similar direction in
constructing skill hierarchies in problems that involve continuous
state-spaces.

REFERENCES
[1] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The Option-Critic Archi-

tecture. Proceedings of the AAAI Conference on Artificial Intelligence 31, 1 (Feb.
2017). https://doi.org/10.1609/aaai.v31i1.10916

[2] Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. 2018. Learning
Structural Node Embeddings Via Diffusion Wavelets. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
1320–1329. https://doi.org/10.1145/3219819.3220025 arXiv:1710.10321 [cs, stat]

[3] Joshua B. Evans and Özgür Şimşek. 2024. Creating Multi-Level Skill Hierarchies
in Reinforcement Learning. arXiv:2306.09980 [cs]

[4] Marlos Machado, Andre Barreto, and Doina Precup. 2021. Temporal Abstraction
in Reinforcement Learning with the Successor Representation.

[5] Amy Mcgovern, Richard Sutton, and Andrew Fagg. 1999. Roles of Macro-Actions
in Accelerating Reinforcement Learning. (Feb. 1999).

[6] Matthew Riemer, Miao Liu, and Gerald Tesauro. 2018. Learning Abstract Options.
CoRR abs/1810.11583 (2018). arXiv:1810.11583 http://arxiv.org/abs/1810.11583

[7] Richard S Sutton, Doina Precup, and Satinder Singh. 1998. Intra-Option Learning
about Temporally Abstract Actions.. In ICML, Vol. 98. 556–564.

[8] Richard S. Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs
and semi-MDPs: A framework for temporal abstraction in reinforcement learn-
ing. Artificial Intelligence 112, 1 (1999), 181–211. https://doi.org/10.1016/S0004-
3702(99)00052-1

[9] Xiao Xu, Mei Yang, and Ge Li. 2018. Constructing Temporally Extended Ac-
tions through Incremental Community Detection. Computational Intelligence and
Neuroscience 2018, 1 (2018), 2085721. https://doi.org/10.1155/2018/2085721

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

10

Integration of Named Entity Extraction Based on Deep Learning
for Neo4j Graph Database

Lea Roj
l.roj@um.si

University of Maribor,
Faculty of Electrical Engineering and

Computer Science,
Maribor, Slovenia

Štefan Kohek
stefan.kohek@um.si
University of Maribor,

Faculty of Electrical Engineering and
Computer Science,
Maribor, Slovenia

Aleksander Pur
pur.aleksander@gmail.com
Ministry of the Interior,
Ljubljana, Slovenia

Niko Lukač
niko.lukac@um.si

University of Maribor,
Faculty of Electrical Engineering and

Computer Science,
Maribor, Slovenia

Abstract
The increase in unstructured textual data has created a pressing
demand for effective information extraction techniques. This paper
explores the integration of Named Entity Extraction (NEE) using
deep learning within the Neo4j graph database. Utilizing the Rebel
Large Model, we converted raw text into structured knowledge
graphs. The primary objective is to evaluate the efficacy of this
integration by examining performance metrics, such as process-
ing time, graph growth, and entity representation. The findings
highlight how the structure and complexity of graphs vary with
different text lengths, offering insights into the potential of combin-
ing deep learning-based NEE with graph databases for improved
data analysis and decision-making.

Keywords
Named entity extraction, deep learning, Neo4j, graph database,
knowledge graphs

1 Introduction
The rise of digital news and social media has significantly increased
the importance of NEE. As more information is generated online,
extracting this information became critical for various applications,
such as search engines and recommendation systems [1]. NEE,
along with Relation Extraction (RE), is essential for transforming
unstructured text into structured data, enabling more effective data
analysis and decision-making. Building on the findings of a previous
work [2] that evaluated various hyper-parameters and analyzed
sensitivity performance, this paper takes a step further by exploring
the integration of NEE and RE within the Neo4j graph database.

Neo4j is a graph database that provides a powerful way to store
and query complex relationships between entities. This makes it
well-suited for applications involving interconnected data, such as
social networks, recommendation systems, and fraud detection. In
Neo4j, data is stored as nodes and relationships. Nodes represent
entities, while relationships represent the connections between
these entities. Both can have properties (key-value pairs) to store

additional information. Neo4j uses Cypher, a declarative query
language specifically designed for querying graph databases [3].

Integrating Named Entity Recognition (NER) based on deep
learning within Neo4j graph databases has been an area of active
research and development. Ni et al. [4] addresses the challenge of
translating natural language queries into graph database queries
for intelligent medical consultation systems. The authors developed
a Text-to-GraphQL model that utilizes a language model with a
pre-trained Adapter, enhancing the semantic parsing capabilities
by linking GraphQL schemas with corresponding natural language
utterances.
Fan et al. [5] wrote about geological hazards, a deep learning-based
NER model that was used to construct a knowledge graph from
literature. This model addresses challenges such as diverse entity
forms, semantic ambiguity, and contextual uncertainty. The result-
ing knowledge graph, stored in Neo4j, enhances the usability of
geological research data.
Chaudhary et al. [6] propose a system that converts raw text into
a knowledge graph using Neo4j, addressing inefficiencies in tradi-
tional tools like Spacy, NLTK, and Flair. Their method combines
entity linkage and RE to convert unstructured data into a knowledge
graph, leveraging graph-based NER and Linking for a contextual
understanding of data. The implementation utilizes the REBEL
[7] model for RE. In comparison with our approach, they use the
BLINK [8] model for entity disambiguation and linking. Meanwhile
we focus on efficient entity normalization by querying Wikipedia.
Furthermore, while Chaudhary et al.’s system emphasizes improve-
ments for processing large untagged datasets using graph-based
NER and linking, we achieve comparable results using traditional
NER through Spacy while focusing on entity filtration and knowl-
edge enrichment. We also performed several graph analytics in
Neo4j, providing deeper insights and analysis.

The objective of this paper is to demonstrate the implementa-
tion process of integrating NEE into the Neo4j graph database. It
aims to evaluate the effectiveness of this integration and analyze
various performance metrics. Specifically, the paper will measure
the processing time required to extract named entities from text
and represent them in Neo4j, analyze graph growth in relation to

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.3
ISBN 978-961-286-914-4

11

https://doi.org/10.18690/um.feri.6.2024.3

Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač

text length, evaluate average total neighbors score based on text
length, and analyze how many entities are actually shown in graph
and how many are filtered out.

The next section details the workflow from text pre-processing
to graph visualization in Neo4j. The Results showcases the findings,
including charts that visualize the performance metrics. Finally, the
Conclusion summarizes the benefits and purpose of the integration,
highlights key findings from the study, and suggests potential areas
for future research and development.

2 Methodology
The workflow from text pre-processing till graph construction in
Neo4j is represented in figure 1. The entire process consists of mul-
tiple crucial steps including text pre-processing, NEE, RE, entity
normalization and filtration, and finally generation and visualiza-
tion of the knowledge graph in Neo4j. The details of these steps
have been in depth discussed in our previous paper [2].

Text pre-processing NEE

RENormalization

Entity Filtration Generate Graph

Visualize Graph in Neo4jAnalysis in Neo4j

Figure 1: Workflow

Text pre-processing involves segmenting the text into manage-
able spans, with span length defining the number of words in each
segment and overlap length ensuring coherence between consec-
utive spans. The length penalty manages the impact of longer se-
quences, while the number of beams allows simultaneous explo-
ration of multiple sequences to find the best one. The number of
returns specifies how many sequences are returned after the beam
search.

NEE identifies and classifies entities by tokenizing the text, with
each token corresponding to a unique word ID. The Rebel Large
Model, a sequence-to-sequence model based on the T5 architecture,
is employed for RE tasks [7]. This model leverages deep learning
techniques to process up to 512 tokens as input and generates
triplets consisting of a subject (head), object (tail), and the rela-
tionship type between them. Using a transformer-based encoder-
decoder architecture, these triplets are extracted from textual spans,
where each relationship is first predicted in token form and then
decoded into text.

Based on the previous paper, this paper proposes improvements
in normalization and entity filtration, as follows. Entity names are
first standardized by converting text to lowercase and removing
common prefixes, followed by verification via Wikipedia’s API.
Non-contributive entities, such as dates or overly generic terms,
are identified and excluded using pattern recognition and catego-
rization techniques. The system checks for duplicates or highly

similar entities to prevent clutter, merging or discarding them as
needed. Cosine similarity measures are used to assess and reinforce
thematic links between entities, enhancing the overall coherence
of the knowledge base.

2.1 Knowledge graph within Neo4j
A knowledge graph is generated from the extracted and filtered
entities, and relations. This structured representation helps in visu-
alizing the connections and relationships within the text. Finally,
the knowledge graph is stored and visualized in Neo4j.

In the integration process, the data obtained using NER is saved
to a graph database through the Neo4j driver. Afterwards, the
method iterates over entities in the knowledge base to determine
category for each entity. Using the ’MERGE’ Cypher command the
method either finds an existing node (based on the name) or creates
a new node if none exists. Attributes such as ’url,’ ’summary,’ and
’category’ are then added to each node.

MERGE (e:Entity {name: $entity })

ON CREATE SET e.url = $url, e.summary = $summary

SET e.category = coalesce(e.category , $category)

After adding the entities, we processed each relationship defined
in the knowledge base. We ensured that both entities involved in
the relationship were present in the database and then created a
relationship between the entities using the ’MERGE’ command if it
didn’t already exist.

MATCH (head:Entity {name: 'EntityName1 '}),

(tail:Entity {name: 'EntityName2 '})

MERGE (head)-[r:RELATIONSHIP_TYPE]->(tail)

The knowledge graph is visualized in Neo4j to provide an in-
tuitive and interactive representation of the extracted knowledge.
Using Cypher queries, users can explore the graph, examine re-
lationships, and derive insights from the interconnected data. To
display the graph in the Neo4j application, we use the following
Cypher query.

MATCH (n)-[r]->(m) RETURN n, r, m

This query retrieves all nodes (n, m) and the relationships (r)
between them, displaying the graph structure in the Neo4j interface.
The directed edges in the graph illustrate the relationships, provid-
ing a clear visual representation of the underlying knowledge.

2.2 Knowledge Graph Analysis in Neo4j
After constructing the knowledge graph in Neo4j, various metrics
and analyses were applied to explore the structure within the graph.
One such metric is the Total Neighbors score, which measures the
closeness of nodes by counting their unique neighbors. It is based
on the idea that a highly connected node is more likely to gain new
links. The metric is calculated using the following formula:

𝑇𝑁 (𝑥,𝑦) = |𝑁 (𝑥) ∪ 𝑁 (𝑦) |, (1)

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

12

Integration of Named Entity Extraction Based on Deep Learning for Neo4j Graph Database

where N(x) and N(y) represent the sets of nodes adjacent to x and
y, respectively. The Total Neighbors score measures the closeness
of two nodes based on the number of unique neighbors they have.
If a score is equal to 0 it indicates no closeness between the nodes,
while higher scores indicate greater closeness [9].

The gds.alpha.linkprediction.totalNeighbors function
from the Neo4j Graph Data Science (GDS) library calculates the
total neighbors score between the two matched nodes (p1 and p2).

3 Results
The analysis was conducted using the text about Pablo Escobar
from Wikipedia. For this paper, the original text was divided into
sections of varying lengths to examine how text length influences
the analysis results. Figure 2 displays a generated graph with a text
length of 304 words. The graph was created using specific parame-
ters that influence its structure and content. These parameters were
heuristically determined to be span length = 30, length penalty
= 0, number of beams = 5, number of returns = 2, and overlap
length = 10. On the same set of parameters we measured processing
time, similarity score based on total neighbors, and analyzed graph
growth.

Madellin

twinned
administrative body

located in the
administrative
territorial entity

Rionegro

Murder

Subclass of

Massacre

Ecuador

Bolivia

Peru

United States

shares
border with

diplomatic
relation

Colombia

procuct or
material produced

Drug cartel

manufacturer

Cocaine

founded by

product or
material produced

Madellin
CartelPolitician

Universidad
Autonoma

Latinoamericana

Illegal drug
trade

Liberal party

2 December
1993

1 December
1949

Drug lord

occupation

date of birth

date of death

member of
political party

field of work

educated at

occupation member of

country of
citizenship

Pablo
Escobar

shares border with

shares
border with

Figure 2: Generated graph with text length = 304 words

In Figure 3, the time required for graph generation is shown
to increase linearly with the number of words in the text. This

linearity is confirmed by a regression analysis, which yields an 𝑅2

value of 0.9984, indicating an almost perfect fit.

0 300 600 900 1,200 1,500 1,8000

30

60

90

120

150

180

210

240

270

Number of Words

Ti
m
e
[s
]

Influence of text length on graph generation time

Data Points
Regression Line

Figure 3: Influence of text length on execution time.

Figure 4 demonstrates the influence of text length on the num-
ber of recognized entities. As the number of words in the text
increases, there is a corresponding increase in both the number
of nodes shown and the number of entities that are recognized
but not displayed. This pattern indicates that longer texts result
in the recognition of more entities, although not all are displayed.
The decision to display or exclude entities is determined by several
processes designed to maintain the clarity and relevance of the
graph. These processes include the combination and unification of
similar entities, the removal of isolated entities, and the filtering
out of date-related entities. These processes are essential for main-
taining the graph’s relevance and clarity, preventing clutter from
redundant or less significant entities.

28 81 142 244 304 398 475 614 712 954115
2
159
3
179
9
190
6

0

50

100

150

200

Number of Words in Text

N
um

be
ro

fE
nt
iti
es

Comparison of Recognized Entities vs. Visualized Entities in Graph Based on Text Length

Number of Recognised Entities in Text Number of Entities Shown in Graph

Figure 4: Comparison of recognized and visualized entities
based on text length.

The following analyses represent the average similarity score for
all possible pairs of entities (n1, n2) in the graph. For that is used a
link prediction algorithm (totalNeighbors) to assess how connected

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

13

Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač

two entities are based on their neighbors. The purpose of this is to
measure how interconnected the entities are throughout the entire
graph. High scores generally appear between nodes directly related
through historical, contextual, or thematic associations. On the
other hand dates provide low similarity scores with entities, likely
indicating less direct connection or relevance to these specific dates
in the dataset.

In Figure 5, the average Total Neighbors score between all nodes
is represented. The values are relatively stable, mostly ranging
between 1.5 and 2.0. This suggests a moderate level of similarity
between entities across different text lengths, without extreme
variation. This stability suggests that the entities within each text
maintain a consistent level of connectivity, regardless of text length.

0 500 1,000 1,500 2,0001

1.5

2

2.5

3

Text Length

Si
m
ila
rit
y
Sc
or
e

Average Similarity Score vs. Text Length

Figure 5: Average Total Neighbors Score between all nodes

Figure 6 highlights only ten strongest connections in the graph,
which is particularly useful for identifying the most significant
or central entities. Score increases with text length, particularly
noticeable in texts longer than 900 words. This indicates that longer
texts tend to have more instances of highly interconnected nodes.
This is due to the increased probability of recurring entities in
longer texts, which leads to more common neighbors. The text
with the shortest length (28 words) has the lowest similarity score
(3.2). This suggest that very short texts lack sufficient content to
establish strong connections between entities. The highest scores
for both average and top ten similarities occur in the longest texts
(1593, 1799, 1906 words). This supports the idea that more extensive
content provides more opportunities for entities to connect or relate.

4 Conclusion
The results demonstrate that text length significantly impacts the
performance and outcomes of NEE within Neo4j using deep learn-
ing techniques. As text length increases, so does the processing time
for graph visualization, due to the need to extract and manage a
larger number of entities and relationships. Moreover, the analysis
of graph structure revealed that longer texts tend to produce more
nodes, both displayed and recognized but not shown. This suggests
that while longer texts provide more data, they also introduce chal-
lenges in managing graph complexity, which complicates graph
management and requires the consolidation of similar entities and
filtering of less relevant ones to maintain clarity. Furthermore the

0 500 1,000 1,500 2,0000

10

20

30

Text Length

Si
m
ila
rit
y
Sc
or
e

Only 10 Highest Scores vs. Text Length

Figure 6: Average of ten highest Total Neighbors Scores

stability of the average similarity scores across various text lengths
suggests a consistent level of connectivity among entities, with a
noticeable increase in the strength of connections in longer texts.
This supports the hypothesis that longer texts offer more opportuni-
ties for entity interconnections, which is crucial for tasks requiring
comprehensive data analysis and decision-making.

In conclusion, integrating NEE with graph databases presents a
promising approach for transforming unstructured text into struc-
tured knowledge. However, the complexity introduced by varying
text lengths must be carefully managed to optimize both the per-
formance and the utility of the resulting knowledge graphs. Future
work could focus on exploring other NEE methods to further en-
hance the efficacy of this integration.

Acknowledgments
The authors acknowledge the support of the STALITA project,
financed by Ministry of the Interior, Slovenia.

References
[1] Ing Michal Konkol. Named entity recognition. Pilsen: PhD thesis, University of

West Bohemia, 2015.
[2] Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač. Sensitivity analysis of

named entity extraction based on deep learning.
[3] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and

Domagoj Vrgoč. Foundations of modern query languages for graph databases.
ACM Comput. Surv., 50(5), sep 2017.

[4] Pin Ni, Ramin Okhrati, Steven Guan, and Victor Chang. Knowledge graph and
deep learning-based text-to-graphql model for intelligent medical consultation
chatbot. Information Systems Frontiers, 26(1):137–156, 2024.

[5] Runyu Fan, Lizhe Wang, Jining Yan, Weijing Song, Yingqian Zhu, and Xiaodao
Chen. Deep learning-based named entity recognition and knowledge graph
construction for geological hazards. ISPRS International Journal of Geo-Information,
9(1), 2020.

[6] Shikha Chaudhary, Hirenkumar Vyas, Naveen Arora, and Sejal D’Mello. Graph-
based named entity information retrieval from news articles using neo4j. In 2024
11th International Conference on Computing for Sustainable Global Development
(INDIACom), pages 320–324, 2024.

[7] Pere-Lluís Huguet Cabot and Roberto Navigli. Rebel: Relation extraction by
end-to-end language generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 2370–2381, 2021.

[8] Martin Josifoski Sebastian Riedel Luke Zettlemoyer Ledell Wu, Fabio Petroni.
Zero-shot entity linking with dense entity retrieval. In EMNLP, 2020.

[9] Neo4j. Total Neighbors Algorithm, 2024. Accessed: 2024-06-25.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

14

Efficient Implementation of Spreadsheet User Application
Tjaša Repič

tjasa.repic@student.um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Aljaž Jeromel
aljaz.jeromel@um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Sašo Piskar
saso.piskar@dewesoft.com

DEWESoft d.o.o.,
Trbovlje, Slovenia

Domen Dolanc
domen.dolanc@dewesoft.com

DEWESoft d.o.o.,
Trbovlje, Slovenia

Niko Lukač
niko.lukac@um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

ABSTRACT
Processing measurement data is fundamental in the field of high-
tech instrumentation, where precision, collection, analysis, and
visualization of data are of great importance. Extensive amounts
of data ought to be displayed and processed to ensure smooth user
experience. Tabular displays are therefore common, being more
comprehensible for the average user. In this paper we propose a so-
lution, envisioned by the company Dewesoft - a spreadsheet editor
widget tailored for their data acquisition software DewesoftX, also
compatible with separate plugins within the software. Since using
commercially widespread tools to do so often results in setbacks
when seeking to integrate those within existing software, we’ve de-
veloped an application functionally comparable to other solutions
while complying with the company’s existing software standards.

KEYWORDS
spreadsheet, tabular data, optimisation, user experience, data visu-
alisation.

1 INTRODUCTION
We widely adopt spreadsheets for their familiarity and versatil-
ity, offering extensive features for data manipulation, statistical
calculations, data collection, and visualization. Their accessibility
makes them a preferred choice for both individuals and businesses.
However, spreadsheets also have notable drawbacks. They are sus-
ceptible to various input errors, including clerical mistakes, rule
violations, data-entry errors, and formula errors, which can signifi-
cantly distort the data. Additionally, spreadsheets are not inherently
designed for efficient data storage or seamless connectivity to rela-
tional databases, posing challenges in effective data management
and retention [1, 2].

In modern spreadsheet tools, providing a clear and efficient user
experience involves several essential elements. These include an
intuitive interface with a clean layout, consistent design, tool tips,
and help guides. User-friendly navigation is achieved through a
well-organized toolbar, robust search functionality, and keyboard
shortcuts. Data visualization and formatting are enhanced by fea-
tures like conditional formatting, and predefined styles. Compre-
hensive formula support includes auto-complete, error-checking

tools, and a rich library of functions. Robust data management
capabilities are also crucial, including import/export options, data
validation, and integration with other tools [3, 4].

Within the initial design phase of the proposed Spreadsheet
plugin solution, a crucial aspect of planning involved acquiring a
deeper understanding of the DewesoftX software for which the plu-
gin development was intended [5]. Processing measurement data
is a crucial aspect of the advanced test and measurement indus-
try, where the company Dewesoft operates [6]. A key component
of Dewesoft’s offering is the DewesoftX software. Many fields in
science, commerce and the like require precise measurement, data
collection, analysis and visualization. Handling such large volumes
of data can prove challenging and inefficient, reducing productivity,
convenience and increasing the risk of making mistakes. The soft-
ware in question has been designed specifically to solve this issue,
being used across multiple industrial and commercial sectors. It
supports a wide range of interfaces for data visualization, allowing
for the synchronized acquisition of data from nearly any analog
sensor, storage, and visualization within the same file.

When discussing tools designed to display tabular data, it is
essential to consider mathability. Mathability in spreadsheet tools
refers to their capacity to perform complexmathematical operations
with efficiency and accuracy. This capability is crucial as it ensures
precise calculations, boosts productivity, and accommodates various
applications across fields such as finance, engineering, and data
science [7].

Our solution enhances data handling and provides clearer visu-
alization, prioritizing environments where precise, synchronized
data acquisition is critical, such as the software itself, DewesoftX.
It is meant to integrate the spreadsheet tool within the software,
therefore offering more advanced data handling, synchronization
and visualization capabilities tailored to the user’s needs while
avoiding potential issues with safety, space and integration that
arise from using already existing tools. This paper presents its basic
functions and the thought process behind their implementation,
providing detailed explanations, as well as the results of duration
and memory usage of various supported functionalities.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.4
ISBN 978-961-286-914-4

15

https://doi.org/10.18690/um.feri.6.2024.4

Tjaša Repič, Aljaž Jeromel, Sašo Piskar, Domen Dolanc, and Niko Lukač

2 METHODOLOGY
The purpose of the following subsections is to provide a breakdown,
as well as a thorough explanation of the implementation process of
the spreadsheet user application.

2.1 Fundamental Features
2.1.1 Spreadsheet Widget Layout. To enhance data accessibility
during development and make the layout overview clearer, the
widget workspace was divided into three parts. The visual widget
is segmented into two primary regions. The first is the context
menu, containing various button shortcuts for features that will
be discussed further in this article. The software’s user interface
was originally developed in Delphi, using its own VCL (Visual
Component Library) [8]. VCL is built on the Win32 architecture,
sharing a similar structure but offering much simpler usage [9].

The second region, referred to as the spreadsheet rectangle or
"TableRect", encompasses all data and its layout within the widget,
including information about cells, columns, rows and the spread-
sheet title. A smaller section called the data rectangle or "DataRect"
additionally handles cell information. The context menu and the
spreadsheet workspace can be seen on Figure 1.

We also provide users with the option to save data for future use.
This is done by writing cell values, styles, merged cell information,
resized columns andmanually adjusted titles to a customDewesoftX
file format for saving the workspace which will further be referred
to as .DXS or setup file. The data can then be read from the setup
file after loading the workspace at a later time.

Figure 1: Separation between the context menu (blue) and
area within which the spreadsheets’s data is displayed
(green).

2.1.2 Cell Manipulation. Initially we have made an effort of defin-
ing essential functionalities that define the main purpose and value
of the application by dismantling related spreadsheet editors [10–
12]. The most fundamental feature of the spreadsheet grid is the
ability to insert and update data within the cells.

In order to grant each cell its own unique value we implemented
a hash function, which generates a hash value from two integer
inputs. These are determined by the cell’s position within the grid,

with the x value corresponding to the column and the y value
corresponding to the row. The row index masks the lower 16 bits of
the integer and shifts them 16 bits to the left. The column index is
masked in the same way and remains unshifted. Using the bitwise
OR operation, the two 16-bit values are combined into a single
32-bit integer. Implementation of a hash map designed to store
the 32-bit value grants us a key for each cell, allowing us to insert
and update data within the cell’s index by combining characters
received through user input into coherent values.

Where 𝑦 is the row index, 𝑥 is the column index, & represents
the bitwise AND operation, << represents the bitwise left shift
operation, | represents the bitwise OR operation, and 0𝑥𝐹𝐹𝐹𝐹 is
a hexadecimal constant representing the lower bits, the hash key
formula can be expressed as:

ℎ𝑎𝑠ℎ_𝑘𝑒𝑦 = ((𝑦&0𝑥𝐹𝐹𝐹𝐹) ≪ 16) | (𝑥&0𝑥𝐹𝐹𝐹𝐹) (1)
The hashmap provides 𝑂 (1) time complexity for retrieving data
from the selected cell, which is highly desirable, as it means that
the time required to perform an operation is constant and does not
depend on the size of the data set.

The Spreadsheet widget also supports cell splitting and merging.
Selected cells can be merged into a larger cell, which then behaves
like a standard cell. To facilitate this functionality, cells include an
additional parameter, "merged to", which records the cell to which
they are merged. By default, for cells that are not merged, this
parameter is set to -1.

A dedicated class manages cell selection within the spreadsheet,
defining it by specifying the starting and ending column and row
indexes. This enables users to efficiently apply operations to a range
of cells, rather than being limited to individual cells.

2.2 Spreadsheet Formatting
Allowing users to stylize components in a user application is im-
portant for several reasons, including enabling customization to
tailor the application’s appearance to the user’s individual prefer-
ences and allowing them to highlight important information and
organize content according to their needs. For this purpose, we
have incorporated various styling features into the spreadsheet
user application.

2.2.1 Spreadsheet Stylizing. To enhance customization, we intro-
duced a structure within the Style class containing eighteen prop-
erties applicable to all spreadsheet components, including cells,
selections, rows, and columns. Sixteen of these properties handle
styling aspects such as font family, size, color, cell background, bold,
italic, underline, border properties, and text alignment. Only user-
defined values are saved, optimizing file size and reading/writing
speeds. The remaining two properties include a property mask, as-
signing a binary value to each style feature, and a vector of integers
to prioritize styles across cells, rows, and columns, ensuring correct
application when styles intersect.

2.2.2 Resizing Columns and Rows. We further enhanced spread-
sheet customization by implementing the functionality for users to
resize columns according to their specific needs. To resize a column,
the user must trigger a mouse down event on the right edge of any
column. This interaction detects the user’s intention to change the
column width and memorizes the index it has been detected on,

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

16

Efficient Implementation of Spreadsheet User Application

then determines the mouse movement according to the following
equation:

𝑚𝑜𝑣𝑒𝑋 = 𝑥 −𝑂 [𝑟 − 1] − 𝐷𝑥 , (2)

where 𝑚𝑜𝑣𝑒𝑋 represents the horizontal distance the mouse has
moved during the column resizing operation, 𝑥 is the current hori-
zontal position of the mouse cursor. The offsets array 𝑂 holds the
horizontal positions of the left edges of each column that is cur-
rently displayed in the spreadsheet, while 𝑟 represents the selected
index intended to be resized. Lastly, 𝐷𝑥 represents the x-coordinate
of the data rectangle’s origin. This value is subtracted to ensure the
calculation is relative to the data area.

We proceed with the operation by applying the following equa-
tion:

𝑟𝑒𝑠𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜 = max
(

𝑚𝑜𝑣𝑒𝑋

𝑐𝑒𝑙𝑙𝑊 𝑖𝑑𝑡ℎ
, 0.1

)
(3)

The equation calculates the ratio of the mouse movement to the cell
width. It then ensures that this ratio is not less than 0.1 by using the
max function. The calculated ratio is then set as the new column
width on the resize index. Additionally, note that the cell width is
the default width of the cells, which is calculated based on the font
size settings.

2.3 Undoing and Redoing Spreadsheet Actions
Within the context of the spreadsheet application, we defined the
undo and redo functionality as a state machine capable of switching
between the current and previous states after applying a change to
the spreadsheet and calling one of said operations.

To track state changes, we have designed and implemented the
"TableAction" structure. Different state changes require modifica-
tions to various types of data. The TableAction structure simplifies
the process by encapsulating the type of action triggered along with
parameters necessary for adjustment. We have provided detailed
definitions of various Spreadsheet actions as shown in 1.

The spreadsheet actions are managed within the respective undo
and redo vectors whose maximum size is set to twenty actions.
Upon triggering an add action event, the initial state prior to the
change is recorded in the undo vector, while the post-change state,
along with its corresponding action type, is recorded in the redo
vector. When the user initiates an undo or redo event, either via the
context menu or keyboard shortcuts, the Algorithm 1 is executed.

To summarize, the algorithm begins by verifying the feasibility
of the state change, ensuring that there is at least one recorded
action in the action counter. If this condition is met, the action
counter is adjusted appropriately. The algorithm then executes
the necessary statements based on the type of action, ensuring
that the corresponding data is modified accordingly. Finally, the

visible state of the spreadsheet is updated to reflect these changes.
Data: Action History
Result: Undo or Redo Action

1 UndoOrRedo(isRedo) if no actions available then
2 return;
3 end
4 get action, adjust counter;
5 if action is Insert/Update then
6 set cell, edit value;
7 else if action is SetStyle then
8 apply styles;
9 else if action is Resize then
10 apply size changes;
11 else if action is Merge/Split then
12 update merge states;
13 else if action is TextPaste then
14 apply text;
15 else if action is Sort then
16 apply sorting;
17 else if action is Paste then
18 apply data and styles;
19 end
20 update visible cells;

Algorithm 1: Undo/Redo algorithm.

3 RESULTS
The measurements leading to the results presented in this paper
were conducted on a system equipped with an AMD Ryzen 9 3900x
12-Core Processor and 64GB of RAM. It is also important to note
that DewesoftX version 2024.2 was used when conducting these
measurements.

For the testing, we evaluated three spreadsheet functionalities
across three progressively larger cell selections. The functionalities
tested included pasting values into cells (see Table 1), undoing and
redoing font colour changes (see Table 2), and loading from and
saving to the setup file with the font colour state being set (see
Table 3 and Table 4). The cell selection ranges used for these tests
were 5x5, 25x25, and 50x50.

The data used in these experiments comprised text, numeric
values, and dates, with font colour applied as specified. Each evalu-
ation was conducted ten times under identical conditions, and the
results were averaged to ensure accuracy.

Table 1: Evaluation of Cell Value Pasting.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 4.4 0.812
25x25 16.1 13.238
50x50 44.1 50.179

Within Table 1 the data shows that memory usage increases
significantly with the size of the cell selection, from 4.4 MB for 5x5
to 44.1 MB for 50x50. The duration also increases with the size of the
cell selection, from 0.812 ms for 5x5 to 50.179 ms for 50x50. A larger
selection is expected to be more memory-intensive than its smaller
counterpart. Interestingly, a selection 100 times larger is only 10

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

17

Tjaša Repič, Aljaž Jeromel, Sašo Piskar, Domen Dolanc, and Niko Lukač

times more memory-intensive. This can be explained by the fact
that the memory required for the basic widget to display correctly
is also involved within the measurement and is independent of the
amount of data stored in the spreadsheet. It’s also worth noting
that the duration does not increase linearly.

Table 2: Evaluation of Undoing/Redoing the Font Colour
Property State.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 0.134 0.292
25x25 0.722 1.157
50x50 1.5 5.766

Within Table 2, memory usage increases modestly with larger
cell selections, from 0.134 MB for 5x5 to 1.5 MB for 50x50. The dura-
tion also increases, from 0.292 ms for 5x5 to 5.766 ms for 50x50. The
memory and time required to undo/redo font colour changes grow
as the cell selection range expands. Comparing the measurements
of the undo/redo function with the paste-into-cells function, we
can conclude that the memory usage for the former is greater than
that for the latter.

Table 3: Evaluation of Loading from Setup where Font Colour
Property is set.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 97.8 1.769
25x25 117.6 33.173
50x50 123.6 132.758

For Table 3 memory usage increases with larger cell selections,
from 97.8 MB for 5x5 to 123.6 MB for 50x50. The duration, however,
shows an increase from 1.769 ms for 5x5 to 132.758 ms for 50x50,
indicating that loading from setup becomes more time-consuming
with larger selections.

Table 4: Evaluation of Saving to Setup where Font Colour
Property is set.

Cell Selection Range: Memory Usage [MB]: Duration [ms]:
5x5 0.234 3.752
25x25 0.293 66.618
50x50 0.356 260.720

Lastly for Table 4, memory usage shows a slight increase with
larger cell selections, from 0.234 MB for 5x5 to 0.356 MB for 50x50.
The duration increases significantly with the size of the cell selec-
tion, from 3.752 ms for 5x5 to 260.720 ms for 50x50. This indicates
that saving to setup is considerably more time-consuming as the
cell selection size grows.

As expected, the results indicate that both memory usage and
duration generally increase with larger cell selection ranges across

all functionalities. Pasting values and saving to setup are particu-
larly resource-intensive, whereas undoing and redoing font colour
changes show a moderate increase in resource requirements. Load-
ing from setup shows a notable increase in duration with larger
selections, highlighting the complexity of handling larger datasets.

4 CONCLUSION
In this paper, we proposed a solution for handlingmeasurement data
in high-tech instrumentation through a computationally efficient
spreadsheet editor widget. This widget is tailored for integration
with Dewesoft’s data acquisition software, DewesoftX, aiming to
offer functionality comparable to commercial spreadsheet tools
while ensuring compatibility with existing software standards. The
solution focuses on enhancing data accessibility and user experi-
ence by providing an intuitive interface, robust navigation, and
comprehensive formatting and state manipulation features.

In future development, we aim to enhance advanced matha-
bility features essential for an efficient spreadsheet application.
Specifically, we plan to implement a formula system within the
widget, enabling users to input formulas and perform calculations
directly within the spreadsheet. Additionally, we intend to incor-
porate conditional cell formatting, which automatically changes
the appearance of cells based on their content to improve data
visualization and analysis. We will also continue refining the exist-
ing features, taking user feedback into consideration to ensure the
highest quality user experience possible.

ACKNOWLEDGMENTS
We are deeply thankful to Dewesoft and its representatives for their
collaboration on this project, without which this paper would not
have been possible.

REFERENCES
[1] F. Nurdiantoro, Y. Asnar, and T. E. Widagdo. The development of data collection

tool on spreadsheet format. Proceedings of 2017 International Conference on Data
and Software Engineering, ICoDSE 2017, 2018-January:1–6, Jul. 2017.

[2] Srideep Chatterjee, Nithin Reddy Gopidi, Ravi Chandra Kyasa, and
Prakash Prashanth Ravi. Evaluation of open source tools and develop-
ment platforms for data analysis in engine development. SAE Technical Papers,
pages 1–11, Jan. 2015.

[3] Sabine Hipfl. Using layout information for spreadsheet visualization. Proceedings
of EuSpRIG 2004 Conference Risk Reduction in End User Computing: Best Practice
for Spreadsheet Users in the New Europe, pages 1–13, 2004.

[4] Bernard Liengme. A Guide to Microsoft Excel 2013 for Scientists and Engineers.
Academic Press, London, United Kingdom, 2013.

[5] Dewesoft. Introduction | Dewesoft X Manual EN. https://manual.dewesoft.com/
x/introduction, 2024. Accessed: 18-08-2024.

[6] Dewesoft. DewesoftX Award-Winning Data Acquisition and Digital Signal
Processing Software. https://dewesoft.com/, 2024. Accessed: 21-08-2024.

[7] P. Biro and M. Csernoch. The mathability of spreadsheet tools. 6th IEEE Con-
ference on Cognitive Infocommunications, CogInfoCom 2015 - Proceedings, pages
105–110, Jan. 2016.

[8] Embarcadero Technologies. VCL Overview - RAD Studio. https://docwiki.
embarcadero.com/RADStudio/Sydney/en/VCL_Overview, 2024. Accessed: 18-
08-2024.

[9] Thomas Lauer. Porting to Win32™: A Guide to Making Your Applications Ready
for the 32-Bit Future of Windows™. Springer-Verlag New York Inc., New York,
NY, USA, 1996.

[10] Isaac Alejo. Google Sheets Tutorial Guide. Google Books, Online, 2024. Accessed:
18-08-2024.

[11] LibreOffice Documentation Team. LibreOffice 4.1 Calc Guide. Google Books,
Online, 2024. Accessed: 08-08-2024.

[12] Karl Mernagh and Kevin Mc Daid. Google sheets vs microsoft excel: A compari-
son of the behaviour and performance of spreadsheet users. Proceedings of the
Psychology of Programming Interest Group (PPIG) 2014 Conference, 2014.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

18

Improvement and Evaluation of a Heuristic Method for the
Minimal Feedback Arc Set Problem

Jure Pustoslemšek
jp76466@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

Ema Črne
ec51731@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

Nejc Rihter
nr5256@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

ABSTRACT
This paper addresses the problem of finding minimal feedback arc
sets in directed graphs, a critical issue in various domains such
as computational biology, scheduling and network analysis. We
implement, analyse and improve a novel heuristic approach. Our
improved method reuses their heuristic method for reducing solu-
tion size and uses other established techniques from both exact and
approximate algorithms to speed up the algorithm. The implemen-
tation makes use of a fast network analysis library for additional
speed-up.

KEYWORDS
Directed graphs, minimum feedback arc set, NP-hard problems,
combinatorial optimization, heuristic methods

1 INTRODUCTION
Directed graphs are a fundamental tool in network theory. They are
widely used to model systems where the direction of relationships
between entities is crucial. A feedback arc set (abbr. FAS) is a set
of edges in a directed graph such that removing those edges from
the graph makes it acyclic. While the entire set of vertices 𝑉 can
trivially serve as a feedback arc set, the challenge lies in finding a
minimal feedback arc set, i.e. a feedback arc set with the smallest
number of edges.

The minimal FAS problem has various real-world applications;
for instance, in social network analysis, FAS is crucial for mis-
information removal and label propagation [2], it also plays an
important role in computational biology and neuroscience [7], and
task scheduling by breaking cyclic dependencies.

The problem of finding a minimal FAS is NP-hard. The decisional
version of the problem, that is finding a FAS of a certain size, is one
of the first known NP-complete problems [8]. As such, it is believed
that there exists no algorithm that can solve it in polynomial time.
Additionally, the problem is also very challenging to approximate.
There is no known algorithm with a constant bound on the approx-
imation ratio, making it an APX-hard [6] problem. The problem
is complementary to the maximum acyclic subgraph problem and
there is a natural reduction to the linear arrangement problem [3].

In this work, we focus on the implementation and improvement
of a heuristic algorithm for finding a minimal FAS, as described by
Cavallaro et al. [3]. We shall refer to this algorithm as the original
algorithm. The algorithm begins by identifying strongly connected
components (abbr. SCC) in the input graph 𝐺 . Since any cycle is
guaranteed to belong to a single SCC [4], we are able to split𝐺 into
SCCs and run the rest of the algorithm on each SCC separately,

collecting partial solutions into a single list to form a full solution.
For the remainder of the algorithm, we assume that 𝐺 is strongly
connected. Two empty lists 𝐸𝑓 and 𝐸𝑏 are initialized to hold the
forward and backward edges respectively. Vertices are then ordered
according to some rule. For each vertex, we identify the forward
edges and add them to 𝐸𝑓 , thereby removing these edges from the
graph. Once the graph becomes acyclic during this process, iteration
stops. We then iterate in reverse order to identify the backward
edges, adding them to 𝐸𝑏 and removing them from 𝐺 . Once the
graph becomes acyclic, iteration stops.

To improve the solution, we apply Algorithm 1, also called smart-
AE [3] to the smaller of the two sets, 𝐸𝑓 or 𝐸𝑏 . This key component
aims to reduce the size of the found FAS by reintroducing the
removed edges in a balanced way while avoiding creating cycles in
the graph.

Input: Graph 𝐺 , edge list 𝐹
Output: 𝐴𝐸

1 𝐴𝐸 ← [];
2 while 𝐹 is not empty do
3 𝑃𝐸 ← [];
4 𝑐𝑜𝑢𝑛𝑡 ← 0;
5 𝑖 ← 0;
6 while 𝑖 + 𝑐𝑜𝑢𝑛𝑡 < |𝑉 (𝐺) | do
7 𝑒 ← 𝐹 [𝑖 + 𝑐𝑜𝑢𝑛𝑡];
8 Add 𝑒 to 𝑃𝐸;
9 Add 𝑒 to 𝐺 ;

10 if 𝐺 is acyclic then
11 Add 𝑒 to 𝐴𝐸;
12 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
13 else
14 Remove 𝑒 from 𝐺 ;
15 end
16 𝑖 ← 𝑖 + 1;
17 end
18 Remove all of 𝑃𝐸 from 𝐹 ;
19 end
20 return 𝐴𝐸

Algorithm 1: The smartAE heuristic

The smartAE heuristic begins with an acyclic graph 𝐺 and a
list of edges 𝐹 , which were removed from 𝐺 . An empty list 𝐴𝐸 is
initialized to store edges that can be successfully reintroduced into
the graph without creating a cycle. We iterate through all of the

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.5
ISBN 978-961-286-914-4

19

https://doi.org/10.18690/um.feri.6.2024.5

Jure Pustoslemšek, Ema Črne, and Nejc Rihter

edges in 𝐹 , where instead of sequentially reintroducing each edge
from 𝐹 , the algorithm employs a counter 𝑐𝑜𝑢𝑛𝑡 to strategically skip
over edges. This approach ensures that we reinsert edges from as
many vertices as possible. During each iteration, a temporary list
𝑃𝐸 tracks the edges being tested. If adding an edge does not create
a cycle, it is added to 𝐴𝐸 and 𝑐𝑜𝑢𝑛𝑡 is incremented. Overall time
complexity of the entire algorithm is O(|𝐸 | (|𝑉 | + |𝐸 |)).

2 IMPROVEMENTS
In this section, we outline our improvements of the original algo-
rithm. Improvements are grouped into four categories: size reduc-
tion, vertex ordering strategies, forward/backward edge removal
and acyclicity checks.

2.1 Size reduction
To reduce the size of the input graph𝐺 , we apply reduction rules
based on a more general method by Baharev et al. [1]. The general
method removes edges inside and on the boundary of an induced
subgraph 𝐻 with the following property: the size of a minimal FAS
equals the upper bound of the size of the smallest edge set 𝐹 whose
removal breaks all cycles in 𝐺 with vertices in 𝐻 . In this case, we
remove edges in 𝐹 from 𝐺 . We implemented a few straightforward
rules for eliminating some simple and common patterns - we applied
the following rules in rounds until a round produces no further
reduction in graph size.

(1) For every self-loop 𝑒 , i.e. an edge with the same entering
and exiting vertex, add 𝑒 to the solution.

(2) For every directed path 𝑢𝑣1 . . . 𝑣𝑛𝑤 where 𝑣1, . . . 𝑣𝑛 have
in-degree 1 and out-degree 1, delete 𝑣1, . . . 𝑣𝑛 and add the
edge 𝑢𝑤 to 𝐺 .

u 𝑣1 . . . 𝑣𝑛 w ⇒ u w

(3) For every 2-cycle 𝑢𝑣 where 𝑢 has out-degree 1, delete 𝑢 and
add 𝑢𝑣 to the solution.

(4) For every 2-cycle 𝑢𝑣 where 𝑢 has in-degree 1, delete 𝑢 and
add 𝑣𝑢 to the solution.

u v u v

Having reduced the graph using the rules described above, we
computed the strongly connected components (SCCs) as in the
original algorithm. However, after computing the SCCs, we ap-
plied a technique described by Park and Akers [10], in which each
SCC is further divided into its biconnected components. This effi-
ciently breaks up the graph into even smaller strongly connected
subgraphs. As biconnected components are traditionally defined
for undirected graphs, we treat the SCCs as undirected to compute
these components. The remainder of the algorithm is then applied
to these biconnected components. Throughout this article, we will
refer to these components as the SCCs.

2.2 Vertex ordering strategies
The original algorithm uses four vertex orderings in their experi-
ments: in-degree and out-degree, both in increasing and decreasing
order. We adopt all these orderings and add five more orderings.
The first two are based on the difference of the in-degree (𝑑− (𝑣))
and out-degree (𝑑+ (𝑣)) and two more are based on the difference of
their degrees and their ratio. We also included a random ordering
for comparison.

degdiff(𝑣) = max
��𝑑+ (𝑣) − 𝑑− (𝑣), 𝑑− (𝑣) − 𝑑+ (𝑣)�� (1)

degratio(𝑣) = max
(
𝑑− (𝑣)
𝑑+ (𝑣) ,

𝑑+ (𝑣)
𝑑− (𝑣)

)
(2)

2.3 Forward/backward edge removal
The forward edge removal phase proceeds as follows. For each ver-
tex 𝑣 in𝐺 , ordered according to the chosen ordering, we remove all
edges exiting 𝑣 and entering vertices that follow 𝑣 in the ordering,
then we check if 𝐺 has become acyclic. If 𝐺 is acyclic, we end the
edge removal phase. In the worst case, we remove forward edges of
every vertex, at which point𝐺 is guaranteed to be acyclic, since the
current ordering has become a topological ordering. The backward
edge removal phase is almost identical, the only difference being
that it removes edges that precede 𝑣 in the ordering. The original
algorithm chooses the smaller of 𝐸𝑓 and 𝐸𝑏 and only performs smar-
tAE on that. We challenged this approach and performed smartAE
on both, only then taking the smaller as the solution.

The purpose of the proposed improvement is to calculate an
SCC decomposition before forward/backward edges of a vertex are
removed. Then, instead of adding all edges to the solution, we skip
edges that exit one SCC and enter another. Such an edge cannot be
a part of a cycle. A cycle would imply that vertices from both SCCs
are reachable from one another, but then all those vertices would
be in the same SCC. As before, the edge removal phase terminates
when𝐺 becomes acyclic. This improvement is expected to increase
the running time but reduce the size of the solution.

2.4 Acyclicity checks
The most time-consuming aspect of the algorithm is restoration and
removal of edges during smartAE process. A standard method for
checking acyclicity is to find a topological ordering of the graph’s
vertices, i.e. a ordering of vertices such that all out-neighbors of
a vertex 𝑥 appear after 𝑥 . If the graph contains a cycle, then it
does not have a topological ordering [4]. This ordering provides an
efficient way to check if inserting an edge would create a cycle. If
it’s a backward edge, i.e. it ends in a vertex that comes before its
starting vertex, it forms cycles.

During smartAE we check acyclicity after restoring each edge.
If the resulting graph has cycles, we immediately remove that edge,
making the graph acyclic again. We avoid many calculations of a
new topological ordering by exploiting this sequence of operations.
Right before the use of smartAE at the end of forward/backward
edge removal, an acyclic check is performed. During the check, we
calculate a topological ordering and, if successful, store it in the
variable𝑇𝑐 . We are then able to use this variable to make subsequent
acyclicity checks trivial. When we restore an edge, we check if it is
a backward edge in the𝑇𝑐 . If it is, the graph is no longer acyclic. We

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

20

Improvement and Evaluation of a Heuristic Method for the Minimal Feedback Arc Set Problem

move the topological ordering from 𝑇𝑐 into a background variable
𝑇𝑝 and unset 𝑇𝑐 . When we remove the last restored edge, we move
the ordering in 𝑇𝑝 back into 𝑇𝑐 . We thus avoid a recalculation in
the next acyclicity check.

3 EXPERIMENTAL RESULTS
We evaluated our implementation and improvements on the IS-
CAS circuit benchmark dataset [5] and on a selection of directed
networks from the SNAP Large Network Dataset Collection [9].
We experimented with different configurations of the algorithm to
assess the effect of each option on both speed and solution size. The
ISCAS dataset primarily served as a speed benchmark. The largest
instance in this dataset took about 5 to 10 minutes to complete,
depending on the configuration; while the implementation of the
original algorithm, which used four orderings instead of seven, took
around 90 minutes. This gave us confidence to apply our algorithm
on larger and more diverse networks from the SNAP dataset.

Our results from testing our implementation on the SNAP dataset
are presented in Table 1. To illustrate the complexity and size of
each graph, the first column lists the number of vertices and edges
for each instance, while the second column provides the number
of vertices and edges in the largest strongly connected component
(SCC). The figures in both columns are based on reduced graph.
The last column presents the best results from our different config-
urations, including the size of the minimal feedback arc set and the
time taken to compute it.

We implemented the algorithm in Python, using a graph library
written in C++. By implementing it this way, the source code is
relatively easy to understand while also keeping it reasonably fast
and efficient.We tested the implementation on the Arnes computing
cluster with a 12-hour time limit. Each run gave us solution sizes
for all vertex orderings. For runs that did not finish within the time
limit, we examined the sizes of SCCs that were being computed. We
searched for the largest SCC that computed at least one ordering
within the time limit. This provided a rough estimate of the largest
SCC size manageable in a parallel or distributed setting where each
ordering is processed by two separate threads or nodes, one for
forward edge removal and one for backward edge removal. In our
experiments this number is between 2.8 and 2.9 million edges. The
source code and raw result data is available at [11].

3.1 Impact of size reduction
The first option we tested was the use of size reductions. This
reduction has two distinct effects. First, it reduces the size of the
input graph. More importantly, the removal of edges and vertices
can lead to a smaller SCCs, effectively shrinking the problem size
and greatly reducing running time. Second, reduction rules should
help decrease the size of the solution. While we add some removed
edges to the solution, those edges are already guaranteed to be in
the optimal solution.

For instances with the largest SCC having more than about
14,000 edges, the algorithm’s running time was shorter when using
reductions, with time savings increasing with input size. We find
that for instances above this complexity, the benefits of reductions
outweigh the cost. For a third of instances, the algorithm produced
smaller solutions when reductions were not used, which is quite

Table 1: Solution sizes and running times for SNAP instances
Instance V-E max-SCC V-E Best result
7115-103689 1300-39456 7966: 14s
6301-20777 2068-9313 531: 15.3s
8114-26013 2624-10776 713: 20.9s
8717-31525 3226-13589 1186: 39s
8846-31839 3234-13453 1023: 38.8s
10876-39994 4317-18742 1721: 59.1s
22687-54705 5153-17695 1706: 1m37s
26518-65369 6352-22928 2254: 2m34s
36682-88328 8490-31706 2531: 3m44s
62586-147892 14149-50916 3361: 12m14s
75879-508837 32223-443506 141733: 37m53s
265214-418956 34203-151930 61598: 3m31s
325729-1469679 53968-304685 409862: 53m24s
281903-2312497 150532-1576314 313852: 9h43m2s
77360-828161 70355-888662 394218: 1h44m37s
82168-870161 71307-912381 403623: 1h48m43s

surprising. For these instances, smartAE was particularly effective,
but its effect diminished after reductions. There is one instance for
which the algorithm failed to complete within the time limit when
not using reductions, but successfully computed a solution with
configurations that used reductions.

3.2 Vertex orderings
Different vertex orderings bring drastically different results. The
orderings based on degree difference (1) and ratio (2), as well as
the random ordering, give consistently worse solutions than those
based on in-degree and out-degree. We should note that when
comparing apparently analogous orderings, e.g. forward edges of an
ascending ordering and backward edges of a descending ordering,
there were minor, but non-zero differences in solution size. Such
orderings were different due to the order of vertices with the same
score.

The speed of the serial algorithm can be multiplied by a factor
of 9

4 with no effect on solution size, by only using the in-degree
and out-degree orderings. Speed can be further doubled by only
computing forward edge removals, but at a cost of slightly worse
solution sizes. This gives us a speedup factor of 9

2 = 4.5. By taking
into account quadratic time complexity, this would theoretically
multiply the upper bound on feasible input size by 1.5, with no
impact on solution size or approximately 2.12 with slightly worse
solutions.

3.3 Impact of the SCC-based modification of
edge removal

As described in Section 2.3, we implemented a modified version of
the edge removal phase that is based on an SCC decomposition. The
running time of the algorithmwith this modification was more time
consuming than the unmodified version. For some instances the
running time doubled, while for others the impact on running time
was less than 10%. The impact on solution size is more complex,
though. If smartAE is not used, the solution is always smaller with
the modification, as expected. However, when smartAE is applied,

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

21

Jure Pustoslemšek, Ema Črne, and Nejc Rihter

the solution can sometimes be larger with the modification. The
difference is relatively small in those cases, ranging from 0.04%
to 0.5%. This finding is somewhat unexpected as we expected this
method to significantly improve solution size. This and our findings
regarding reduction highlight unpredictability of smartAE. Similarly
to our finding on vertex orderings, one can run the algorithm with
both edge removal procedures to potentially achieve a slightly
better solution size at a cost of running time.

3.4 Impact of smartAE
The addition of smartAE [3] roughly doubles the running time for
all cases without the modified edge removal phase. The improve-
ment in solution size, however, is heavily dependent on input size.
Generally, larger graphs exhibit smaller improvements compared to
smaller graphs. This is clearly illustrated in Figure 1, which shows
the percentage of edges selected for the FAS solution, both with
and without the smartAE procedure. The red portion of the bars
represents the improvement achieved with smartAE. For smaller
graphs, smartAE can reduce the solution size by half, whereas for
the largest tested graphs, the improvement is as little as 1%. This
observation raises questions about the usefulness of smartAE for
very large graphs.

207
77
260
13
315
25
318
39
399
94
547
05
653
69
883
28
103
689
147
892
418
956
508
837
828
161
870
161

146
967
9

231
249
7

0

0.2

0.4

0.6

Number of edges

So
lu
tio

n
(%
)

without smartAE
with smartAE

Figure 1: Percentage of solution edges compared to all edges
in the graph, with and without the smartAE procedure.

4 CONCLUSIONS AND FUTURE WORK
The heuristic algorithm presented in this paper has proven effective
in computing small feedback arc sets in large graphs. Multiple
configurations have been tested with varying degrees of success.

Our implementation achieved comparable solution quality in sig-
nificantly less time than the original approach on the same dataset,
and it was also able to handle larger graphs. By employing size
reduction techniques, we effectively decreased the complexity of

input graphs, leading to faster processing times and more manage-
able SCCs, especially in larger graphs. We further reduced compu-
tational complexity by avoiding unnecessary recalculations during
the smartAE process and by splitting SCCs into biconnected com-
ponents. The experiments also revealed that selection of vertex
ordering has a great impact on both the speed and quality of the so-
lutions. Orderings based on in-degree and out-degree, particularly
in descending and ascending orders, consistently outperformed
other strategies. The modification covered in Section 3.3 did not
consistently improve performance and, when it did, the benefits
were usually insignificant. Additionally, it has led to less predictable
results when smartAE was applied. The smartAE heuristic, while ef-
fective for reducing solution sizes in smaller graphs, showed lesser
returns as graph size increased, raising questions about its efficiency
and practicality in larger graphs.

However, there is still room for improvement. One is the speedup
described in Section 3.3, but there are also other avenues. An ob-
vious improvement is to implement the algorithm entirely in a
compiled language like C++, eliminating the significant overhead
of an interpreter. We plan on also adding more complex reduction
rules based on Baharev’s method [1], for example by searching for
instances of tournaments or other common patterns and reducing
based on those.

ACKNOWLEDGMENTS
We sincerely thank assist. prof. dr. Uroš Čibej for his guidance,
advice and for introducing us to this topic.

REFERENCES
[1] Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. 2021.

An Exact Method for the Minimum Feedback Arc Set Problem. ACM J. Exp.
Algorithmics 26, Article 1.4 (apr 2021), 28 pages. https://doi.org/10.1145/3446429

[2] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. 2011. Limiting the spread
of misinformation in social networks. In Proceedings of the 20th International
Conference on World Wide Web. Association for Computing Machinery, 665–674.
https://doi.org/10.1145/1963405.1963499

[3] Claudia Cavallaro, Vincenzo Cutello, andMario Pavone. 2023. EffectiveHeuristics
for Finding Small Minimal Feedback Arc Set Even for Large Graphs. In CEUR
Workshop Proceedings. vol. 3606. https://ceur-ws.org/Vol-3606/paper56.pdf

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3 ed.). MIT Press.

[5] Ali Dasdan. 2004. Experimental analysis of the fastest optimum cycle ratio and
mean algorithms. ACM Transactions on Design Automation of Electronic Systems
9, 4 (2004), 385–418. https://doi.org/10.1145/1027084.1027085

[6] Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin. 1997. Approximating
the minimum feedback arc set in tournaments. In Proceedings of the eighth annual
ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 464–472.

[7] I. Ispolatov and S. Maslov. 2008. Detection of the dominant direction of infor-
mation flow and feedback links in densely interconnected regulatory networks.
BMC Bioinformatics 9 (2008), 424. https://doi.org/10.1186/1471-2105-9-424

[8] Richard M. Karp. 1972. Reducibility among Combinatorial Problems. In Complex-
ity of Computer Computations, Raymond E. Miller and James W. Thatcher (Eds.).
Springer US, Boston, MA, 85–103. https://doi.org/10.1007/978-1-4684-2001-2_9

[9] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

[10] S. Park and S.B. Akers. 1992. An efficient method for finding a minimal feedback
arc set in directed graphs. In [Proceedings] 1992 IEEE International Symposium
on Circuits and Systems, Vol. 4. 1863–1866 vol.4. https://doi.org/10.1109/ISCAS.
1992.230449

[11] Jure Pustoslemšek, Ema Črne, and Nejc Rihter. 2024. Implementation of a
smartAE-based minFAS algorithm. https://github.com/jurepustos/fas-smartAE/.
[Online; accessed 26-July-2024].

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

22

Counter-Strike Character Object Detection via Dataset
Generation

Matija Šinko
matija11.sinko1@gmail.com

University of Maribor,
Faculty of Electrical Engineering and Computer Science,

Maribor, Slovenia

ABSTRACT
This paper addresses the challenge of developing robust object
detection systems in the context of Valve’s Counter-Strike by in-
troducing a novel, high-quality dataset generated using a complex
image generator built within the Unity game engine. This generator
mimics the original game’s environment and character interactions,
capturing the complexity of in-game scenarios. The dataset pro-
vides a valuable resource for training models like the YOLOv9
algorithm, which we employ to develop an object detection system
that achieves high precision and recall, in turn proving the usability
of our dataset. Our dataset and demonstrated model could be used
for object detection in future multi-modal autonomous agents, like
the one we propose at the end of the paper.

KEYWORDS
Counter-Strike, object detection, AI, YOLO, autonomous agents,
computer vision, data generation

1 INTRODUCTION
Artificial intelligence (AI) has opened new possibilities in gaming,
with achievements like AlphaGo and AlphaStar mastering complex
environments [3, 13]. These advances have sparked interest in
applying AI to automate popular games. For fans of first-person
shooters like Valve’s Counter-Strike [12], this raises questions about
AI-driven gameplay in fast-paced, strategic environments [4].

The primary problem addressed in this paper is the develop-
ment of a robust object detection system for Counter-Strike, which
is a crucial component for creating autonomous agents capable
of human-level gameplay. Traditional approaches have relied on
manually labeled datasets, which are time-consuming to create and
often struggle to keep up with game updates. Additionally, previous
attempts at developing AI agents for Counter-Strike have typically
employed single, monolithic neural networks, leading to mixed
results in terms of performance and adaptability.

In response to these challenges, we propose a novel solution: a
high-quality, automatically generated dataset created using a com-
plex image generator within the Unity game engine. This dataset is
designed to train object detection models like YOLOv9 [14], which
we use to identify enemy players in Counter-Strike. Furthermore,
we suggest that this dataset can be a foundation for multi-model
agent architectures, which could offer more robust and adaptable
AI systems for gaming.

The structure of this paper is as follows: First, we provide a
detailed overview of the methodology used to generate the dataset
and train the object detection model. Next, we present the results of
our experiments, demonstrating the effectiveness of our approach.

Finally, we discuss the potential applications of the dataset in multi-
model systems and conclude with suggestions for future research.

2 METHODOLOGY
2.1 Overview of Dataset Generation
This section outlines our approach to generating a dataset for train-
ing an object detection model in Valve’s Counter-Strike. Using
Unity, we closely replicated in-game environments and charac-
ters to ensure the training data accurately reflects real gameplay
conditions.
2.2 Image Generation Pipeline
Our image generation pipeline was built for flexibility and iterative
improvement, allowing quick updates to enhance model training
and evaluation. This approach was key to creating a diverse and
robust dataset with various in-game scenarios (see Figure 1).

Figure 1: Object detection with image generation pipeline

2.3 Detailed Environment and Character
Simulation

A critical aspect of our dataset generation process was ensuring that
the simulated environments and charactermodels closely resembled
those in the actual Counter-Strike game, similar to approaches
using synthetic data in Unity and Unreal engines for realistic object
detection [1, 10].

2.3.1 Lighting and Rendering. We used Unity’s High Definition
Render Pipeline (HDRP) [11] to recreate the complex lighting condi-
tions of Counter-Strike. Realistic lighting made the dataset closely
mirror the game, helping the model generalize to real gameplay.

2.3.2 Character Positioning and Inverse Kinematics (IK). To create
realistic and varied character poses, we applied Inverse Kinematics
(IK) algorithms[15]. IK enabled dynamic posing of characters in
natural scenarios like aiming, shooting, and navigating.

2.4 Object Detection and YOLO Algorithm
Object detection is key to validating our dataset, focused on identi-
fying enemy players in the game. We used the YOLOv9 algorithm,

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.6
ISBN 978-961-286-914-4

23

https://doi.org/10.18690/um.feri.6.2024.6

Matija Šinko

known for its speed and accuracy, to demonstrate the dataset’s
effectiveness. Training YOLOv9 on our dataset confirmed its utility.
Though this study centers on YOLOv9, similar detectors could be
used in more complex multi-modal agents in the future.

3 THE PROPOSED METHOD
3.1 Detailed Dataset Generation Process
As discussed earlier, Our object detectior was trained on a large
Unity-generated dataset comprising varied scenarios on a detailed
Dust 2 map with both Terrorist and Counter-Terrorist characters.

3.1.1 Environment and Character Creation.

(1) MapRecreation: TheDust 2mapwas decompiled fromCounter-
Strike 2 game files and imported into Unity 3D. After cleaning
up the geometry, we obtained a 1:1 replica of the map. (see
Figure 2)

Figure 2: Comparison of Dust 2 in real game (left) and Unity
Recreation (right) (Left source: Counter-Strike 2 during au-
thors’ gameplay)

(2) Character Models: We extracted and rigged character models
for Terrorists and Counter-Terrorists using Blender, then im-
ported them into Unity with various poses and weapons. (see
Figure 6 in Appendix)

(3) Lighting and Rendering: Unity’s High Definition Render
Pipeline (HDRP) was employed to set up realistic lighting con-
ditions, using path tracing technology to closely mimic the
visuals of Counter-Strike 2. (see Figure 3)

Figure 3: Comparison: Real Counter Terrorist (left) and Unity
recreation (right) (Left source: Counter-Strike 2 during au-
thors’ gameplay)

3.1.2 Data Annotation and Generation.

(1) RandomPlacement: Characterswere randomly placed around
themap, and virtual cameras were positioned to capture various
perspectives.

(2) Dynamic Posing: Using the Final IK plugin for inverse kine-
matics [7], characters were given dynamic poses aimed at dif-
ferent targets, adding variability to the training data.

(3) Labeling: Our system automatically annotated images with
bounding boxes for each character, distinguishing between
Terrorists, Counter-Terrorists, and their states (alive or dead).

4 RESULTS
4.1 Purpose of the Experimental Work
The goal of our experimental work was to train a YOLOv9 object
detector with sufficient accuracy and recall. This would be critical
for potential future use in multi-model autonomous agents, where
accuracy would be needed to distinguish between friendly and en-
emy characters, as well as dead and alive ones. High recall would be
vital for quickly and reliably spotting characters and differentiating
them from the background, which would be essential for agents
that rely on object detection models for shooting tasks.
4.2 Comparative Studies and Setups
We iteratively refined our image generator, creating datasets to
train and evaluate the object detection model, with each iteration
enhancing accuracy and recall:

(1) Initial Model: A dataset of 10,000 images featuring only
alive characters in various poses, serving as the baseline.

(2) Addition of Dead Characters: Introduced separate labels
for dead characters to improve recall, especially in distin-
guishing live enemies from the background.

(3) First-Person Perspective and UI Overlays:Added hands
and UI elements to reduce misclassification of player arms
as enemies.

(4) Blood Splatter Effects: Introduced blood effects to en-
hance precision in differentiating character states.

(5) Name Tag-Based Identification: Added name tags to
distinguish friendly from enemy characters, as friendlies
always have tags above their heads. Some tags without
visible characters belong to friendlies behind walls, which
we avoid classifying. This approach required training two
separate models, one for each team.

These were evaluated for precision and recall improvements.

4.3 Datasets Used for Testing
To ensure the robustness and generalizability of the object detection
model, we evaluated it on a variety of datasets:

(1) Self: This dataset was generated using the same methods as
the training set, serving as a control to measure overfitting
and baseline performance.

(2) Bots CT and T Combined: Captured from bot games in
Counter-Strike, this one did not include unique player skins.
This dataset is the closest to a final deployment scenario.

(3) Batch 3: This dataset included captures from real multi-
player games, featuring unique player skins and a variety
of in-game environments.

(4) Batch 4: Similar to Batch 3 but sourced from different mul-
tiplayer sessions, providing additional variety in testing
conditions.

(5) Batch 1: Captured from the Deathmatch mode, this dataset
differs most from the intended deployment environment
but provides insights into model generalization.

(6) Bots, Batch 3, Batch 4 Combined: A comprehensive
dataset combining Bots CT and T, Batch 3, and Batch 4,
used to test overall model performance across various con-
ditions.

(7) AllCombined: A super-set combining all the above datasets.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

24

Counter-Strike Character Object Detection via Dataset Generation

These datasets tested the model’s strengths and weaknesses.

4.4 Evaluation Metrics
We measured various evaluation metrics, including Precision, Re-
call, F1 Score, mAP, and IoU, with detailed results available for each
in the Appendix. Our focus was on Precision and Recall. High Pre-
cision is vital for accurately identifying enemy characters, avoiding
misclassification of friendly units, while high Recall ensures all en-
emies are detected quickly and distinguished from the backround.
These metrics are crucial for creating robust object detection mod-
els that could be used for potential future autonomous agents in
competitive gaming.

4.5 Announcement of the Experiments
Performed

We conducted experiments to evaluate object detection models
trained on our dataset, testing their ability to detect and classify
characters in Counter-Strike under various conditions. These ex-
periments included assessing different character states (alive, dead)
and the impact of dataset sizes and image resolutions, aiming to
refine the model’s precision and recall for real-world gameplay.

4.6 Detailed Descriptions of Experiments and
Results

4.6.1 Image Generator Upgrades.

(1) Initial Model of Only Alive Characters: This model
showed good precision but lacked recall, which is crucial
for our application.

(2) Addition of Dead Characters: Improved the model’s re-
call, which is crucial for distinguishing between live ene-
mies and background elements.

(3) First-Person Perspective and UI Overlays: addressed
the issue of confusing player arms with enemy characters.
Improved recall.

(4) Added Blood Splatter Effects: improved both precision
and recall for the terrorist dead and alive classes.

(5) FriendlyCharacter Identification via name tag: Showed
best results and vastly improved accuracy and recall . Batch
1, trained in Deathmatch mode without name tags, performed
worse, but this isn’t a concern since the dataset is intended
for Competitive mode, where name tags are always present.

4.6.2 Cross Model Examination. The purpose of the cross-model
examination is to compare the performance of different model
configurations across various metrics.

As observed in Figure 4, our upgrades to the Unity Generator
were successful in improving performance. For example, the re-
call for the counter-terrorist class improved from 0.4 to over 0.6.
Graphs for the class Terrorist as well as the F1 score can be found in
the Appendix A.3. While the improvements on the dead character
classes seen in Figure 14 in the Appendix, were not significant, we
observed notable enhancements in the performance for the terrorist
and counter-terrorist classes see 12, 13. This distinction is crucial, as
our primary objective is for our dataset to be suitable for potential
training of agents that can accurately differentiate between alive
friendly and enemy characters. The dead characters need only to

be distinguished from the living, without requiring detailed differ-
entiation among themselves. Tabled and detailed Data for these
cross model examinations can be found in the Appendix A.3.

Figure 4: Counter-Terrorist class across all of our generation
upgrades on 10k 640x360 images

4.6.3 Testing Different Dataset Sizes. We trainedmodels on varying
dataset sizes ranging from 1,000 to 100,000 images to examine the
impact on performance. As seen in Figure 15 in the Appendix Larger
training sizes improved model performance significantly.

4.6.4 Bigger Image Sizes and a Bigger Model. We explored the ef-
fects of training with larger image sizes and using a bigger YOLOv9
model and we came to the conclusion that bigger image sizes and a
bigger model lead to better performance all around See Apendix
A.5. That’s why we trained out best model on a 1280x720 image
size and with 20k images

4.6.5 Comparison with Other Counter-Strike Object Detectors. In
this section, we compare our best object detection model, trained
on a dataset of 20k images at a resolution of 1280x720 with name
tags, to three other models developed by different authors:

• Our Best Model: (Terrorist team, 1280x720, 20k images).
• Siromer’s Model: Dataset taken from [8, 9].
• Python Lessons Model: Dataset taken from [5, 6]. This

dataset was used by Chenyang Dai [2] for object detection
in their hybrid imitation training model.

Figure 5: Comparison of object detection models

Our curated bar charts show that our object detector outperforms
other methods in detecting Terrorists on the two selected datasets
See table 1. For results on additional datasets and classes, see the
Appendix A.6. Notably, Chenyang Dai used the ’Python Lessons’
dataset to train the object detection part of their multi-model AI.
This indicates that integrating our dataset into amulti-model Counter-
Strike 2 system could potentially yield superior performance, as our
dataset seems better than Python Lessons’. These findings support
our initial hypothesis that our dataset could be used to train more
complex multi-model agents.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

25

Matija Šinko

Table 1: Detailed Metrics for Class: Terrorist
Metric Bots CT and T Combined Bots, Batch 3, Batch 4 Combined

Ours Siromer PyLessons Ours Siromer PyLessons
Precision 0.97 0.82 0.67 0.87 0.81 0.68
Recall 0.91 0.79 0.41 0.60 0.48 0.37
F1 Score 0.94 0.80 0.51 0.71 0.60 0.47

4.6.6 Video Demonstrations of Model Performance. We provide
video demonstrations of our object detection model’s performance
for both Counter-Terrorist and Terrorist scenarios. Available on
YouTube:
• Counter-Terrorist: www.youtube.com/watch?v=u49CLDt8MgU
• Terrorist: www.youtube.com/watch?v=u49CLDt8MgU

4.7 Discussion
The improvements through our image generation pipeline have suc-
cessfully enhanced model performance. The precision achieved by
the model is sufficient to avoid mistakenly identifying teammates
or dead characters as threats, while the recall is robust enough to
reliably detect enemy players. Any remaining inaccuracies could
be further refined with reinforcement-based shooting models that
adapt to detection patterns when used on our generated dataset.
In comparison to previous studies, such as [4], which encountered
issues like agents mistakenly shooting dead characters, our ap-
proach offers a clear advantage. The dataset we generated, paired
with a specific object detection model, can relieve a potential agent
from the need to learn the shapes of characters, allowing it to fo-
cus more on tasks like shooting accuracy and map traversal when
learning. While our model shows promise, it is currently limited to
detecting objects within the Dust 2 map and is sensitive to player
cosmetic skins. Additionally, the model does not differentiate be-
tween body parts, which may limit its application in more precise,
action-oriented tasks.

5 CONCLUSION
5.1 Summary of Work and Key Findings
This research focused on the development and validation of a high-
quality dataset generated using a Unity-based image generator for
training object detection models in the context of Counter-Strike.
Through iterative enhancements to our image generation pipeline,
we achieved significant improvements in both precision and recall
of the YOLOv9-based object detection model. This validated the
effectiveness of our approach, demonstrating that synthetic data
can effectively train models for complex in-game scenarios.

5.2 Best Results and Contributions
Our study made several key contributions to the field:
• Versatile Dataset for Object Detection: Our image generator

and datasets are valuable for training object detection models in
Counter Strike.

• Effective Use of Synthetic Data Proven by Object Detection:
We showed that synthetic data can replace real-world data in
training models, especially when labeled data is scarce. This
was proven by achieving strong results with an object detection
model trained on our generated data.

• Future Applications: Our work could be incorporated into
future autonomous agents or used as object detection teaching
exercises.

5.3 Future Work
Looking forward, there are several avenues for enhancing the ca-
pabilities of our system:
• Expansion of Dataset and Model Generalization: Future

work will focus on expanding the dataset to include additional
decompiled maps and the introduction of random cosmetic skin
patterns to improve the model’s generalization. Additionally,
incorporating YOLOv9 pose estimation will allow for the identi-
fication of specific character body parts, thereby enhancing the
model’s ability to aim and shoot with greater effectivenes in a
potential reinforcement learning framework.

• Proposed Multi-Model Agent Architecture: We propose a
complex multi-model architecture that could serve as the foun-
dation for developing autonomous agents capable of high-level
gameplay in Counter-Strike see Appendix A.7.

• Planned Dataset Publication: We plan to publish our dataset
on platforms like Kaggle, Hugging Face, and Roboflow, allow-
ing others to use it for developing agents and practicing object
detection skills.

5.4 Final Thoughts
This study underscores the potential of synthetic data and iterative
model development in advancing AI for gaming. While challenges
remain, particularly in bridging the gap between synthetic and real-
world data, the progress made here provides a solid foundation for
future innovations. The proposed multi-model architecture repre-
sents a promising direction for developing more sophisticated and
capable autonomous agents, capable of performing at a high level
in complex gaming environments like Counter-Strike. As AI con-
tinues to evolve, integrating reinforcement learning and advanced
detection techniques will be crucial in pushing the boundaries of
what these agents can achieve.
REFERENCES
[1] Per-Arne Andersen, Teodor Aune, and Daniel Hagen. 2022. Development of a

Novel Object Detection System Based on Synthetic Data Generated from Unreal
Game Engine. Applied Sciences 12 (08 2022).

[2] Chenyang Dai. 2021. Counter-Strike Self-play AI Agent with Object Detection
and Imitation Training. CS230: Deep Learning, Fall 2021, Stanford University,
CA. (LaTeX template borrowed from NIPS 2017.).

[3] Guillaume Lample and Devendra Singh Chaplot. 2018. Playing FPS Games with
Deep Reinforcement Learning. arXiv:1609.05521 [cs.AI]

[4] Tim Pearce and Jun Zhu. 2021. Counter-Strike Deathmatch with Large-Scale
Behavioural Cloning. arXiv:2104.04258 [cs.AI]

[5] Python Lessons. 2020. TensorFlow 2.3.1 YOLOv4 - CSGO Aimbot. Accessed:
2024-08-30.

[6] Python Lessons. 2020. YOLOv4 TensorFlow 2.3.1 - CSGO Aimbot. Accessed:
2024-08-30.

[7] RootMotion. 2014. Final IK: The Ultimate IK Solution for Unity. Accessed:
2024-08-30.

[8] Faruk Günaydin (Siromer). 2024. Counter-Strike 2 Body and Head Classification.
Accessed: 2024-08-25.

[9] Faruk Günaydin (Siromer). 2024. CS:GO/CS2 Object Detection. Accessed:
2024-08-25.

[10] et al. Steve Borkman, Adam Crespi. 2021. Unity Perception: Generate Synthetic
Data for Computer Vision. arXiv:2107.04259 [cs.CV]

[11] Unity Technologies. 2024. High Definition Render Pipeline (HDRP). Accessed:
2024-08-30.

[12] Valve Corporation. 2023. Counter-Strike 2. Accessed: 2024-08-30.
[13] Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep Reinforcement

Learning with Double Q-learning. arXiv:1509.06461 [cs.LG]
[14] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. 2024. YOLOv9:

Learning What You Want to Learn Using Programmable Gradient Information.
arXiv:2402.13616 [cs.CV]

[15] Chris Welman. 1993. Inverse Kinematics and Geometric Constraints for Articulated
Figure Manipulation. Simon Fraser University.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

26

Counter-Strike Character Object Detection via Dataset Generation

A APPENDIX
A.1 Detailed Dataset Generation Process

Figure 6: Various character poses for: Terrorists and Counter-
Terrorists each aiming at a target (source: Our Counter-Strike
recreation inside Unity 3D)

A.2 Model Upgrades
Figures related to the model upgrades and their detailed results can
be found here:

Figure 7: Alive Counter-Terrorist and Terrorist characters
(source: Our Counter-Strike recreation inside Unity 3D)

Reference to the image context in the document

Figure 8: Dead and alive characters (source: Our Counter-
Strike recreation inside Unity 3D)

Reference to the image context in the document

Figure 9: First-person hands and UI (source: Our Counter-
Strike recreation inside Unity 3D)

Reference to the image context in the document

Figure 10: Blood next to a dead character (source: Our
Counter-Strike recreation inside Unity 3D)

Reference to the image context in the document

Figure 11: Image for the Coutner Terroristmodel with a name
tag over a Counter terrorist and a Terrorist with no name tag
(source: Our Counter-Strike recreation inside Unity 3D)

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

27

Matija Šinko

A.3 Cross Model Examination data

Figure 12: Counter-Terrorist class across all of our generation
upgrades

Figure 13: Terrorist class across all of our generation upgrades

Figure 14: Counter-Terrorist dead class across all of our gen-
eration upgrades

Table 2: Precision for Class: Terrorist

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive 0.972 0.901 0.758 0.802
Dead and Alive 0.944 0.880 0.670 0.890
Hands w/ Guns & UI 0.937 0.857 0.752 0.812
Added Blood 0.945 0.840 0.760 0.879
Splatter Stains

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

28

Counter-Strike Character Object Detection via Dataset Generation

Table 3: Recall for Class: Terrorist

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive 0.909 0.479 0.421 0.357
Dead and Alive 0.894 0.736 0.530 0.395
Hands w/ Guns & UI 0.887 0.749 0.483 0.418
Added Blood 0.854 0.775 0.583 0.428
Splatter Stains

Table 4: F1-Score for Class: Terrorist

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive 0.940 0.626 0.541 0.494
Dead and Alive 0.919 0.802 0.592 0.547
Hands w/ Guns & UI 0.911 0.799 0.589 0.552
Added Blood 0.897 0.806 0.660 0.576
Splatter Stains

Table 5: Combined Metrics for Class: All Metrics

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Blood Dataset 1k 0.919 0.598 0.544 0.448
Blood Dataset 5k 0.920 0.608 0.519 0.416
Blood Dataset 10k 0.916 0.714 0.575 0.536
Blood Dataset 20k 0.919 0.665 0.574 0.464
Blood Dataset 100k 0.905 0.737 0.568 0.460

A.4 Testing Different Dataset Sizes

Figure 15: all metrics (classes) combined for different dataset
sizes

Table 6: Detailed Metrics for Class: Counter Terrorist Dead

Data Set Self CT and T Combined Batch 1 Batch 3 & 4

Only Alive - - - -
Dead and Alive 0.861 0.650 0.315 0.270
Hands w/ Guns & UI 0.853 0.483 0.552 0.294
Added Blood 0.841 0.553 0.446 0.222
Splatter Stains

A.5 Bigger Image Sizes and a Bigger Model

Figure 16: YOLO model sizes

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

29

Matija Šinko

YOLO offers five different model sizes 16, each with a trade-off
between accuracy and training/inference speed. All of our experi-
ments so far have been conducted using the smallestmodel, YOLOv9t,
due to its faster inference time. The reasoning is that if our object
detector is to be used as part of a real-time autonomous agent, we
need the fastest possible response time (inference time). Similarly,
we have used images with dimensions of 630x360 for all experi-
ments so far, as larger images provide better accuracy but at the
cost of slower processing speeds. We have also explored dataset
sizes, which show a similar trend: larger datasets yield better accu-
racy but result in longer training times. Such adjustments to our
dataset, such as changing model size, image size, or dataset size, are
dynamic and easy to make when using an image generator like ours
but are very rigid and time-consuming in traditional hand-labeling
scenarios. In this section, we will examine how different model
sizes, image dimensions, and dataset sizes affect accuracy and com-
pare their performance. Here we compare 4 different models to see
how effective different methods are (image size, dataset size, model
size).

• A 10k YOLOv9 tiny model with image size (640x360)
• A 100k YOLOv9 tiny model with image size (640x360)
• A 10k YOLOv9 model with image size (640x360)
• A 10k YOLOv9 tiny model with image size (1280x720)

Figure 17: 1280x720 model next to previous models

Table 7: Performance Metrics for Class: Counter Terrorist

Data Set 10k T 100k T 10k C
Prec Rec F1 Prec Rec F1 Prec Rec F1

Self 0.937 0.856 0.895 0.924 0.894 0.909 0.937 0.905 0.921
Bots CT and T Combined 0.862 0.632 0.730 0.862 0.645 0.738 0.910 0.595 0.719
Batch 1 0.787 0.592 0.676 0.792 0.503 0.615 0.837 0.556 0.668
Bots, Batch 3, Batch 4 Combined 0.761 0.550 0.638 0.700 0.553 0.618 0.846 0.466 0.601

From the above bar charts, we can deduce that having a bigger
dataset, choosing a bigger model, and using larger image sizes
helps improve our model’s performance. The best performance was
observed in the model trained on larger images. Future work could
involve training a model on 100k images of size (1280x720).

Check the Appendix to see how the (1280x720) model compares
to our previous generation upgrades. A.5.

We can see that the higher image size aligns with our trend of
increasing recall, which was our original goal.

Figure 18: Counter-Terrorist dead class across all of our gen-
eration upgrades

Figure 19: 1280x720 model compared to previous models

A.6 Comparison with Other Counter-Strike
Object Detectors

In this section, we present a broader comparison of our model
against those trained on Siromer’s and PythonLessons’ datasets
across more metrics and datasets.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

30

Counter-Strike Character Object Detection via Dataset Generation

Figure 20: Comparison of object detection models expanded
on the class "Terrorist"

Table 8: Expanded Metrics for Class: Terrorist

Metric Precision Recall
Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.97 0.97 0.75 0.87 0.93 0.91 0.52 0.60
Siromer 0.90 0.82 0.76 0.81 0.87 0.79 0.61 0.48
PyLessons 0.77 0.67 0.42 0.68 0.90 0.41 0.30 0.37
Metric F1 Score mAP50
Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.95 0.94 0.61 0.71 0.93 0.91 0.52 0.60
Siromer 0.88 0.80 0.67 0.60 0.87 0.79 0.61 0.48
PyLessons 0.83 0.51 0.35 0.47 0.90 0.41 0.30 0.37
Metric mAP50_95 Fitness
Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.97 0.92 0.57 0.73 0.82 0.51 0.28 0.33
Siromer 0.86 0.87 0.67 0.59 0.61 0.58 0.41 0.37
PyLessons 0.88 0.53 0.26 0.45 0.64 0.31 0.14 0.25

As shown in Figure 20 and seen in table 8, our model outperforms
the other two models across all metrics, except when evaluated

on the "Batch 1" dataset. This is not entirely surprising. As previ-
ously mentioned, our best-performing model relies heavily on the
effectiveness of name tags above characters’ heads to distinguish
friendlies from enemies. This approach led to significant improve-
ments but performed worse on datasets that were trained in game
modes like "Deathmatch," where no name tags are displayed above
friendly characters. Batch 1, as stated earlier, is trained in such a
deathmatch game mode. Therefore, more traditional approaches,
such as those using Siromer’s and PythonLessons’ datasets, gener-
alize better in this scenario. However, this is not a major concern
for us since our model is designed for the competitive game mode,
where two teams of five players face off and friendly characters
always have name tags above their heads.

Figure 21: Comparison of object detection models expanded
on the class "Counter-Terrorist"

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

31

Matija Šinko

Table 9: Expanded Metrics for Class: Counter-Terrorist

Metric Precision Recall
Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.97 0.83 0.73 0.55 0.91 0.76 0.60 0.44
Siromer 0.91 0.81 0.78 0.68 0.95 0.56 0.62 0.61
PyLessons 0.81 0.54 0.40 0.39 0.75 0.32 0.33 0.44
Metric F1 Score mAP50
Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.94 0.80 0.66 0.49 0.91 0.76 0.60 0.44
Siromer 0.93 0.66 0.69 0.64 0.95 0.56 0.62 0.61
PyLessons 0.78 0.40 0.36 0.41 0.75 0.32 0.33 0.44
Metric mAP50_95 Fitness
Data Set Self Bots CT & T Batch 1 Bots, B3, B4 Self Bots CT & T Batch 1 Bots, B3, B4

Ours (1280x720) 0.95 0.76 0.60 0.41 0.78 0.29 0.32 0.21
Siromer 0.97 0.62 0.69 0.63 0.74 0.45 0.46 0.39
PyLessons 0.83 0.31 0.24 0.33 0.53 0.19 0.12 0.18

As seen in Figure 21 and table 9, our model performs noticeably
worse on the "Counter-Terrorist" class compared to the "Terrorist"
class, as shown in Figure 20. In some instances, it is even outper-
formed on the "Bots, Batch 3, Batch 4 Combined" dataset. This
outcome is also expected because our latest model, which leverages
name tags, requires training two separate models: one for when the
friendly team is "Terrorists" and another for when the friendly team
is "Counter-Terrorists." This approach results in some asymmetry
in the detection performance between the two classes. The data
shown in the previous two figures was obtained using the model
trained when the friendly team was "Terrorists." Results for the
model trained when the friendly team was "Counter-Terrorists"
showed complementary outcomes, with the "Counter-Terrorist"
team being detected more effectively. The differences, however, are
minor. We chose to present the results from the "Terrorist" team
model because it yielded slightly better results. In future work,
it may be more beneficial to average the results across the two
team-based models for each class.

Lastly, it is important to emphasize that the most relevant dataset
for comparison is the "Bots CT and T Combined," as it most accu-
rately represents competitive environments simulating real matches
with bot opponents and teammates. The other datasets introduce
more variability in the form of custom player cosmetics, which our
generator does not currently support. However, this is unnecessary
if our goal is to use our object detector exclusively for bot matches.

A.7 Future Work and Proposed Multi-Model
Architecture

Proposed Multi-Model Agent Architecture: We propose a com-
prehensive multi-model architecture that could serve as the foun-
dation for developing autonomous agents capable of high-level
gameplay in Counter-Strike:

(1) Object Detection for Enemy Players: This model func-
tions as the agent’s eyes, focusing on detecting and classify-
ing enemy players, enabling the agent to focus on shooting
accuracy and map traversal.

(2) Reinforcement Learning for Aiming and Shooting:
Acting as the agent’s arms, this model uses reinforcement
learning to aim and shoot at detected enemies, adjusting
its behavior based on skill levels.

(3) Object Detection on the In-Game Minimap: This com-
plementary model identifies player positions on the in-
game minimap, providing additional spatial awareness.

(4) Decision Making for Player Movement: Utilizing min-
imap data, this model determines the agent’s movement
strategy, optimizing its position on the map through super-
vised or reinforcement learning.

(5) 3D Environment Modeling and Detection: Enhancing
environmental perception, this model employs techniques
like SLAM or MiDaS to build a 3D understanding of the
game world.

(6) DynamicMap Traversal: Leveraging the 3D environment
model, this model navigates the map dynamically, utiliz-
ing pathfinding algorithms or reinforcement learning to
simulate player inputs.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

32

Cross-Lingual False Friend Classification
via LLM-based Vector Embedding Analysis

Mitko Nikov
mitko.nikov@student.um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Žan Tomaž Šprajc
zan.sprajc@student.um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Žan Bedrač
zan.bedrac@student.um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

ABSTRACT
In this paper, we propose a novel approach to exploring cross-
linguistic connections, with a focus on false friends, using Large
Language Model embeddings and graph databases. We achieve a
classification performance on the Spanish-Portuguese false friend
dataset of F1 = 83.81% using BERT and a multi-layer perceptron
neural network. Furthermore, using advanced translation models
to match words between vocabularies, we also construct a ground
truth false friends dataset between Slovenian and Macedonian - two
languages with significant historical and cultural ties. Subsequently,
we construct a graph-based representation using a Neo4j database,
wherein nodes correspond to words, and various types of edges
capture semantic relationships between them.

KEYWORDS
false friends, large language models, BERT, linguistics, natural lan-
guage processing

1 INTRODUCTION
When observing individual languages, we come across homonyms,
which are words that have the same spelling or pronunciation but
variedmeanings, such as theword “bat”, which pertains to either the
animal or the sports requisite. As we move from the confines of one
language and observe two, we encounter chance false friends [10].
These have the same spelling but varied etymologies and meanings
in different languages, such as the English word “in”, which in
Slovenian means “and”. So, we decided to pivot our observation
further and focus solely on words that have the same etymological
origin and spelling whilst having different meanings in different
languages, so-called semantic false friends [10, 12, 16].

A similar endeavour was undertaken by Ljubešić & Fišer [13],
which attempted to identify true equivalents, partial false friends,
and false friends in Slovenian and Croatian based on their spelling
and semantic meaning. Our analysis will also touch on true equiv-
alents (word pairs with the same meaning and usage [13]), par-
tial false friends (pairs that alternate between polysemy and false
friends [13]), and pure false friends.

An initial step to finding false friends could be lemmatization-
based tagging [4], which is able to differentiate between parts of
speech, reducing words to their root form. Which in practice means
that a verb like “working” is reduced to its root of “work”. Stem-
ming is another alternative, which has already been applied to
Czech together with a language-independent approach (n-gram)
[9]. However, even though lemmatization proved effective for two

other South Slavic languages, Croatian and Serbian [4], in our case,
we expect the declension differences between Slovenian and Mace-
donian to be too significant for such a preprocessing step to be
used.

A recently introduced method for automatic false friends detec-
tion in related languages [6] uses a linear transformation between
the two vector spaces in both languages to isolate false friends.
The linear transformation acts as a translation between the two
languages. They [6] expect that one vector in one language should
be close to its cognate partner [5] in the other language after the
linear transformation, however, for false friends, this should not
be the case. They use the Spanish and Portuguese Wikipedia as a
corpus for the unsupervised learning of the Word2Vec models [15].

Since the linear transformation is a bijection, each vector in one
of the languages is uniquely mapped to a vector in the other lan-
guage. It is impossible for such a model to account for the different
meanings one word can have. To solve this issue, we propose an
improvement to this method by extending the vector space to use
LLM embeddings [18] of meanings instead of single words.

Regarding the false friend classification between Macedonian
and Slovenian, we needed to take a different approach to ground
truth dataset creation. Our approach is based on finding words
with the same spelling in Slovenian and Macedonian, translating
them to English using a pre-trained bidirectional translator API
and matching false friends accordingly. This approach also yields
an unexpected amount of true friends, which are also useful to us.
A prime example of a false friend would be the word "obraz", which
in Slovenian means "face" and in Macedonian means "cheek". On
the other hand, a true friend would be the word "jagoda", which
means "strawberry" in both Slovenian and Macedonian. These and
a few other examples are given in Table 1.

In the following sections, we will describe the methodology that
we used to classify false friends, as well as the methodology used
to create a ground truth dataset for Slovenian and Macedonian
false friends. Our overview of the classification process will be
based on BERT as a word to vector model, with special attention
given to the embedding extraction process. Moreover, we will dive
into our methodology for ground truth creation, with a special
emphasis on the issues that result from the translation of words that
have multiple meanings. We will also describe the graph database
representation of the false friends dataset. Finally, we will present
our results, comparing our methodology to an existing one. We
will evaluate our results in terms of precision, recall, F1 scores, and
provide a summary of our false friends ground truth dataset.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.7
ISBN 978-961-286-914-4

33

https://doi.org/10.18690/um.feri.6.2024.7

Mitko Nikov, Žan Tomaž Šprajc, and Žan Bedrač

Table 1: Examples of true and false friends in the Slovenian and Macedonian language.

Slovenian word Macedonian word Slovenian meaning Macedonian meaning Type of word match
obraz образ (obraz) face cheek false friend
lice лице (lice) cheek face false friend
deka дека (deka) blanket that false friend
čas час (čas) time time/hour partial false friend
jagoda jагода (jagoda) strawberry strawberry true friend
kraj краj (kraj) edge/end/region edge/end/region true friend

2 METHODOLOGY
Recently, Large Language Models (LLMs) and advanced tokenizers
have revolutionized our understanding of language technologies
and made significant advancements in the field. Their ability to
create incredibly complex and rich context-based vector spaces
opens a new area of analysis. Now, we are no longer limited by
Word2Vec models but can analyze the vast variety of contextual
meanings of individual words.

Thus, our first improvement of the method presented by Castro
et al. [6] comes with the introduction of LLM embeddings instead of
Word2Vec models. We use the pre-trained BERT Multilingual LLM
[8] to extract the embeddings of tokens in our training datasets as
shown in Figure 1.

Corpus - Language 2Corpus - Language 1

Parsing Parsing

Vocabulary Extraction

Cognates

Clean sentencesClean sentences

Vocabulary Extraction

Bi-directional
 Translator API

Neo4j

Ground Truth

Fine-tune BERT LLMFine-tune BERT LLM

Vector EmbeddingsVector Embeddings

Multi-layer Perceptron
Neural Network

Our coverage

Comparison

Our Method

Ground Truth
 Extraction

Figure 1: Our methodology

2.1 BERT as a Word to Vector Model
BERT (Bidirectional Encoder Representations from Transformers)
[8] is a transformer-based model that has set new benchmarks in
a variety of natural language and cross-language processing tasks
[17]. Unlike previous models that processed text in a unidirectional
way, BERT reads text bidirectionally, understanding the context
of a word based on both its left and right surroundings. This bidi-
rectional approach allows BERT to generate highly contextualized
word embeddings.

The BERT transformer consists of multiple layers, where each
layer is capable of capturing different aspects of the word’s context.

When we input a sentence into BERT, it tokenizes the sentence into
subword units (tokens), processes these units through its multiple
layers, and produces embeddings for each token at each layer. These
embeddings are rich in context and can capture the nuances of word
meanings in different sentences.

2.2 Embedding Extraction Process
To utilize BERT embeddings, we follow a systematic approach to
extract and aggregate these embeddings:

(1) Tokenization: Using BERT’s tokenizer, we split each word
into its constituent subword tokens. This step ensures that
even unfamiliar words or misspellings can be processed
effectively by BERT.

(2) Contextual Embedding Extraction: We pass these to-
kens through the pre-trained BERT model to obtain em-
beddings. Since BERT embeddings are context-dependent,
the same word can have different embeddings based on its
surrounding words.

(3) Averaging Token Embeddings: For words split into mul-
tiple tokens, we compute the final word embedding by
averaging the embeddings of all its constituent tokens. This
aggregated embedding represents the word in its specific
context within the sentence.

2.3 Classification of False-Friends
Instead of creating a linear transformation between vector spaces,
we use the embeddings of pairs of words (correlated in both of the
languages) and a training dataset of already classified pairs such as
the Spanish-Portuguese dataset [7] to train a multi-layer perceptron
neural network to classify pairs of unseen words as false or true
friends.

The resulting embedding vector for each word is computed as the
average of BERT’s internal embeddings for each token comprising
the word. Thus, leveraging the fixed internal embedding dimensions
of BERT, where each token is represented by a vector 𝑣 ∈ R768 space.
We found that a simple dense neural network is enough for our
methodology. This neural network has two hidden layers of 2000
neurons each, enough to get satisfiable results.

2.4 Creation of Ground Truth Dataset
To extend the evaluation of our method, we needed to create a new
ground truth dataset, which would consist of a collection of true
and false friends. The prerequisite for obtaining said collection was
processing a Slovenian [1] and aMacedonian corpus [3]. The former
was obtained from The Slovenian Academy of Sciences and Arts,

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

34

Cross-Lingual False Friend Classification
via LLM-based Vector Embedding Analysis

while the latter was obtained from the University of Leipzig. The
Slovenian corpus was an official list of unique Slovenian words of
354205 different headwords, while theMacedonian corpus consisted
of 350921words obtained fromWikipedia. The latter was processed
using our unique word extractor, which resulted in a unique word
count of 248083.

These two lists of unique words were then further processed
in order to extract homographs, which are words with the same
spelling, in this case pertaining to Slovenian andMacedonian words.
An initial hurdle was the difference in alphabets between the two
languages. Slovenian uses the Latin alphabet, while Macedonian
uses the Cyrillic alphabet. To overcome this, we transliterated the
Macedonian corpus into the Latin alphabet. This allowed us to
compare the two lists of unique words. We based our homograph
extraction on a Levenshtein distance of 0, which meant that we
only extracted homographs that were identical in spelling. Our
extraction of homographs thus produced 21674 homographs and
226409 non-homographs. This stage of our corpus processing thus
left us with 21674 candidates for false and true friends.

Our next step was to translate each Slovenian and Macedonian
homograph to English and compare their English meanings. Those
homographs that produced the same meaning were categorized as
true friends, while the rest were categorized as false friends. This
stage of our research made apparent a flaw in our translation API.
The flaw being Google’s translation API [2], which only returns
one translation. Moreover, the limited scope of Slovenian and Mace-
donian, compounded by interjections, meant that some translations
were inaccurate. Said inaccuracies then resulted in false positives,
which were apparent in our Neo4j database.

The Neo4j database that we filled with Macedonian words, Slove-
nian words, true friends, and false friends was the backbone of our
visualization. The latter helped us identify potential problems with
our approach, such as improper false friend connections, example
given in Figure 2a, and true friend connections due to limited re-
sponses from the Google Translate API, example given in Figure
2b.

Our analysis of the Neo4j database thus yielded a lot of food
for thought. An appealing approach was the classification of false
friends into segregation (pairs carrying absolutely different mean-
ings), lexical pairs (both similar and dissimilar meanings), and inclu-
sion (one dissimilar meaning on top of all other similar meanings)
as outlined in [11]. But we decided to stick with the binary classifi-
cation of false and true friends.

3 RESULTS
To compare and benchmark our approach, we recreated the results
of the method used by Castro et al. [6]. Their method included
acquiring the then-newest Wikipedia dumps (dated 20.03.2024),

Table 2: Classification performance using the Castro et al.
[6] approach on the Spanish and Portuguese dataset.

Precision Recall F1-Score
False 0.7727 0.7730 0.7721
True 0.7446 0.7424 0.7427

Average 0.7586 0.7577 0.7574

(a) (b)

Figure 2: (a) The Slovenian word "drugi" could be translated as
"others", which would match it with the Macedonian word "drugi"
(други), or translated as "second", which results in a false friend.
"Drugi" is, therefore, only 50% a false friend. (b) The Macedonian
word "pod" (под) could, likewise, be alternatively translated as floor,
which means that it could potentially be a false friend.

Table 3: Comparison of our and Castro et al. methodology.
Note that we are not using any additional sentences for fine-
tuning the Multilingual BERT Model.

F1 Castro et al. Ours
Sentences 30M 200K 0

False 0.7721 0.7324 0.8505
True 0.7427 0.5783 0.8258

Average 0.7574 0.6554 0.8381

Table 4: Classification performance of our approach on our
Macedonian and Slovenian false and true friends datasets
without fine-tuning of the BERT model.

Precision Recall F1-Score
False 0.8868 0.8393 0.8624
True 0.7097 0.7857 0.7458

Average 0.7982 0.8125 0.8041

parsing them, and training the two Word2Vec models [14] in Span-
ish and Portuguese. Each model with a vector dimension of 100
took an hour and a half to train on 30 million sentences, after
which we could finally derive the linear transformation necessary
for translation. Their paper evaluates the method by classifying a
pair of words as true or false friends given a ground truth dataset
between Spanish and Portuguese [7]. Our re-testing of their method
achieved the results shown in Table 2.

Our proposed method, however, showed a significant improve-
ment on the Spanish-Portuguese dataset with an F1-score of 0.8381,
shown in Table 3, without any fine-tuning on the pre-trained BERT
Multilingual model. Moreover, because of the pretrained BERT
model, our method including the extraction of embeddings and
the training of the neural network to learn the classification of the
words took under 10 minutes as opposed to the training time of the
Word2Vec models of around 3 hours.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

35

Mitko Nikov, Žan Tomaž Šprajc, and Žan Bedrač

Our method of extracting homographs from our Slovenian and
Macedonian corpus yielded 21674 candidates for false/true friends.
Further analysis using comparisons of associated English mean-
ings resulted in 14654 true and 7020 false friends. However, some
of these were false positives due to the multi-meaning nature of
various words. A manual review of the 7020 false friends gave us
151 ideal false friends that are largely free of true friend overlap.
We used these 151 ideal false friends as our Slovenian-Macedonian
false friends dataset. The false friends manual review was followed
by an extraction of 268 true friends from our initial set of 14654
true friends. These 268 true friends then comprised our Slovenian-
Macedonian true friends dataset.

Using our Slovenian-Macedonian dataset of false and true friends1,
we achieved similar classification capabilities as with the Spanish-
Portuguese dataset. Our results can be seen in Table 4. All experi-
ments were run on an Intel Core i7-9700K @ 3.60GHz and GeForce
RTX 2070 SUPER GPU.

4 CONCLUSIONS
In this paper, we presented a novel approach to exploring cross-
linguistic connections, specifically focusing on false friends, us-
ing Large Language Model embeddings and graph databases. Our
methodology leverages the advanced capabilities of BERT for gener-
ating contextualized word embeddings and a graph-based represen-
tation to capture semantic relationships. We achieved classification
performance on the Spanish-Portuguese false friend dataset with
an F1 = 83.81% and classification performance on our Slovenian-
Macedonian dataset of F1 = 80.41% using Multilingual BERT and a
multi-layer perceptron neural network. BERT was not fine-tuned
using any additional sentences.

Our results indicate that LLM embeddings significantly enhance
the accuracy of false friend classification compared to traditional
Word2Vec models. The use of a pretrained LLM also significantly
reduced the time it takes to learn the classifications from 3 hours
needed to train theWord2Vec models to under 10 minutes solely for
the training of the multi-layer perceptron classifier. This highlights
the potential of using sophisticated language models for even more
complex linguistic tasks, paving the way for more accurate and
insightful cross-linguistic analysis.

A natural next step to enhancing our methodology would be in-
corporating larger andmore diverse corpora. These would fine-tune
the pre-trained BERT model on specific language pairs or domains,
improving the contextual accuracy of embeddings. Moreover, larger
corpora would yield additional false and true friends in our ground
truth dataset. More advanced translation APIs would be capable of
providing multiple translations for each word, which would result
in fewer false positives when creating such a dataset.

Furthermore, extending themethodology to other cross-linguistic
phenomena, such as idiomatic expressions, cognates, and loan-
words, would improve our understanding of language relationships.
False and true friends are, therefore, the tip of a linguistic iceberg
that calls for further exploration.

1The datasets are available at https://github.com/mitkonikov/false-friends

REFERENCES
[1] 2013. ISJ SAZU - List of Slovenian words. http://bos.zrc-sazu.si/sbsj_en.html

[Online; accessed 2. Jun. 2024].
[2] 2024. Cloud Translation API | Google Cloud. https://cloud.google.com/translate/

docs/reference/rest [Online; accessed 2. Jun. 2024].
[3] 2024. Wortschatz Leipzig Macedonian Corpora. https://wortschatz.uni-leipzig.

de/en/download/Macedonian [Online; accessed 2. Jun. 2024].
[4] Željko Agić, Nikola Ljubešić, and Danijela Merkler. 2013. Lemmatization and

Morphosyntactic Tagging of Croatian and Serbian. ACL Anthology (Aug. 2013),
48–57. https://aclanthology.org/W13-2408

[5] E. Susanne Carroll. 1992. On cognates. Sage Journals 8 (jun 1992). Issue 2.
https://journals.sagepub.com/doi/abs/10.1177/026765839200800201

[6] Santiago Castro, Jairo Bonanata, and Aiala Rosá. 2018. A High Coverage Method
for Automatic False Friends Detection for Spanish and Portuguese. In Proceedings
of the FifthWorkshop on NLP for Similar Languages, Varieties and Dialects (VarDial
2018), Marcos Zampieri, Preslav Nakov, Nikola Ljubešić, Jörg Tiedemann, Shervin
Malmasi, and Ahmed Ali (Eds.). Association for Computational Linguistics, Santa
Fe, New Mexico, USA, 29–36. https://aclanthology.org/W18-3903

[7] María de Lourdes Otero Brabo Cruz. 2004. Diccionario de falsos amigos (espanol-
portugues / portugues-espanol). https://ec.europa.eu/translation/portuguese/
magazine/documents/folha47_lista_pt.pdf

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ACL Anthology (June 2019), 4171–4186. https://doi.org/10.18653/v1/N19-1423

[9] Ljiljana Dolamic and Jacques Savoy. 2009. Indexing and stemming approaches
for the Czech language. Information Processing & Management 45, 6 (Nov. 2009),
714–720. https://doi.org/10.1016/j.ipm.2009.06.001

[10] Pedro Domínguez and Brigitte Nerlich. 2002. False friends: Their origin and
semantics in some selected languages. Journal of Pragmatics 34 (Dec. 2002).
https://doi.org/10.1016/S0378-2166(02)00024-3

[11] Ketevan Gochitashvili and Giuli Shabashvili. 2018. The issue if “false friends” in
terms of learning a foreign language(Using the example of Georgian and English
languages). International Journal Of Multilingual Education VI (July 2018), 33–41.
https://doi.org/10.22333/ijme.2018.11006

[12] Diana Inkpen and Oana Frunza. 2005. Automatic Identification of Cog-
nates and False Friends in French and English. ResearchGate (Jan.
2005). https://www.researchgate.net/publication/237129220_Automatic_
Identification_of_Cognates_and_False_Friends_in_French_and_English

[13] Nikola Ljubešić and Darja Fišer. 2013. Identifying false friends between closely
related languages. ACL Anthology (Aug. 2013), 69–77. https://aclanthology.org/
W13-2411

[14] Long Ma and Zhang Yanqing. 2015. Using Word2Vec to Process Big Text
Data. (Oct. 2015). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
7364114

[15] Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey Dean. 2013. Ef-
ficient Estimation of Word Representations in Vector Space. 1–12.
https://www.researchgate.net/publication/319770439_Efficient_Estimation_of_
Word_Representations_in_Vector_Space

[16] Ruslan Mitkov, Viktor Pekar, Dimitar Blagoev, and Andrea Mulloni. 2007. Meth-
ods for extracting and classifying pairs of cognates and false friends. Machine
Translation 21, 1 (March 2007), 29–53. https://doi.org/10.1007/s10590-008-9034-5

[17] Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How Multilingual is Multi-
lingual BERT?. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, Florence,
Italy, 4996–5001. https://doi.org/10.18653/v1/P19-1493

[18] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and
Furu Wei. 2023. Improving Text Embeddings with Large Language Models. arXiv
(Dec. 2023). https://doi.org/10.48550/arXiv.2401.00368 arXiv:2401.00368

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

36

Analyzing tourist destinations in Belgrade using geotagged
photos from Flickr

Vera Milosavljević
vera.milosavljevic@famnit.upr.si

University of Primorska,
Faculty of Mathematics,

Natural Sciences and Information Technologies,
Department of Mathematics,

Koper, Slovenia

Dejan Paliska
dejan.paliska@fts.upr.si
University of Primorska,

Faculty of Tourism,
Department for Sustainable
Destination Development,

Koper, Slovenia

ABSTRACT
This research aims to analyze tourist destinations in Belgrade by
defining trajectories of movement of the users of platform Flickr
using geotagged photos on Flickr. We defined tourist movements
and used generalization techniques to identify the main tourists
locations. We applied several techniques to identify frequently
visited locations and predict next possible tourist spots. Our findings
provide insights into popular travel patterns and suggest potential
areas for tourism development.

KEYWORDS
Tourism data analysis, active user bias, geotagged photo, DBSCAN
clustering, trajectory generalization

1 INTRODUCTION
Tourism is a major contributor to the global economy, offering
economic benefits and fostering cultural exchange.With the growth
of social media and mobile phones usage, tourists now document
their journeys through geotagged photos, sharing their experiences
with a wide audience. Flickr, a popular photo-sharing platform,
contains a wide repository of such geotagged images and publicly
aveilable API which makes it a good choice for our analysis. The
users of the application are not rarely professional photographers
and their focus lies in architecture, nature and country’s most
beautiful destinations.

Analyzing these photos provides valuable insights into tourists’
behavior at destinations, and particularly into their space-time
patterns. Traditional tourism data often relies on surveys and official
records, which can be bias and limited in scope. In contrast, social
media data offers real-time, user-generated information that reflects
actual tourist activities and interests. Flickr has many active users
who contribute to the platform daily.

In this paper, we focused on Belgrade as a popular tourist desti-
nation, but the insights this paper provides can be applicable to any
location that has a rich dataset of photos on the platform Flickr.

2 OBJECTIVES
This research has the following objectives:

(1) Collecting geotagged photos from Flickr by using the pub-
licly available Flick API.

(2) Data preprocessing. Defining the set of variables that are
important for further analysis.

(3) Generating trajectories ofmovement by using geo-coordinates
for each user.

(4) Trajectory analysis and visualisation for better understand-
ing of the movements.

(5) Clustering, aggregation and generalisation of trajectories.
(6) Prediction of the next tourist movement based on several

different modeling tecniques.

3 SIGNIFICANCE
Understanding the location preferences of visitors is crucial for
local tourism organizations, travel agencies, and other stakehold-
ers involved in destination development. Information about local
attractions, visitor mobility, and intradestiation movement patterns
can help with strategic planning, improve destination marketing,
and enhance connectivity between at- tractions. By using modern
technology and user-generated content, such as geotagged photos
from social media, re- searchers can better understand visitor pat-
terns and behaviors. In Belgrade, the relationships between tourist
destinations and visitor mobility are under-researched, thus this
study aims to address these gaps by analyzing data from Flickr
platform. This will allow us to identify tourists POIs (clusters), and
their mobility patterns at destinations. Additionally, while Flickr
data could also be utilized to analyze tourists’ emotions and des-
tination image, these aspects are beyond the scope of this study.
This research contributes to the academic field by demonstrating
the application of data mining techniques in tourism analytics.

4 STRUCTURE
The rest of this paper is structured as follows: Section V details the
methodology, including data collection, preprocessing, clustering,
aggregation and generalisation, and the prediction techniques used.
Section VI presents the results of our analysis, highlighting key
findings and patterns. Section VII concludes the paper and suggests
directions for future research.

5 METHODOLOGY
5.1 Tools and Technologies
All data processing and analysis were done using Python program-
ming language, using some of the many data science libraries. The
following tools were used:

• Jupyter Notebook: Computing environment that was used
for the development and documentation of the code along
with miniconda installer and command line.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.8
ISBN 978-961-286-914-4

37

https://doi.org/10.18690/um.feri.6.2024.8

Vera Milosavljević and Dejan Paliska

• Pandas: Used for data manipulation and analysis.
• Numpy: For numerical computations.
• Scikit-learn: Applied for clustering and other machine learn-

ing tasks.
• Geopandas: Used for geographic data processing and visu-

alization.
• MovingPandas: Used for spatial analysis and manipulation

of geospatial data.
• Mlxtend: Employed for the implementation of the Apriori

algorithm and association rule mining.
• SeqMining: Applied for sequence mining to find frequent

sequences.
• Matplotlib: Used for data visualization.

5.2 Data Collection
We collected 31019 geotagged photos from 1233 different users from
the Flickr application. We used the Flickr public API which was
granted by a unique key after becoming a user of the Flickr app.
The dataset was focused on the territory of Belgrade, by using the
tag "belgrade". Each photo’s metadata, including the geocoordinates
and timestamps, was extracted and used for further analysis.

5.3 Data Preprocessing
The preprocessing step involved cleaning and structuring the col-
lected data to make it suitable for analysis. We defined a variable
ownerID, which represents one user in one day. We defined a vari-
able locID which represents different locations for each user. Algo-
rithm for defining locID is shown as Algorithm 1.

The motivation for defining this variable is because we wanted
to tackle the problem of an active user: a situation where one user
generates many photos of the same location. We wanted to treat
these photos as a single group, with the same value of locID variable.
This would ensure that our analysis would be less bias.

The reduced dataset had a structure as shown in the Fig. 1 .
We dropped rows which were out of boundaries of Belgrade. The
rows included must have longitude variable value between 20.35
and 20.65 and latitude variable value between 44.7 and 45.1 to be
considered as a photo captured on the territory of Belgrade. The
final reduced dataset had 20723 rows from 550 users.

Figure 1: Reduced dataset

Data: database with columns ’owner_ID’ and ’distance’
Result: database with ’loc_ID’ column assigned to every

row defining the location group
/* Define thresholds */

1 dist_threshold = 0.0005 cumulative_dist_threshold = 0.001
/* Set initial loc_ID for each row */

2 final_database["loc_ID"] = 1
/* Group data by owner_ID and list distances */

3 owner_ID_map = group database by owner_ID and
aggregate distances;

/* Initialize row index to zero */

4 i = 0;
5 foreach key in owner_ID_map do
6 prev = 1 /* Initial loc_ID for current owner_ID

*/
7 cumulative_dist = 0 /* Cumulative distance for

current loc_ID */

8 foreach list_value in owner_ID_map[key] do
9 cumulative_dist = cumulative_dist + list_value ;

/* Accumulate distance */

10 if list_value > dist_threshold or cumulative_dist >
cumulative_dist_threshold then

11 prev = prev + 1
/* Increment loc_ID */

12 cumulative_dist = 0
/* Reset cumulative distance */

13 end
14 database.loc[i, "loc_ID"] = prev

/* Update loc_ID for current row */

15 i = i + 1
/* Move to next row */

16 end
17 end

Algorithm 1: loc_ID Algorithm

5.4 Clustering
Various clustering techniques were explored to identify clusters
of frequently visited locations. We experimented with DBSCAN,
HDBSCAN, and OPTICS algorithms. The centroids of the clusters
were identified using mean and median methods. We created visual-
izations to show the clustering results, trajectories, and connections
between clusters.

5.5 Generalization and aggregation
Generalization techniques were applied using the Geopandas li-
brary and Douglas-Peucker Generalizer [5]. Different threshold
parameters for tolerance were tested to observe the effects on gen-
eralization. A comparison was made between Douglas-Peucker
Generalizer and Top-Down Time Ratio Generalizer. We defined
trajectory collection using the MovingPandas [3] library which
is a collection of all trajectories for each OwnerID. We used this
collection as an imput parameter for DouglasPeuckerGeneralizer
algorithm also defined in MovingPandas library. Fig. 2 shows the

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

38

Analyzing tourist destinations in Belgrade using geotagged photos from Flickr

trajectories for each OwnerID. We used TrajectoryCollectionAg-
gregator [4] from MovingPandas library to get significant points
and flows between them. The results will be show in the section
Results.

Figure 2: Trajectories for each OwnerID

5.6 Predictive Modeling
In the modeling prediction, our approach was to predict the next
cluster in our spatial data analysis based on the set of visited clusters.
The clustering technique that we choose was HDBSCAN because
wewanted to focus on smaller clusters of tourist destinations within
the city. Initially, we defined individual paths for each owner based
on their clusters. We excluded outliers marked as -1 (noise) and
grouped the remaining data by owner ID. Additionally, we defined
a DataFrame with each owner’s ID and their corresponding cluster
paths. After computing the unique sequence of clusters for each
owner, we generated trigrams [2] to identify recurring patterns
within the paths. We defined the transition matrix and we normal-
ized transition counts to derive probabilities of transitioning from
one cluster to another. Also, we developed functions for predicting
the next cluster using Markov chains, Monte Carlo simulations,
and association rules derived from Apriori analysis.

6 RESULTS
6.1 Clustering
Here we will present the visualisation of the results of the clustering
using HDBSCAN algorithm and median method for calculating the
centroid of each cluster. Each different color in Fig. 3 represents
different cluster. We calculated the number of transitions between
each cluster (If one person visited cluster 1 and than after that
they visited cluster 3, we would count that as 1 transition between
clusters 1 and 3). Fig. 4 shows the connections between clusters.
Purple points represent the centroids of the clusters, thickness
of the line and the number represent how many connections are
between two clusters..

6.2 Generalization
The Fig. 5 shows different thresholds for generalization by Dou-
glasPeckuer. By analyzing these input parameters, we opted for

Figure 3: Clustering

Figure 4: Connections between clusters

threshold of 0.01 as the most suitable for our research. We noticed
a small difference between original and generalized trajectories of
movements because our original trajectories were already filtered
and reduced. We also experimented with TopDownTimeRatio Gen-
eralizer. The comparison for a singular trajectory when using DP
Generalizer and TDTR Generalizer can be seen in Fig. 6.

Figure 5: Different thresholds for a singular trajectory

6.3 Aggregation
The input parameter for TrajectoryCollectionAggregator was gener-
alized trajectories with DouglasPeckuer Generalizer as instructed in

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

39

Vera Milosavljević and Dejan Paliska

Figure 6: Comparison between TDTR and DP for a singular
trajectory

the documentation of the MovingPandas library. Siginficant points
and the aggregated flows between them by using this method are
shown in the Fig. 7. We can observe that this method of reduction
gave us similar results as clustering, identifying the centre of the
city with park Kalemegdan as the most popular tourist area.

Figure 7: Aggregated flows and more popular areas

6.4 Predictive Modeling
The Markov chain analysis provided insights into the probabilities
of transitions between clusters. By normalizing transition counts
into probabilities, we gained insights into the likelihood of tourists
moving from one cluster to another. Through Markov chain mod-
eling, we determined the most probable next cluster after a given
current cluster. For instance, after analyzing a sequence with cluster
5 which corresponds to New Belgrade, the predicted next cluster
was 7, which corresponds to Zemun. This aligns geographically
since these 2 locations are close. Additionally, employing Monte
Carlo simulations, we had more trials to predict future clusters
based on starting clusters. Lastly, by using association rules de-
rived from Apriori [1] analysis, we predicted the next cluster by
identifying the longest subsequence matching antecedents in the
rules. For instance, when the current sequence contained cluster 36
(representing the Victor statue in Kalemegdan), the predicted next
cluster was 38 (representing Roman well in Kalemegdan). Example
output of the Apriori algorithm can be seen in Fig. 8.

Figure 8: First two rows of Apriori algorithm output

7 CONCLUSION
This research introduces some improvements in analyzing tourist
activities at destinations by using geotagged photos from Flickr,
focusing on tourist movement patterns in Belgrade. A key innova-
tion of this study is the development and application of the locID
algorithm, which identifies unique tourist POIs and deals with the
issue of overrepresentation from highly active users. This approach
ensures that the analysis is more representative and less biased
compared to other methods. The clustering results provided a view
of frequently visited locations, offering valuable insights into the
spatial distribution of tourist activity. By employing generalization
techniques, the study effectively simplified tourist trajectories, mak-
ing the data easier to interpret. Predictive modeling techniques,
such as Markov chains, Monte Carlo simulations, and the Apriori
al- gorithm, were used to predict future tourist movements. These
methods demonstrated their potential for practical applications in
tourism management, enabling more targeted marketing strategies
and improved visitor experience planning.

ACKNOWLEDGMENT
The author would like to thank mentor professor Dejan Paliska for
the support, cooperation and availability during the whole process
of the research. Also, the University of Primorska and representative
for this seminar prosessor Miklos for supporting this project.

REFERENCES
[1] P. Fournier-Viger, "SPMF: An Open-Source Data Mining Library," [Online]. Avail-

able: https://www.philippe-fournier-viger.com/spmf/. [Accessed: 03-Jun-2024].
[2] J. Silge and D. Robinson, "Text Mining with R: A Tidy Approach," O’Reilly Media,

2017. [Online]. Available: https://www.tidytextmining.com/ngrams. [Accessed:
03-Jun-2024].

[3] A. Graser, "MovingPandas: A Python Library for Movement Data Analysis," [On-
line]. Available: https://movingpandas.readthedocs.io/en/main/. [Accessed: 03-
Jun-2024].

[4] A. Graser, "Trajectory Aggregator in MovingPandas," [Online]. Available: https:
//movingpandas.readthedocs.io/en/main/trajectoryaggregator.html. [Accessed:
03-Jun-2024].

[5] A. Graser, "Movement Analysis Tools on GitHub," [Online]. Available: https:
//github.com/anitagraser/movement-analysis-tools. [Accessed: 03-Jun-2024].

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

40

Volleyball Game Analysis Using Computer Vision Algorithms
Marko Plankelj

marko.plankelj@student.um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Uroš Mlakar
uros.mlakar@um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

ABSTRACT
In recent years, modern technologies have made sports more ac-
cessible to a wider audience by providing interactive data during
broadcasts, reducing the risk of human error, and enhancing ath-
letes’ performance through real-time analysis and targeted training
insights. This paper combines theoretical and practical approaches
by developing an application based on specific convolutional neu-
ral networks for volleyball court detection and ball tracking. The
results demonstrate the potential of advanced video analytics in
sports, allowing users to explore the opportunities of modern tech-
nology in improving sports performance.

KEYWORDS
computer vision, convolutional neural networks, perspective trans-
formation, volleyball, web application

1 INTRODUCTION
For people, sport has always been a form of relaxation, socializing,
an opportunity to find new friendships with proven beneficial for
health. The World Health Organization recommends playing sports
as part of a healthy lifestyle in a program that aims to bring people
closer to physical activity as an opportunity for a healthier, happier
and more productive life [11]. On the other hand, we monitor the
development of modern technologies and their use in a wide variety
of fields, including sports, from day to day.

Sport and modern technologies such as computer vision and
machine learning were completely opposite terms a few years ago,
but nowadays we can hardly imagine watching or participating in
sports without the inclusion of modern technologies[5]. Despite
many challenges, such as poorer video quality or overlapping play-
ers, the use of systems for detecting the field, players and their
actions, and tracking the ball during play is becoming more com-
mon. Whether it’s a real-time analysis of the opposing team, which
helps coaches find winning tactics, or simply watching a sports
broadcast, during which the directors serve interactive slow-motion
footage of the actions and statistical data about the players. By us-
ing them, they want to prevent controversial situations in matches,
improve training and competitor analysis, predict loads in training
and matches with the aim of preventing injuries, and improve the
experience of spectators with analysis before, during and after the
match.

2 PROBLEM DESCRIPTION
The main objective of this paper was to develop a web application
that enables the users to select a video of a volleyball game and
then, with the help of computer vision algorithms, automatically

detect the volleyball court and analyze the trajectory of the ball,
and displaying the results through a perspective projection of the
court. The utilized computer vision algorithms in this paper were
convolutional neural networks (CNN).

The addressed challenge can be broken down into four steps: 1)
preparation of the training data, which involved collecting, prepro-
cessing and labeling the data, which we later augmented with the
aim of increasing the diversity and volume of the dataset, 2) imple-
mentation and learning of a CNN based on the prepared dataset, 3)
Perspective transformation of the volleyball court, 4) Development
of the online applications and integration of the trained CNN mod-
els in connection with a perspective projection to display the final
results.

3 RELATEDWORK
The use of modern technologies is no longer limited to pilot projects
and events of lower ranks, but is gaining ground at the highest
sporting events in the world. At the Olympic Games in Paris, in
collaboration with Intel, technologies were introduced to improve
the experience of participants and spectators. The International
Olympic Committee presented a program to use artificial intel-
ligence in sports to improve athlete performance and spectator
experience [6].

At the 2022 FIFAWorld Cup in Qatar, semi-automatic technology
was used to check prohibited positions. The technology uses twelve
cameras placed under the top of the stadium to calculate the position
of twenty-nine key points on each player fifty times per second. To
accurately detect the impact of the ball, they use an IMU sensor,
which is placed in the middle of the ball and sends data five hundred
times per second [4].

In sports such as tennis and volleyball, the Hawk-eye system
has been used for many years to track the path of the ball and
determine its position with the help of high-speed cameras placed
around the playing surface. It identifies the pixels in each frame that
correspond to the ball and then compares its position using at least
two image frames recorded from different camera angles to con-
firm or correct the position accordingly [10]. As already mentioned,
even in volleyball, as in other sports, the introduction of advanced
technologies is not an exception. The Balltime Platform with Artifi-
cial Intelligence Volleyball AI (VOLL-E) divides the volleyball game
into segments, facilitating match analysis and player preparation.
Using a CNN model that has been trained on numerous volleyball
videos, it enables automatic detection of the ball and players on the
court and labeling with bounding boxes. Based on the recognized
positions of the ball and players, the platform recognizes game
actions such as reception or defense and automatically determines
the direction of the attack and displays it visually. It also calculates

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.9
ISBN 978-961-286-914-4

41

https://doi.org/10.18690/um.feri.6.2024.9

Marko Plankelj and Uroš Mlakar

the ball speed and lets the users sort game elements by individual
and integrate with YouTube to share clips [2].

Similar functionality to that provided by the Balltime platform
described above is also provided by an Apple mobile application
called Avais, which, with monitors and analyzes the volleyball game
in real time. As a result, the users avoid waiting while loading a
video of a volleyball match and can obtain data for analysis at the
same time [1].

4 IMPLEMENTATION
The final solution was implemented in several steps using various
technologies. To ensure accessibility across different devices and
locations, a web application was developed, leveraging trained
neural network models for detecting volleyball courts and tracking
volleyball movements through image frames.

4.1 Collection, preprocessing, labeling, and
augmentation of training data

We started with collecting, preprocessing, labeling, and augmenting
the obtained training data. Primary data collection was performed
using freely available data on the internet. Due to a lack of sufficient
data, we added our own recordings from volleyball matches to
the training set. We implemented a script in Python to convert
video sequences into image frames and saved them in JPG (Joint
Photographic Experts Group) format, one per second. Due to the
different sources of training data and their dimensions, we unified
their dimensions.

Once the dimensions of the image frames were standardized,
we proceeded with the labeling of the training data, using two
separate methods. For the first method, we manually selected six
points on each image frame, and then, for each of the six selected
points, recorded the x and y coordinates in JSON (JavaScript Object
Notation) format for later use, as shown on Figure 1.

Figure 1: Manual labeling of training data points.

As for the second technique for labeling the data used in the train-
ing set for ball detection, we utilized the functionality of the web
platform Roboflow [8], which provides developers with comprehen-
sive services for building computer vision applications, including
data labeling in training sets.

Due to the smaller number of data in the training set, we decided
to augment the data, as shown on Figure 2. We utilized imgaug,
which is a dedicated library for augmenting training sets using var-
ious augmentation techniques it supports [3]. To retain the entire
court on the image after augmentation, we read the coordinates of
the volleyball court’s corners and determined the appropriate trans-
formations based on their distance from the image edge. Transfor-
mations were also performed in random order using the Sequential
function. After the transformations, we checked whether all the
marked points of the court remained within the image window; if
any point was outside, we repeated the process up to five times
and, in case of failure, applied horizontal flipping.

Figure 2: Original image (left) and rotated augmented image
(right).

4.2 Perspective transformation
Perspective transformations have been applied in various fields, in-
cluding autonomous driving, where footage from multiple cameras
mounted on a vehicle was reshaped using perspective transforma-
tion to return a bird’s-eye view covering the entire surroundings of
the car, making it easier to assess distances between objects around
the vehicle [7]. In our case, we wanted to create a bird’s-eye view,
that is, a top-down perspective of the volleyball court, to facilitate
easier subsequent game analysis. Using a library specialized in com-
puter vision called OpenCV, we first calculated the homography
matrix, which was then used to transform the original perspective
into a top-down view, as shown on Figure 3

Figure 3: Original image with court edges marked by green
dots (left) and image after perspective transformation (right).

4.3 Implementation and training of CNN
models

For training, we chose two separate convolutional neural network
models: the segmentation neural network U-Net, which was used

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

42

Volleyball Game Analysis Using Computer Vision Algorithms

for detecting the volleyball court, and the YOLOv8 model, which
was used for detecting the ball. In both cases, we followed an ap-
proach where separate datasets were used for training and testing,
meaning none of the images used during training were later used
for testing the performance of any of the neural network models.
The segmentation neural network U-Net, which has a symmet-
rical structure provided by the encoder and decoder parts, was
implemented using the open-source machine learning framework
PyTorch.

For the YOLO model, we decided to use one of the newer ver-
sions, specifically version eight, developed by Ultralytics [9]. Al-
though we could have conducted training on Ultralytic’s platform,
we preferred to install the Ultralytics library locally and integrate
it into our framework. For training purposes, we used a pre-trained
YOLOv8 model (which we further fine-tuned with our own data
using previously labeled data, stored in the YAML format (a data se-
rialization format), which was generated on the Roboflow platform
during data annotation).

4.4 Web application
To ensure better accessibility, regardless of the location and device
of the end user, a web application was developed. The main pur-
pose of this application is to use trained neural network models for
detecting the volleyball court and tracking the volleyball through
image frames during a short segment of a volleyball match. For de-
velopment we used the Flask web microframework for the backend
of the application, while the interface was enhanced and improved
using the open-source CSS framework Bootstrap.

5 RESULTS
The final solution is essentially divided into two main parts. In the
first part, the user can choose between previously prepared clips
or select their own video from the device through which they are
accessing the web application. After selecting the video, the user
can start the analysis by clicking a button, which is divided into
four key components, as shown in Figure 4:

• Detection of the volleyball court using the trained CNN
U-Net model,

• Tracking the volleyball and detecting it using the CNN
model YOLOv8,

• Perspective transformation of the volleyball court,
• Attack direction, where the movement of the volleyball is

shown through a sequence of image frames.

Figure 4: Web application steps: top left - Court detection
withU-Net, top right - Ball trackingwith YOLOv8, bottom left
- Perspective transformation, bottom right - Ball trajectory
across frames.

Despite the successful implementation of the desired functionali-
ties, the application does not perform perfectly in specific situations.
This becomes evident mainly in cases where the input video con-
tains image frames different from those used to train the CNN. The
most common issues we observed were:

• Different camera positions: when the volleyball match is
recorded from a different camera angle than those used in
the training dataset.

• Multiple lines on the court: when the video includes multi-
ple lines that do not pertain solely to the volleyball court.

• Color scheme of the ball: in some leagues (even in top
leagues, for example in Italy), they are using a ball of dif-
ferent color. Additionally, color schemes of the court might
overlap with the ball, making it challenging to detect the
ball accurately.

• Key court points or ball covered by players: when key points
of the court are covered by players, as shown in the Figure 5,
or by other obstacles (e.g., the net covering the line on the
court farthest from the camera if the camera is positioned
too low), resulting in difficulties in detecting the volleyball
court or the ball.

• Real time processing limitations: based on computational
resources and web application complexity, real-time stream-
ing and analysis of video (especially with higher resolution)
might introduce latency or affect performance.

Figure 5: Key court points covered by players.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

43

Marko Plankelj and Uroš Mlakar

6 CONCLUSIONS
In this paper, we presented the process from the initial idea to a
functional web application that provides a solution for the original
concept, which was the automatic analysis and visual presenta-
tion of the results to the user. The methods used were based on
collecting, preparing, labeling, and augmenting data, which were
then used to train two CNN. The trained models were then used,
in conjunction with the perspective transformation of the court,
to analyze and visually present the results to the user. The final
result was presented as a user-friendly web application, where the
user can select a desired video and receive a basic analysis within
seconds, including court detection and volleyball tracking.

However, despite a successful implementation, the application
has some weaknesses and scenarios where the results are not as
expected. Challenges include different camera positions, diverse
ball color schemes or multiple balls at the same time, interference
that may obscure key court points or the ball itself. Additionally,
real-time processing can be affected by computational limitations
and video quality, potentially impacting performance.

Nonetheless, the implemented application serves as a founda-
tion that allows for numerous upgrades, which could be inspired
by existing solutions and improve upon their shortcomings. As a
final result, we could provide users with real-time statistics of a
volleyball match, and the platform could be expanded to include

other sports, thereby attracting a wider range of users. All these
reasons encourage the realization that the integration of modern
technologies into all segments of our lives, including sports, is no
longer a binary question but merely a matter of time.

REFERENCES
[1] Avais. 2023. Our Features. https://www.avais.ai/features. Accessed: 2024-06-02.
[2] Balltime Academy. 2024. What is Volleyball AI. https://academy.balltime.com/

getting-started/what-is-volleyball-ai. Accessed: 2024-06-02.
[3] Imgaug. 2020. Documentation. https://imgaug.readthedocs.io/en/latest/. Ac-

cessed: 2024-06-02.
[4] Inside FIFA. 2022. Semi-automated Offside Technology to be Used at FIFA World

Cup 2022™. https://inside.fifa.com/technical/media-releases/semi-automated-
offside-technology-to-be-used-at-fifa-world-cup-2022-tm. Accessed: 2024-06-
02.

[5] B.T. Naik, M.F. Hashmi, and N.D. Bokde. 2022. A Comprehensive Review of
Computer Vision in Sports: Open Issues, Future Trends and Research Directions.
Applied Sciences 12, 9 (2022), 4429.

[6] Olympics. 2024. IOC Takes the Lead for the Olympic Movement and Launches
Olympic AI Agenda. https://olympics.com/ioc/news/ioc-takes-the-lead-for-the-
olympic-movement-and-launches-olympic-ai-agenda. Accessed: 2024-06-02.

[7] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 779–788.

[8] Roboflow. 2024. Our Company. https://roboflow.com/about. Accessed: 2024-06-
02.

[9] Ultralytics. 2024. YOLOv8 Models Documentation.
[10] Wikipedia. 2024. Hawk-Eye. https://en.wikipedia.org/wiki/Hawk-Eye. Accessed:

2024-06-02.
[11] World Health Organization. 2024. Sports and Health Initiative. https://www.

who.int/initiatives/sports-and-health. Accessed: 2024-08-30.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

44

A Bayesian Approach to Modeling GPS Errors for Comparing
Forensic Evidence

Nika Molan
nm83087@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

Ema Leila Grošelj
eg61487@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

Klemen Vovk
kv4582@student.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

ABSTRACT
This paper introduces a Bayesian approach to modeling GPS er-
rors for comparing forensic evidence, addressing the challenge of
determining the most likely source of a single GPS localization
given two proposed locations. We develop a probabilistic model
that transforms GPS coordinates into polar coordinates, capturing
distance and directional errors. Our method employs Markov chain
Monte Carlo (MCMC) sampling to estimate the data-generating
processes of GPS measurements, enabling robust comparison of
potential device locations while quantifying uncertainty. We apply
this approach to three datasets: one from existing literature and two
newly collected datasets from Ljubljana and Novo mesto. The result
is a posterior distribution of log-likelihood ratios directly compar-
ing the two propositions, which can be transformed into likelihood
ratios to comply with current standards in forensic science.

KEYWORDS
device geolocation as evidence, MCMC, digital forensics, likelihood
ratio, Stan, Bayesian inference

1 INTRODUCTION
GPS as evidence has been proven problematic in court, as it has
often been dismissed or not presented at all [1] due to the fear of
wrong judgment or discrediting other evidence due to the uncer-
tainty of GPS measurements. Our goal is to provide a Bayesian
approach for evaluating a single GPS localization in light of two
proposed locations. To give more context to why such approaches
are needed, consider the following problem: a single GPS localiza-
tion (evidence point 𝐸) was extracted from a device D found on
the crime scene. Since E is a GPS measurement there is inherently
some measurement error. Additionally, someone could have moved
the device D during or after the crime. Investigators propose two
geographical locations (P1 and P2) of where the device could have
been when it measured E and we want to identify which of the two
propositions is more likely. Since the conclusion is to be presented
in court, we need to provide sufficiently precise verbal equivalents
of the results while not misleading or misrepresenting the weight
of a piece of evidence.

The contributions of this paper are summarized as follows:
• a Bayesian statistics approach utilizingMarkov chainMonte

Carlo sampling to estimate the data generating processes
(DGPs) of GPSmeasurements taken from different locations
to compare which DGP most likely generated a single GPS
measurement obtained as forensic evidence,

• Code implementation of the proposed approach along with
MCMC diagnostics, results, and visualizations made avail-
able at [2],

• two GPS measurement datasets collected in Ljubljana and
Novo mesto to aid further research.

2 RELATEDWORK
The increased availability of GPS logs from smartphones, activity
trackers, navigation, and autonomous vehicles has increased the
use of such digital evidence in court[1]. Due to the high risk of
misinterpretation and wrongful judgment or discrediting other
evidence, statistical methods have been proposed [3] to be able to
quantify and reason under uncertainty due to GPS measurement
errors.

The magnitude of GPS errors varies between devices and geo-
graphical locations. In [8] the authors report a localization error
of up to 5 meters in low-cost phones, while others (see [5]) have
measurement errors varying up to 100 meters.

The standard in forensic science for evidence source identifica-
tion is to use likelihood ratios [7]. As different magnitudes of likeli-
hood ratios are not easily explainable in court, forensics standards
have been developed to define the verbal equivalent of likelihood
ratio ranges to provide in court[4], with the current version of the
standard shown in Table 1.

In [5] the authors computed a likelihood ratio to compare two
proposed device locations (P1 and P2) in light of the evidence E.
They also considered that errors of GPS measurements may not
be equal in all directions (the horizontal error is dependent on the
direction) resulting in high computational complexity due to sample
dependence and brute force distribution fitting.

3 DATASETS
For all used datasets we provide data sources as well as scripts
to transform data from other works to the input format for our
approach. The scripts used to transform and clean the datasets that
were used as inputs for modeling are also provided.

The University of Lausanne dataset (UNIL) was obtained from
the public implementation of [5]. It consists of 699 GPS measure-
ments that were taken from two proposal points as reference mea-
surements on the University of Lausanne campus. The dataset is
visualized in Figure 1.

Our Ljubljana (LJ) dataset consists of 4 predefined points (evi-
dence 𝐸, and three proposal points 𝑃1, 𝑃2, and 𝑃3, each point is spec-
ified by latitude and longitude) and a total of 450 images captured
while standing on those proposal points along with information

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.10
ISBN 978-961-286-914-4

45

https://doi.org/10.18690/um.feri.6.2024.10

Nika Molan, Ema Leila Grošelj, and Klemen Vovk

Figure 1: A geographical visualization of the UNIL dataset
from [5]. E is the single localization that was recovered, while
P1 and P2 are two proposed locations. Only deduplicated ref-
erence measurements for both proposals are shown. Note
how reference measurements are not even on the same build-
ing as the proposal they were measured from.

if the iPhone camera app had permission for precise location for
every image. A visualization of the dataset is shown in Figure 2.

Our Novo mesto (NM) dataset consists of 4 predefined points
(evidence 𝐸, and three proposal points 𝑃1, 𝑃2, and 𝑃3, each point
is specified by latitude and longitude) and a total of 429 images
captured using the same data collection process as the LJ dataset.
A visualization of the dataset is shown in Figure 3.

Compared to the UNIL dataset, LJ and NM datasets have signifi-
cantly less measurement error (on average 15 meters) and a high
percentage (90%) of duplicate measurements. This is due to the
measurements being done in a very short time interval (30 minutes)
which resulted in a lot of cached duplicates.

4 METHODS
Unless specified, everything in this section applies to all used
datasets (UNIL, LJ, and NM).

4.1 LJ and NM dataset collection
To more clearly understand what affects the accuracy of GPS evi-
dence as well as error patterns, we collect two additional datasets
with the same device. The distance between the predefined points
was around 100 meters in Ljubljana and 10 meters in Novo mesto.
To take images an iPhone 11 Pro was used with the default cam-
era app. We also note granting and denying permission to precise
locations to the camera app for each image. To obtain GPS mea-
surements from images, we extract the latitude, longitude, and time
of capture from the EXIF data of each image, and note the corre-
sponding proposal point it was taken from and if precise location
permission was granted.

Figure 2: A geographical visualization of our LJ dataset. Only
deduplicated measurements are shown.

Figure 3: A geographical visualization of our NM dataset.
Only deduplicated measurements are shown.

4.2 Dataset preprocessing
Each measurement is defined by time, latitude, longitude, and the
label of the proposal it was taken from. For LJ and NM data we
keep only measurements that were retrieved when precise loca-
tion permission was given to the iPhone camera app. We remove
consecutive duplicate GPS measurements per proposal by sorting
all corresponding measurements ascending by date and time, then
removing all consecutive duplicates based on latitude and longi-
tude. This is done because consecutive duplicates could be due to
caching and/or rate-limiting to GPS queries. Consequently, if we
try to model distance and angle errors of GPS measurements, some
angles/distances will have artificially more probability mass due
to duplicates, even though these duplicates are obtained from the
same GPS measurement.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

46

A Bayesian Approach to Modeling GPS Errors for Comparing Forensic Evidence

4.3 Transforming GPS to polar coordinates
To simplify the modeling and representation of GPS errors, each
measurement was converted from (latitude, longitude) coordinates
to distance (in meters) and angle (azimuth from the north, in ra-
dians) from the ground truth point (proposal) it was taken from.
To illustrate the concept we show the UNIL dataset transformed
to polar coordinates in Figure 4. We aim to model the distance
and directionality of GPS errors taken from proposal points (and
consequently their DGP) to estimate under which proposal point is
the retrieved evidence point E more likely.

0°

45°

90°

135°

180°

225°

270°

315°

20
40

60
80

100

E w.r.t. P1
E w.r.t. P2
P1 measurements
P2 measurements

Figure 4: The UNIL dataset [5] after coordinate transfor-
mation (distance error in meters and angle - azimuth from
north). Note, we only have one evidence point E, we trans-
form it concerning (relative to, as seen from) each proposal
point separately. Proposals P1 and P2 are at the center of the
polar plot and measurements show the directionality (angle)
and magnitude (in meters) of the GPS errors.

4.4 Probabilistic model of GPS errors
To formalize our approach to modeling GPS errors, we define a
probabilistic model and estimate its parameters with MCMC sam-
pling. The model is defined in the Stan probabilistic programming
language[6] which allows users to define (log) density functions
and then perform Bayesian inference with MCMC sampling.

Let 𝑀𝑖 𝑗 = (𝑑 𝑗 , 𝜙 𝑗) be the 𝑖 − 𝑡ℎ measurement measured from
proposal 𝑃 𝑗 where 𝑑 𝑗 is the distance in meters from 𝑃 𝑗 to 𝑀𝑖 𝑗

and 𝜙 𝑗 the azimuth (in radians) of the line between 𝑃 𝑗 and 𝑀𝑖 𝑗 .
Analogously, let𝑀𝑖𝑘 be the 𝑖 − 𝑡ℎ reference measurement measured
from proposal 𝑃𝑘 . The set of measurements for each proposal was

modeled as a bivariate normal distribution:

𝑀𝑖 𝑗 ∼ MultiNormal(𝜇 𝑗 , Σ 𝑗)
𝑀𝑖𝑘 ∼ MultiNormal(𝜇𝑘 , Σ𝑘)
𝜇 𝑗 = [𝜇𝑑𝑖𝑠𝑡 𝑗 , 𝜇𝑎𝑛𝑔𝑙𝑒 𝑗]
𝜇𝑘 = [𝜇𝑑𝑖𝑠𝑡𝑘 , 𝜇𝑎𝑛𝑔𝑙𝑒𝑘]
Σ 𝑗 ∈ R2𝑥2

Σ𝑘 ∈ R2𝑥2

where 𝜇 𝑗 is a mean vector of distance (in meters) and angle (in
radians) relative to proposal 𝑃 𝑗 . Σ 𝑗 is the covariance matrix1. Anal-
ogously for 𝜇𝑘 and Σ𝑘 relative to proposal 𝑃𝑘 . Stan’s default, non-
informative priors were used for all parameters.

To compare under which proposal (𝑃 𝑗 or 𝑃𝑘) is the evidence
point 𝐸 more likely, we compute the likelihood of 𝐸 under each
of the models and compute the likelihood ratio. To enhance nu-
merical stability without loss of expressiveness the logarithms of
likelihoods were used, which can later be exponentiated back. This
was implemented in Stan’s generated quantities block2:

log𝐿𝑗 = log 𝑃 (𝐸 𝑗 |𝜇 𝑗 , Σ 𝑗)
log𝐿𝑘 = log 𝑃 (𝐸𝑘 |𝜇𝑘 , Σ𝑘)
log𝐿𝑅 = log𝐿𝑗 − log𝐿𝑘

where 𝐸 𝑗 and 𝐸𝑘 denote the evidence point 𝐸 transformed relative
to proposals 𝑃 𝑗 and 𝑃𝑘 respectively.

To assess if the models capture the input data (reference mea-
surements) well, a posterior predictive check was performed by
randomly sampling points from the estimated bivariate normal
models to create replicate datasets (this is also done in the gener-
ated quantities block in Stan). The idea is that if an estimated model
fits input data well, we should be able to generate similar, synthetic
data by randomly sampling from it. In other words, if the estimated
model managed to capture the behavior of distance and angle errors
in our reference measurements, it should be able to generate new,
synthetic, measurements that resemble the same distance and angle
errors. To visualize this, we overlay the generated synthetic data
over the reference measurements (input data).

5 RESULTS
Due to the length limit of the paper we only show the full results for
the UNIL dataset. However, all results, visualizations, and MCMC
diagnostics are available in the provided repository.

MCMC sampling with 4 chains of 4000 samples each was per-
formed to sample from the posterior. Standard MCMC diagnostics
(trace plots, effective sample sizes, R-hat values) do not indicate any
issues in convergence. Additionally, we visualize a posterior pre-
dictive check of the UNIL dataset by overlaying a random replicate
dataset over the real measurements in Figure 5.

Figure 6 depicts the posterior distribution of log-likelihood ratios
for the UNIL dataset along with 95% highest-density intervals. In

1We use the Cholesky parameterization of the Multivariate normal, which is natively
implemented in Stan, so Σ 𝑗 = 𝐿𝑗𝐿

′
𝑗 for efficiency and numerical stability during

MCMC sampling, but omit it here for brevity
2Everything in the generated quantities block can be computed outside of Stan (e.g. in
Python) as it is performed on the posterior draws after the MCMC sampling is done,
we do it in Stan for clarity.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

47

Nika Molan, Ema Leila Grošelj, and Klemen Vovk

20 40 60 80 100 120
Distance (meters)

2.5

3.0

3.5

4.0

4.5

5.0

An
gl

e
(ra

di
an

s)

Replicate dataset UNIL #1

E w.r.t. P1
E w.r.t. P2
P1
P2
generated P1
generated P2

Figure 5: A posterior predictive check for the UNIL dataset
in the form of a randomly selected replicate dataset for each
proposal. All generated measurements for P1 and P2 are
within expected regions, however, the model for P1 is better
supported by the real measurements as the dataset heavily
favors P1 as the source of E. This is also noted by the authors
of the dataset [5].

line with the dataset, the P1 proposal is heavily favored compared
to P2 to have generated the evidence point. Log-likelihood ratios
can be converted back to likelihood ratios3 which are currently the
standard used in courts as per [4] and [5] to compare evidence for
source-identification in forensic science.

While the model is stable and MCMC converges, even the lower-
bound of the 95% highest density interval log-likelihood ratio is
log𝐿𝑅 = 11, which after exponentiation is 𝐿𝑅 = exp 11 = 59874,
which is orders of magnitude above the highest obtainable LR
range for a single piece of evidence (see Table 1 and the standard
specification in [4]).

6 DISCUSSION
Our method, utilizing MCMC sampling to estimate data-generating
processes of GPS measurements, offers direct uncertainty quantifi-
cation, greater computational efficiency, and numerical stability
due to Stan, MCMC, and working with log-likelihood ratios in-
stead of likelihood ratios compared to the seminal method from
[5]. The main limitation of our approach is the assumption that
reference measurements taken (months) after the original evidence
are enough to sufficiently model the DGP of GPS errors. Even if the
exact device from the crime scene is used, many other variables are
out of our control (GPS satellite visibility, noise and interference of
GPS positioning, software updates changing the measuring process,
cellular and WiFi networks that are used to improve location). In-
vestigators should always strive to gather more actual evidence (i.e.
3Highest-density intervals are not equal-tailed, this means that when applying trans-
formations, such as exponentiation to the whole distribution, the HDI will change,
For such cases we recommend computing equal-tailed credible intervals that are not
affected by distribution transformations.

10 15 20 25 30 35
log likelihood ratio

D
en

si
ty

11 23

95% HDI

mean=17

log likelihood ratio P1 vs P2

Figure 6: The posterior distribution of log-likelihood ratios
for the UNIL dataset alongwith 95% highest-density intervals
to quantify uncertainty.

Table 1: LR verbal equivalents to use in court when compar-
ing two propositions, obtained from [4] page 39.

Range of LR Verbal Equivalent

1-3

In my opinion the observations are no
more probable if [P1] rather than[P2]
were true. Therefore, the observations
do not assist in addressing which of
the two propositions is true.

4-10
In my opinion the observations are
slightly more probable if [P1] rather
than [P2] were true.

10-100
In my opinion the observations are more
probable if [P1] rather than [P2]
were true.

100-1000
In my opinion the observations are
much more probable if [P1] rather
than [P2] were true.

more GPS logs from the crime scene) to directly model the errors
instead of using a proxy such as reference measurements.

REFERENCES
[1] E. Casey, D.-O. Jaquet-Chiffelle, H. Spichiger, E. Ryser, and T. Souvignet. Struc-

turing the evaluation of location-related mobile device evidence. Forensic Science
International: Digital Investigation, 32:300928, 2020.

[2] Ema Leila Grošelj, Nika Molan and Klemen Vovk. A Bayesian Approach to
Modeling GPS Errors for Comparing Forensic Evidence, 2024. https://github.com/
KlemenVovk/gps_evaluation, Last accessed on 2024-08-30.

[3] C. Galbraith, P. Smyth, and H. S. Stern. Statistical methods for the forensic analysis
of geolocated event data. Forensic Science International: Digital Investigation,
33:301009, 2020.

[4] F. S. Regulator. Development of evaluative opinions. Technical Report FSR-C-118,
UK Forensic Science Regulator, Birmingham, 2021.

[5] H. Spichiger. A likelihood ratio approach for the evaluation of single point device
locations. Forensic Science International: Digital Investigation, 2023.

[6] Stan Development Team. Stan modeling language users guide and reference
manual, version 2.35, 2011–2024.

[7] M. M. Vink, M. M. Sjerps, A. A. Boztas, et al. Likelihood ratio method for the
interpretation of iphone health app data in digital forensics. Forensic Science
International: Digital Investigation, 41:301389, 2022.

[8] L. Wang, Z. Li, N. Wang, and Z. Wang. Real-time gnss precise point positioning
for low-cost smart devices. GPS Solutions, 25:1–13, 2021.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

48

Seven Components of Computational Thinking: Assessing the
Quality of Dr. Scratch Metrics Using 230,000 Scratch Projects

Gal Bubnič
gb78843@student.uni-lj.si
University of Ljubljana,

Faculty of Natural
Sciences and Engineering,

Ljubljana, Slovenia

Tomaž Kosar
tomaz.kosar@um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

Bostjan Bubnic
bostjan.bubnic@student.um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Maribor, Slovenia

ABSTRACT
Computational thinking has extended beyond traditional comput-
ing education recently and is becoming a broad educational move-
ment, focused on teaching and learning critical problem-solving
skills across various disciplines. Originating from computer science
and programming, the most common learning method still involves
educational programming languages like Scratch. Dr. Scratch is a
tool designed to assess Scratch projects based on seven components
of computational thinking, including abstraction, parallelism, logic,
synchronization, flow control, user interactivity, and data represen-
tation. This study examines the quality of Dr. Scratch measurement
scale. The proposed model considers computational thinking as a
latent variable with seven indicators. According to the results of
confirmatory factor analysis, five of the computational thinking
components were measured satisfactorily, while two were below
the accepted level. Based on the results, we recommend conducting
an exploratory factor analysis for the potential scale refinement.

KEYWORDS
computational thinking, Dr. Scratch, block-based programming,
assessment, confirmatory factor analysis

1 INTRODUCTION
Although the phrase computational thinking was introduced as
a computer science concept in the early 1980s, the concept was
popularized by Janette Wing in 2006 [19]. Wing described it as the
ability to solve problems, design systems, and understand human
behavior by leveraging fundamental computer science concepts.
Recently, computational thinking has extended beyond traditional
computing education into various interdisciplinary fields. It has
been integrated into K-12 education, fostering problem-solving
skills from an early age [10]. In addition, disciplines such as biology,
physics, and social sciences are adopting computational thinking
principles to tackle complex problems, analyze data, and model
systems. This broadening of scope highlights the versatility and
importance of computational thinking as one of the fundamental
skills for the 21st century [12].

Despite its widespread adoption, there is still no consensus on
the precise definition of computational thinking. Moreover, there
is no consensus concerning its definitive or necessary components
[5]. However, several studies have investigated the components
that form its foundation. Based on the literature review: 1) Kale-
lioglu et al. [9] advocated that the most important components
are abstraction, problem-solving, algorithmic thinking, and pattern

recognition; 2) Bubnic and Kosar [5] identified abstraction and al-
gorithms as relevant, domain independent components; 3) Lyon
and J. Magana [11] argued that abstraction is the most definitional
term.

Since computational thinking originates from computer science
and programming, it is commonly learned and assessed today
through educational programming languages like Scratch. Scratch
was created by the Lifelong Kindergarten Group at the MIT Media
Laboratory to provide a new environment for beginner program-
mers. Scratch programs are created using scripts assembled by
dragging and dropping blocks, which symbolize various program-
ming elements, such as expressions, conditions, statements, and
variables. This approach helps avoiding common syntax errors,
which often frustrate students. The programming environment also
features interactive, 2-dimensional animations called sprites, which
move on the screen according to user input or script commands. In
addition, audio and video clips from webcams can be incorporated
into Scratch projects.

Following the creation of Scratch, its user base grew rapidly. Due
to its rapid expansion, the need for evaluation tools became more
evident. In response, researchers developed several tools aimed at
evaluating Scratch projects, such as Dr. Scratch [13] and Hairball [2].
Dr. Scratch is an on-line tool, which automatically assesses Scratch
projects based on seven components of computational thinking,
including abstraction (e.g. custom blocks), parallelism (e.g. two or
more simultaneous scripts), logic (e.g. logic operations), synchro-
nization (e.g. wait until), flow control (e.g. repeat until), user inter-
activity (e.g. input sound), and data representation (e.g. variables,
lists).

The objective of this study was to examine Dr. Scratch’s method
for measuring computational thinking. The motivation for this
study arises from the novelty of applying our method, particularly
on such a large dataset. Utilizing a publicly available dataset con-
taining over 230,000 Scratch projects, a latent variable model was
proposed. The model considers computational thinking as a latent
variable with seven indicators. Confirmatory factor analysis was
used to assess the quality of the proposedmodel. Our results showed
that five components of computational thinking were measured
satisfactorily, while two were below the accepted level.

2 BACKGROUND
After the creation of Scratch, researchers and educators have started
analyzing Scratch programs. However, evaluating programs in
Scratch proved to be challenging due to the platform’s block-based,
visual format and the wide range of programming approaches used

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.11
ISBN 978-961-286-914-4

49

https://doi.org/10.18690/um.feri.6.2024.11

Gal Bubnič, Tomaž Kosar, and Bostjan Bubnic

Computational
Thinking

Abstraction Parallelism Logic
Flow

Control
User

Interactivity
Data

Representation
Synchronization

0.63

0.65
0.71

0.740.420.58

0.66

Figure 1: Latent variable model of Dr. Scratch with factor loadings derived from confirmatory factor analysis (CFA)

by beginners. These challenges led to the creation of tools for assess-
ing Scratch programs. Hairball [2] was one of the first tools created,
designed to analyze the code of Scratch projects for common pro-
gramming patterns and potential coding issues. Following Hairball,
Ninja Code Village [17] emerged as a platform, which offered more
interactive feedback by helping users improve their coding skills
through identifying areas in their projects that could be optimized
or corrected. Finally, Dr. Scratch [13] was introduced to provide
a more comprehensive evaluation, assessing computational think-
ing skills across seven indicators: abstraction, parallelism, logic,
synchronization, flow control, user interactivity, and data represen-
tation. Each component is measured on a scale from 0 to 3, with 0
being the lowest and 3 the highest. The final score is the sum of all
7 components, thus ranging from 0 to 21 [13].

Several studies have investigated the quality of the Dr. Scratch
metrics. A study by Moreno-León et al. [14] compared Dr. Scratch
scores with Halstead’s metrics and McCabe Cyclomatic Complexity,
where vocabulary and length were the selected measures. Ninety-
five Scratch projects were selected for the study, with a wide range
of Dr. Scratch scores, varying from 5 to 20. According to the results,
both complexity measures exhibited a strong positive correlation
with the scores from Dr. Scratch. Another study by Moreno-León
et al. [13] examined the ecological validity of Dr. Scratch. The
sample size consisted of 109 participants, aged between 10 and 14
years, from 8 different Spanish schools. Each participant submit-
ted a Scratch project to Dr. Scratch first. Based on the feedback,
students could improve their Scratch projects using the recommen-
dations and suggestions provided by the tool. The results showed a
statistically significant score increase based on the feedback by Dr.
Scratch. Convergent validity of Dr. Scratch was studied by Moreno-
León et al. [16]. Fifty-three Scratch projects were evaluated by 16
specialists with a solid understanding of computer science educa-
tion in the first stage of the experiment. More than 450 evaluations
were conducted. The same projects were graded by Dr. Scratch
in the second stage. A strong correlation was identified between
scores from Dr. Scratch and evaluations by computer science ed-
ucation specialists. Last but not least, a discriminant validity of
Dr. Scratch was demonstrated by Moreno-León et al. [15], who
examined 250 Scratch projects, which were segmented into five
categories, including games, art, music, stories, and animations.

3 METHOD
To assess the quality of the Dr. Scratch measurement scale, we first
obtained a dataset of Scratch projects 1, which was constructed
by Aivaloglou et al. [1]. The authors collected data from more
than 250,000 Scratch projects, from more than 100,000 different
users. After collecting data from the Scratch repository, authors
also analyzed the collected projects with Dr. Scratch. As a result, the
dataset comprises 231,050 Scratch projects, which were successfully
evaluated using Dr. Scratch metrics [1].

After obtaining the dataset, a Grades table was extracted. A la-
tent variable model was constructed based on the data in the Grades
table. Latent variable models are statistical models that relate a set
of unobservable (latent) variables and a set of observable (indicator)
variables [4]. In our study, computational thinking was introduced
as a latent variable with seven indicators, namely, abstraction, par-
allelism, logic, synchronization, flow control, user interactivity, and
data representation. We used confirmatory factor analysis to ex-
amine the validity, reliability, and factor structure of the proposed
measurement model. The model is presented in Figure 1.

4 DATA ANALYSIS AND RESULTS
Confirmatory factor analysis (CFA)was conducted using IBMAMOS
26. We used Microsoft Excel and IBM SPSS for calculating means,
standard deviations, composite reliabilities (CR), and average vari-
ances extracted (AVE). The model with estimates for factor loadings
is presented in Figure 1.

The 𝜒2 value (𝜒2 (14) = 66,057) was significant, and the RMSEA
was greater than the suggested threshold of 0.08 (RMSEA = 0.143).
This would suggest that we had no statistical support for accepting
the proposed model. However, in line with representative literature
[e.g., 3], 𝜒2 may not be the only appropriate standard, particularly
when sample sizes are large. Accordingly, we used additional fit
indices to assess the goodness of fit, including GFI, RMR, NFI, IFI,
and CFI. GFI was above 0.9 and RMR was lower than 0.1, which
indicated a good fit of our model [8]. Furthermore, NFI, IFI, and CFI
were all slightly below 0.9, but still acceptable. According to these
results, we concluded that the overall model-data fit was acceptable.
The measurement model fit indices are presented in Table 1.

1https://github.com/TUDelftScratchLab/ScratchDataset

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

50

Seven Components of Computational Thinking: Assessing the Quality of Dr. Scratch Metrics Using 230,000 Scratch Projects

Table 1: Model fit indices for Dr. Scratch model

𝜒2 df p (𝜒2) GFI RMR NFI IFI CFI RMSEA
66,057 14 0.001 0.919 0.058 0.870 0.870 0.870 0.143

df degrees of freedom, GFI goodness of fit index, RMR root mean square residual, NFI normed fit index, IFI incremental fit index, CFI comparative fit index, RMSEA root mean
square error of approximation

Table 2: Means, Standard Deviations, Loadings, Composite Reliabilities (CR), and Average Variances Extracted (AVE) for Dr.
Scratch model

Latent Indicator M SD Loadings CR AVE

CT

Abstraction 1.057 0.796 0.63

0.821 0.402

Parallelism 1.148 1.079 0.65
Logic 0.756 1.092 0.71
Synchronization 1.233 1.074 0.66
Flow Control 1.887 0.610 0.58
User Interactivity 1.563 0.530 0.42
Data Representation 1.273 0.682 0.74

The standardized factor loadings, composite reliability (CR), and
average extracted variance (AVE) are presented in Table 2. Standard-
ized factor loadings for abstraction, parallelism, synchronization,
logic, and data representation were all higher than 0.6, varying from
0.63 to 0.74. Such results pointed toward satisfactory convergent
validity of these components [7]. On the other hand, factor loadings
for user interactivity and flow control were below the acceptable
level of 0.6. CR was higher than the suggested threshold of 0.8 (CR =
0.82), which confirmed the reliability of the computational thinking
construct [7]. On the other hand, AVE was lower than 0.5 (AVE =
0.40), which indicated that the convergent validity of the proposed
measurement model might be weaker than anticipated.

5 DISCUSSION
Dr. Scratch is an assessment tool for evaluating Scratch projects
based on seven components of computational thinking. This study
employed confirmatory factor analysis to evaluate the quality of
the Dr. Scratch measurement scale. To construct a measurement
model, computational thinking was introduced as a latent vari-
able with seven indicators, corresponding to seven components of
computational thinking used by Dr. Scratch. While several studies
have previously examined validity and reliability of Dr. Scratch on
smaller samples, our study utilized a large sample of more than
230,000 Scratch projects.

According to the results of the confirmatory factor analysis, fac-
tor loadings of abstraction, parallelism, synchronization, logic, and
data representation were above the selected threshold of 0.6. Such a
threshold indicates that at least 36% of the variance in the aforemen-
tioned components is explained by computational thinking. In this
context, we consider that five computational thinking components
were measured satisfactorily. In addition, Hair et al. [7] suggested
that, ideally, a factor loading should be at least 0.7. In this case, 49%
of the variance in the observed variable is explained by the latent.
According to our results, only data representation and logic surpass
the 0.7 threshold. In this context, data representation tends to be
the prime component on the Dr. Scratch scale.

Factor loading for flow control was slightly below the threshold
(0.58), while a value for user interactivity was only 0.42. Conse-
quently, only 18% of the variance in the user interactivity is ex-
plained by computational thinking. Accordingly, flow control and
user interactivity where not measured effectively. User interactivity
tends to be the weakest component on the Dr. Scratch scale.

Based on the results, CR of the proposed model (CR = 0.82)
demonstrated sound reliability and high level of internal consis-
tency. This suggests that seven components consistently measure
computational thinking. However, AVE was below 0.5 (AVE = 0.4),
showing that, on the average, only 40% of the variance of the com-
putational thinking components is explained by computational
thinking. Values of CR and AVE revealed a discrepancy between
internal consistency and the amount of variance explained by the
computational thinking. Such a discrepancy could be attributed to:
low indicator quality, low factor loadings or measurement errors
[6]. Regarding the low indicator quality, the high CR suggests that
the indicators are reliably measuring the same construct, but the
low AVE indicates that the indicators may not be capturing the
construct very well. This means that while Dr. Scratch assessment
items are consistent with each other, they do not explain much of
the variance of the computational thinking. Concerning potential
low factor loadings, loadings for user activity and flow control were
lower than anticipated. Since AVE is a function of the squared factor
loadings, lower loadings can result in a lower AVE even when CR
is high. Regarding the potential presence of a measurement error, a
lower than expected AVE could be due to high measurement error
in the indicators. Namely, even if the indicators are internally con-
sistent, significant measurement errors can reduce the proportion
of variance explained by the construct.

5.1 Limitations
The results are primarily limited to the data extracted from publicly
available dataset, which includes only projects submitted into the
Scratch repository up until 2017. It is possible that the programming
habits of Scratch users have evolved over time. Another limitation

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

51

Gal Bubnič, Tomaž Kosar, and Bostjan Bubnic

exists, because Scratch projects were not randomly selected from
Scratch repository. Instead, a scraper program collected the most
recent projects available at the time it was running [1]. According
to Aivaloglou et al. [1], this limitation was somehow mediated
by collecting a large dataset, which comprises around 1.3% of 19
million shared Scratch projects.

Another limitation of our approach stems from the fact that Dr.
Scratch was designed as a formative assessment, rather than a diag-
nostic tool or measurement scale. To fully and comprehensively as-
sess computational thinking, Dr. Scratch needs to be supplemented
with other types of tools, such as a computational thinking test
[18].

6 CONCLUSION
This study evaluated the quality of Dr. Scratch measurement scale
using a publicly available dataset with more than 230,000 Scratch
projects submitted to the Scratch repository up until 2017. Accord-
ing to the results of the confirmatory factor analysis, five computa-
tional thinking components were measured satisfactorily, whereas
two were below the accepted level. In addition, lower than antic-
ipated average variance extracted indicated potential issues with
the measurement model, such as weak indicators. To address these
concerns, we plan to further investigate Dr. Scratch scale in the
future, using the same dataset. Exploratory factor analysis could be
a valuable starting point for potential scale refinement. In addition,
it would be beneficial to conduct the same analyses on Scratch
projects submitted after 2017 and compare the results.

ACKNOWLEDGMENTS
The authors would like to acknowledge Marcos Román-González
and Gregorio Robles, the creators of Dr. Scratch, for their valuable
suggestions to improve this work.

REFERENCES
[1] Efthimia Aivaloglou, Felienne Hermans, Jesús Moreno-León, and Gregorio Rob-

les. 2017. A dataset of scratch programs: scraped, shaped and scored. In 2017
IEEE/ACM 14th International Conference on Mining Software Repositories (MSR).
IEEE, 511–514.

[2] Bryce Boe, Charlotte Hill, Michelle Len, Greg Dreschler, Phillip Conrad, and
Diana Franklin. 2013. Hairball: Lint-inspired static analysis of scratch projects. In
Proceeding of the 44th ACM technical symposium on Computer science education.
215–220.

[3] Kenneth A Bollen. 1989. Structural equations with latent variables. John Wiley &
Sons.

[4] Kenneth A Bollen. 2014. Structural equations with latent variables. John Wiley &
Sons.

[5] Bostjan Bubnic and Tomaz Kosar. 2019. Towards a Consensus about Computa-
tional Thinking Skills: Identifying Agreed Relevant Dimensions.. In PPIG. 69–83.

[6] Claes Fornell and David F Larcker. 1981. Evaluating structural equation mod-
els with unobservable variables and measurement error. Journal of marketing
research 18, 1 (1981), 39–50.

[7] J Hair, B Black, B Babin, and R Anderson. 2010. Multivariate data analysis, 7th
Edition. Pearson Prentice Hall.

[8] Litze Hu and Peter M Bentler. 1999. Cutoff criteria for fit indexes in covariance
structure analysis: Conventional criteria versus new alternatives. Structural
equation modeling: a multidisciplinary journal 6, 1 (1999), 1–55.

[9] Filiz Kalelioglu, Yasemin Gülbahar, and Volkan Kukul. 2016. A framework for
computational thinking based on a systematic research review. Baltic Journal of
Modern Computing 4, 3 (2016), 583.

[10] Michael Lodi and SimoneMartini. 2021. Computational thinking, between Papert
and Wing. Science & education 30, 4 (2021), 883–908.

[11] Joseph A Lyon and Alejandra J. Magana. 2020. Computational thinking in higher
education: A review of the literature. Computer Applications in Engineering
Education 28, 5 (2020), 1174–1189.

[12] Ana Melro, Georgie Tarling, Taro Fujita, and Judith Kleine Staarman. 2023. What
else can be learned when coding? A configurative literature review of learning
opportunities through computational thinking. Journal of Educational Computing
Research 61, 4 (2023), 901–924.

[13] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2015. Dr.
Scratch: Automatic analysis of scratch projects to assess and foster computational
thinking. RED. Revista de Educación a Distancia 46 (2015), 1–23.

[14] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2016.
Comparing computational thinking development assessment scores with soft-
ware complexity metrics. In 2016 IEEE global engineering education conference
(EDUCON). IEEE, 1040–1045.

[15] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. 2017. To-
wards data-driven learning paths to develop computational thinking with scratch.
IEEE Transactions on Emerging Topics in Computing 8, 1 (2017), 193–205.

[16] Jesús Moreno-León, Marcos Román-González, Casper Harteveld, and Gregorio
Robles. 2017. On the automatic assessment of computational thinking skills:
A comparison with human experts. In Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. 2788–2795.

[17] Go Ota, Yosuke Morimoto, and Hiroshi Kato. 2016. Ninja code village for scratch:
Function samples/function analyser and automatic assessment of computational
thinking concepts. In 2016 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). IEEE, 238–239.

[18] Marcos Román-González, Jesús Moreno-León, and Gregorio Robles. 2019. Com-
bining assessment tools for a comprehensive evaluation of computational think-
ing interventions. Computational thinking education (2019), 79–98.

[19] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

52

Machine Learning Approaches to Forecasting the Winner of the
2024 NBA Championship

Hana Zadravec
hana.zadravec@student.um.si

University of Maribor,
Faculty of Electrical Engineering and Computer Science,

Maribor, Slovenia

ABSTRACT
Forecasting the winner of the NBA Championship has become
more important as there is a large amount of data and the league’s
popularity is increasing. This research investigates techniques in
machine learning to predict the winner of the 2024 NBA Champi-
onship. Three methods - random forest regression, SVR, and linear
regression - are used and assessed. The process includes scrap-
ing data from Basketball Reference, then analyzing and selecting
features. Findings show the leading projected teams for 2024 ac-
cording to each model, with random forest regression showing the
best prediction. Analysis of feature importance emphasizes critical
predictors like team quality rating and player performance metrics.
The research highlights the capabilities of machine learning in pre-
dicting sports outcomes and indicates areas for additional research
to improve predictions.

KEYWORDS
forecasting, basketball prediction, statistical analysis, NBA Cham-
pionship, machine learning

1 INTRODUCTION
Forecasting the winner of the NBA championship has become in-
creasingly accessible for sports analysts, bettors, and enthusiasts
alike. This endeavor prompts the exploration and application of
sophisticated analytical methodologies to enhance predictive preci-
sion. The necessity formore precise prognostications is underscored
by recognizing the NBA’s status as the most extensively followed
professional sports league in 2022, engaging 2.49 billion individuals
[4]. Comprising 30 teams in North America, the NBA stands as
a premier basketball league showcasing elite players globally [5].
With an annual revenue surpassing $10 billion, the league continu-
ously accumulates a wealth of data crucial for analysts and strategic
planning within sports organizations seeking competitive advan-
tages through data analysis. This data often informs pivotal on-field
decisions regarding team formations and gameplay strategies, such
as offensive or defensive approaches. Such insights can significantly
impact match outcomes. Moreover, this wealth of data facilitates
individual game outcome predictions in the realm of NBA contests.
Ahead of each match, numerous analysts proffer their forecasts
for the victor. These predictions are scrutinized by commentators
on NBA platforms who provide pre-game analysis. Furthermore, a
growing betting industry has arisen around prognosticating NBA
matchups. This sector expands annually with a key emphasis on
developing precise models adept at handling pertinent metrics in

NBA games effectively. Hence, the increasing integration of ma-
chine learning models in sports represents a pivotal and adaptable
strategy moving forward.

The research motivation comes from the necessity to improve
sports analytics in the NBA, aiming for more precise predictions
to benefit strategic decisions and operations in the betting sector.
Due to the constraints of current models that often overlook im-
portant metrics, this research aims to enhance prediction accuracy
by utilizing different machine-learning techniques. This study also
seeks to address a deficiency in the literature, as it seldom focuses
on predicting the champion of the entire championship.

This article examines forecasting NBA championship winners by
utilizing three machine learning techniques: random forest, support
vector regression (SVR), and linear regression. Section 2 will exam-
ine pertinent studies in the field of predicting sports performance,
specifically honing in on NBA results. In Section 3, we provide a
comprehensive explanation of the techniques utilized for gathering
and examining data, as well as the implementation of the specified
models. Next, we will discuss the results and evaluate how well
each technique worked in Section 4. Section 5 explores the impor-
tance of our discoveries for future research in this area. Finally, our
analysis leads to conclusions in Section 6.

2 LITERATURE REVIEW
Advancements in predictive modeling for basketball are increas-
ingly important within sports analytics. With the growing inte-
gration of machine learning in this field, researchers continue to
explore strategies for improving predictions. This section reviews
studies focused on forecasting basketball outcomes using various
machine-learning techniques.

Yongjun et al. [3] propose using data analysis to forecast NBA
team performance by combining statistical regression methods to
predict the relationship between game results and winning chances.
They apply Data Envelopment Analysis (DEA) to identify optimal
performance standards, evaluating their process with the Golden
State Warriors, which demonstrated high predictive accuracy. The
study suggests enhancing predictions by incorporating rival tactics
and expanding the model for game-level forecasts for each player.

Bunker and Susnjak [1] analyze the use of machine learning
methods for forecasting match outcomes in team sports. They eval-
uate various algorithms, including regressionmodels, decision trees,
and neural networks, assessing their predictive success with past
data and player statistics. The study emphasizes advancements in
machine learning that enhance accuracy and the challenges faced in

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.12
ISBN 978-961-286-914-4

53

https://doi.org/10.18690/um.feri.6.2024.12

Hana Zadravec

practical applications. It also highlights the importance of data qual-
ity and feature selection in improving sports analytics, providing
valuable insights for future research.

Yao [8] assesses how well neural networks predict outcomes
compared to traditional regression models using past NBA data.
The results indicate that regression models provide straightforward
explanations, while neural networks are better at capturing intricate
patterns, leading to increased precision. This research highlights
how advanced machine learning methods can be utilized in sports
analysis to improve performance prediction strategies.

The study byHuang and Lin [2] introduces an innovativemethod
for predicting game results using regression tree models. The writ-
ers examine different elements impacting game results, like player
data and team interactions, to create a targeted predictive system
for the Golden State Warriors. Their research shows that regres-
sion trees can capture intricate connections in the data, leading to
precise predictions of scores.

Thabtah et al. [7] explore the use of machine learning to forecast
NBA game outcomes in their research. Numerous learning models,
such as decision trees, artificial neural networks, and Naive Bayes,
have been applied. After analyzing the data, it was discovered
that important characteristics including total rebounds, defensive
rebounds, three-point percentage, and the quantity of made free
throws are essential for accurately predicting the outcome of games.

3 METHODOLOGY
In this section, we provide a comprehensive explanation of the
approach utilized for examining NBA data in our research. All
analyses were performed using a Jupyter notebook. The primary
objective was to collect, process, and analyze NBA data to develop
models for forecasting outcomes for the 2024 NBA season.

3.1 Data Collection
The initial step involved gathering data through web scraping meth-
ods. We sourced data from the Basketball Reference website [6],
which offers extensive statistics for every NBA season up to the
present day.

Web scraping was chosen for its efficiency in collecting large
volumes of data without manual input. We used Python libraries
such as BeautifulSoup and requests to retrieve HTML content from
the web pages. The pertinent data, including player stats, team stats,
and game outcomes, were extracted and organized into CSV files
for ease of manipulation in subsequent analyses.

3.2 Data Preprocessing
Following data collection, we performed meticulous processing to
ensure data quality and consistency. This included:

• We filled missing NaN values with the median to preserve
the dataset and minimize their impact on the analysis.

• Standardizing the data as needed to maintain uniformity
across the dataset.

• Normalizing features to bring them into a common scale,
which is especially important for algorithms sensitive to
the magnitude of input features.

• Encoding categorical variables into numerical format using
label encoding, allowing for their inclusion in machine
learning models.

• Removing duplicates to eliminate redundancy in the dataset
and improve model performance.

3.3 Feature Selection
To enhance model performance, we addressed multicollinearity
by filtering features based on their correlation. Pearson’s correla-
tion coefficient was used to assess the linear relationship between
features. The coefficient 𝑟 is calculated as:

𝑟 =
cov(𝑋,𝑌)
𝜎𝑋𝜎𝑌

(1)

where cov(𝑋,𝑌) is the covariance between variables 𝑋 and 𝑌 ,
and 𝜎𝑋 and 𝜎𝑌 are their standard deviations. Pearson’s 𝑟 ranges
from -1 to 1:

• 𝑟 = 1 indicates a perfect positive linear relationship,
• 𝑟 = −1 indicates a perfect negative linear relationship,
• 𝑟 = 0 indicates no linear relationship.

We set a correlation threshold of 0.9, identifying features with
an absolute value of Pearson’s 𝑟 above this threshold as highly
correlated. Features exhibiting high correlation were removed to
reduce redundancy and mitigate multicollinearity, thus enhancing
model interpretability and reliability.

Additionally, we utilized Principal Component Analysis (PCA)
as a dimensionality reduction technique to transform the feature
space, allowing us to reduce the number of features while retaining
essential information, further enhancing model performance.

3.4 Model Selection and Data Splitting
Data was divided into training and testing sets as follows:

• Training Data: Data from the 2005 to 2023 NBA seasons.
• Testing Data: Data from the 2024 NBA season.

We employed three machine learning models to forecast NBA
game outcomes:

3.4.1 Support Vector Regression (SVR). Reason for Selection:
SVR is selected for its capability to handle complex, non-linear
relationships between features and the target variable (game out-
come). SVR is effective in scenarios where interactions between
variables are intricate.

Advantages: SVR finds optimal hyperplanes to minimize pre-
diction errors within a specified margin, capturing subtle patterns
in the data.

3.4.2 Random Forest Regression. Reason for Selection: Random
Forest regression was selected for its ensemble method, combining
decision trees to improve predictions and manage overfitting. It
effectively captures complex interactions in NBA data.

Advantages: This model handles high-dimensional data, iden-
tifies key features, and is robust against outliers. It also models
non-linear relationships with minimal tuning, making it versatile
for both categorical and continuous variables in sports analytics.

3.4.3 Linear Regression. Reason for Selection: Linear Regression
is chosen as a baseline model for predicting NBA champions due

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

54

Machine Learning Approaches to Forecasting the Winner of the 2024 NBA Championship

to its simplicity and interpretability, clarifying how features affect
winning likelihood.

Advantages: It offers easy interpretation of feature impacts,
with coefficients showing expected outcome changes for unit shifts
in predictors. Minimal computational resources are needed for quick
training and evaluation, and it serves as a reference for comparing
more complex models.

3.5 Experiment
Our experiment focuses on NBA data from the 2005 season onward,
due to significant changes in gameplay and statistical tracking. Prior
to 2005, the game was more physical and lacked modern statistics
like three-point shooting (3P%), which were introduced post-1990.

We used data from the 2005 to 2023 NBA seasons to train our
models, which included 49 features related to team and player
performance. Some of the features are:

• pre_season_odds: The odds assigned to each team before
the season starts, indicating their chances of winning the
championship.

• team_rating_custom: A custom rating for each team based
on various performance metrics, reflecting their overall
strength.

• FG%: Field Goal Percentage, representing the ratio of field
goals made to field goals attempted, a key indicator of shoot-
ing efficiency.

• 3P%: Three-Point Percentage, indicating the ratio of three-
point field goals made to three-point attempts, measuring
a team’s effectiveness from beyond the arc.

• max_player_rating_custom: A custom rating for the highest-
rated player on each team, capturing the impact of star
players.

The target variable for prediction is champion_share, which
represents the chances of a teamwinning the NBAChampionship in
the 2024 season. This continuous variable can take values between
0 and 1, where a higher value indicates a greater probability of a
team being crowned champion. In the dataset, known winners from
previous seasons are marked with a value of 1.0, signifying their
championship status, while teams that did not win are represented
by lower values closer to 0.

3.5.1 Model Parameters. Default parameters were used for all mod-
els:

• SVR: The Support Vector Regression (SVR) employs a Ra-
dial Basis Function (RBF) kernel, which is effective for cap-
turing non-linear relationships. The regularization param-
eter 𝐶 = 1 controls the trade-off between achieving a low
training error and a low testing error, while gamma 𝛾 = 0.1
determines the influence of individual training examples
on the decision boundary.

• Random Forest: This model consists of 100 trees with
no maximum depth specified, allowing each tree to grow
fully. This approach enhances model accuracy by averag-
ing predictions from multiple trees, reducing the risk of
overfitting.

• Linear Regression: The linear regression model uses de-
fault parameters, applying ordinary least squares to esti-
mate coefficients without regularization. This simplicity
allows it to fit the data by minimizing the residual sum of
squares, serving as a benchmark for more complex models.

3.5.2 Evaluation Metrics. Model performance was evaluated using
the following metrics:

• Mean Absolute Error (MAE):Measures the average mag-
nitude of prediction errors. It is defined as:

MAE =
1
𝑛

𝑛∑︁
𝑖=1
|𝑦𝑖 − 𝑦𝑖 | (2)

where 𝑦𝑖 represents the actual value, 𝑦𝑖 represents the pre-
dicted value, and 𝑛 is the number of observations.

• Mean Squared Error (MSE):Measures the average squared
difference between predicted and actual values. It is defined
as:

MSE =
1
𝑛

𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (3)

where 𝑦𝑖 represents the actual value, 𝑦𝑖 represents the pre-
dicted value, and 𝑛 is the number of observations.

4 RESULTS
The results section provides a comparison of the models based on
MAE and MSE metrics. Table and figure illustrate the performance
of each model and highlight predictions for the top teams in the
2024 NBA season.

4.1 Model Comparison
Figure 1 presents the comparison of MSE and MAE across the three
models used in our study. The Random Forest model achieved the
lowest MSE and MAE, indicating superior performance in predict-
ing NBA outcomes compared to SVR and Logistic Regression.

Figure 1: Comparison of MSE and MAE for each model.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

55

Hana Zadravec

4.2 Model Predictions
Table 1 presents a summary of the predicted top teams for the 2024
NBA Championship as determined by each model, along with their
corresponding champion_share values. These values indicate the
estimated probability, expressed as a decimal, of each team winning
the NBA Championship in the 2024 season.

Table 1: Top 3 Predicted Teams for 2024 NBA Championship

Model Top Predicted
Teams

Predicted
champion_share

SVR Milwaukee Bucks 0.8691
Boston Celtics 0.7510
Denver Nuggets 0.6726

Random Forest Boston Celtics 0.6485
Milwaukee Bucks 0.5643
Minnesota Timber-
wolves

0.5527

Linear Regression Denver Nuggets 0.6706
Milwaukee Bucks 0.6448
Boston Celtics 0.6227

5 DISCUSSION
In this study, we assessed the performance of three predictive mod-
els—Random Forest, SVR, and Linear Regression—regarding the
NBA Championship outcome for the 2024 season. The results reveal
several insights and distinctions between these models.

5.1 Random Forest Model
The Random Forest model achieved the lowest MSE and MAE in
predicting the NBA Championship outcome. Its ability to capture
complex feature interactions enabled it to identify key determinants
of the championship. Notably, it predicted the Boston Celtics as
the 2024 season winners, aligning with the actual outcome and
validating its predictive performance.

5.2 Support Vector Regression
Although the SVRmodel did not perform as well as the Random For-
est and Logistic Regression models in terms of predictive metrics, it
was effective in revealing intricate relationships between features.
The SVR model assigned high predicted probabilities to both the
Milwaukee Bucks and Boston Celtics, reflecting their strong perfor-
mances throughout the season. However, the actual season outcome
highlighted significant challenges for the Milwaukee Bucks, such
as injuries to key players and a mid-season coaching change. These
factors likely impacted their final standing, demonstrating that
while SVR provided valuable insights, it may not fully account for
unforeseen disruptions and their effects.

5.3 Linear Regression
Linear Regression, while not as effective as the Random Forest
model in predictive metrics, still provided valuable insights. The
model’s predictions for the Boston Celtics and Denver Nuggets as
strong contenders aligned with the final outcome of the champi-
onship. This highlights the model’s utility in scenarios where more

complex methods might be less interpretable. Despite its limita-
tions, Linear Regression contributed to a broader understanding of
potential championship winners.

5.4 Real-World Outcome
At the end of the 2024 season, the Boston Celtics were confirmed
as the champions, validating the Random Forest model’s predic-
tion and partially supporting the SVR model’s forecasts. Despite
high values assigned to the Milwaukee Bucks by the SVR model,
their performance was hindered by significant issues such as player
injuries and a coaching change, which affected their final stand-
ing. The Minnesota Timberwolves, who were also predicted to be
in contention, remained competitive until the end of the season,
demonstrating that our models were accurate in predicting some
outcomes.

6 CONCLUSION
This research assessed various machine learning techniques in fore-
casting the 2024 NBA season such as SVR, Linear Regression, and
Random Forest models. The Random Forest model outperformed
others, showing its capability to deal with intricate feature rela-
tionships by achieving the lowest MSE and MAE. Even though
SVR and Logistic Regression were not as accurate, they still offered
important information on team performance, highlighting the dif-
ficulties encountered by the Milwaukee Bucks because of injuries
and coaching adjustments. This study highlights the significance
of forecasting the whole season instead of single games.

One noteworthy aspect of this study is the emphasis on mak-
ing predictions for the entire season, as opposed to just individual
games. Our results indicate the importance of integrating current
data and regularly updating it to enhance the accuracy of predic-
tions. Future research should aim to integrate real-time data with
advanced modeling techniques to more effectively adapt to the
dynamic conditions and changes that occur throughout the NBA
season.

In summary, incorporating various machine learning models and
adjusting predictions with real-time data can improve the precision
of sports predictions.

REFERENCES
[1] Rory Bunker and Teo Sušnjak. The application of machine learning techniques for

predicting match results in team sport: A review. Journal of Artificial Intelligence
Research, 75:1–22, 2022.

[2] Mei-LingHuang and Yi-Jung Lin. Regression treemodel for predicting game scores
for the golden state warriors in the national basketball association. Symmetry,
12(5):835, 2020.

[3] Y. Li, L. Wang, and F. Li. A data-driven prediction approach for sports team
performance and its application to national basketball association. Omega, page
102123, 2019.

[4] National Basketball Association. About the nba. https://www.nba.com/news/
about, 2024. Accessed: 2024-04-30.

[5] PlayToday. Nba viewership statistics. https://playtoday.co/blog/stats/nba-
viewership-statistics/, 2024. Accessed: 2024-04-30.

[6] Basketball Reference. Basketball reference. https://www.basketball-reference.
com/, 2024. Accessed: 2024-04-30.

[7] Fadi Thabtah, Ling Zhang, and Nadia Abdelhamid. Nba game result prediction
using feature analysis and machine learning. Annals of Data Science, 6(1):103–116,
2019.

[8] Alan Yao. Comparing neural and regression models to predict nba team records.
Frontiers in Artificial Intelligence and Applications, 320:421–428, 2019.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

56

Hit Song Prediction Through Machine Learning and Spotify Data
Andrej Natev

89221050@student.upr.si
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Koper, Slovenia

ABSTRACT
This study predicts hit songs using metadata from the Spotify
API[8]. The dataset includes over 20 genres, each with 40 songs,
equally divided between hits and flops, gathered using spotipy[7].
Prediction is based on the popularity feature, rated from 0-100.
Models were trained on features like danceability, energy, loud-
ness, speechiness, valence, and tempo. The dataset was split using
train_test_split (10%, 20%, 33%) and kfold cross-validationwith k val-
ues of 2, 5, and 10. Models were trained, evaluated, and tested, with
kfold cross-validation showing the best accuracy and the least over-
fitting. Scikit-learn’s classifiers, ensemble models, and MLPClas-
sifier were used, with PassiveAggressiveClassifier and AdaBoost
showing 60% accuracy. Ensemble methods like extra trees and ran-
dom forest, along with neural networks, performed well. Gaussian
Process, Naive Bayes, and ridge classifiers stood out among stan-
dard models. These results suggest that enhancedmodels, especially
neural networks and decision tree ensembles, could improve hit
prediction. Future work may explore frequency and lyric analysis.

KEYWORDS
music, genre, song, Spotify, machine learning, classification, ensem-
ble model, support vector, neural networ, artificial intelligence

1 INTRODUCTION
This research delves into the intersection of music and data science,
leveraging the Spotify Web API[8] in conjunction with the Spotipy
library[7], and machine learning models. By harnessing these tools,
the study[2] aims to extract and analyze track data across various
genres. The primary objective is to find machine learning models
capable of categorizing songs into two distinct groups: "hit" and
"flop", based on a range of audio features. Popularity is a feature in
Spotify’s Web API[8], that represents a song’s popularity the past
three days from the day of extraction. It is an integer that ranges
from 0-100, such that a flop is any song below 60 popularty and
everything above is a hit song.

2 MATERIALS, MODELS, METHODS
2.1 Materials
In this study[2], firslt two datasets from Kaggle were utilized: "Most
Streamed Songs 2023"[6] and "30000 Spotify Songs"[5]. These datasets
provided a rich source of music metadata for analysis, with one of
them being a training dataset and the other a evaluating dataset.
Later, both of them were discarded because of the chance of over-
fitting. So then Spotipy[7], a Python library, was used for data
extraction from the Spotify Web API[8]. Pandas and NumPy were
employed for data manipulation, while the Scikit-learn[3] library

Figure 1: Box Plot for Feature Outliers

facilitated feature engineering, preprocessing, data splitting, model
implementation, and evaluation. And also MatPlotLib was used to
be able to visually analyze the features and to present the results.

2.2 Most Accurate Models
2.2.1 MLPClassifier with ReLU and Logistic Activation Functions.
The MLPClassifier is a neural network model with multiple layers
of interconnected nodes. It uses the ReLU (Rectified Linear Unit)
activation function, which outputs the input directly if positive or
zero otherwise, helping to avoid the vanishing gradient problem.
The logistic (sigmoid) activation function, which maps the input
into a range between 0 and 1, is particularly useful for binary classi-
fication tasks. These activation functions enable the MLPClassifier
to capture complex data patterns, improving prediction accuracy.[3]

2.2.2 ExtraTreesClassifier with Gini and Entropy Criteria. The Ex-
traTreesClassifier is an ensemble method that builds many decision
trees using randomized splits of the training data. It uses Gini im-
purity or entropy as criteria to evaluate the quality of splits within
the trees. Gini measures the likelihood of misclassification, while
entropy measures uncertainty. By averaging predictions from mul-
tiple trees, ExtraTreesClassifier reduces overfitting and improves
generalization, making it a robust choice for classification tasks.[3]

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.13
ISBN 978-961-286-914-4

57

https://doi.org/10.18690/um.feri.6.2024.13

Andrej Natev

Figure 2: Bar Graph for TTS Accuracy Percentages

2.2.3 GradientBoostingClassifier. GradientBoostingClassifier in-
crementally builds a strong classifier by sequentially adding weak
learners, typically decision trees. Each new model is trained on the
residual errors of the previous models, allowing the ensemble to
focus on earlier mistakes. This process iteratively reduces error,
enhancing accuracy and robustness. GradientBoostingClassifier is
particularly effective in complex prediction tasks requiring high
precision.[3]

2.2.4 PassiveAggressiveClassifier. PassiveAggressiveClassifier is a
linear model suited for large-scale learning tasks, especially in
online learning. It updates parameters only when misclassification
occurs (passive) and aggressively corrects errors when they do. This
combination allows the model to adapt quickly, making it efficient
for real-time classification tasks where speed is crucial.[3]

2.2.5 AdaBoostClassifier. AdaBoostClassifier is an ensemblemethod
that builds a strong classifier by combiningmultiple weak classifiers.
It adjusts the weights of misclassified instances in each iteration,
focusing subsequent classifiers on difficult cases. By concentrating
on previous errors, AdaBoostClassifier progressively improves ac-
curacy, making it a powerful tool for various classification tasks.[3]

2.2.6 RidgeClassifier. RidgeClassifier is a linear model that uses
L2 regularization to prevent overfitting by penalizing the magni-
tude of coefficients. This regularization is particularly useful in
high-dimensional spaces where features outnumber observations.
RidgeClassifier balances bias and variance, making it effective for
classification tasks requiring generalization to unseen data.[3]

2.2.7 LogisticRegression. LogisticRegression is a linear model for
binary classification tasks. It models the probability of class mem-
bership by applying the logistic function to a linear combination of
input features. Trained by maximizing the likelihood of observed

data, LogisticRegression effectively handles cases where the feature-
target relationship is approximately linear, making it widely used
for various classification scenarios.[3]

2.2.8 SVC (Linear Kernel). SVC with a linear kernel is a supervised
learning model that constructs a hyperplane in a high-dimensional
space to separate classes. The linear kernel computes the dot prod-
uct of feature vectors, making it effective for linearly separable
data. By maximizing the margin between classes, SVC with a linear
kernel provides reliable and interpretable classification results.[3]

2.3 Methods
2.3.1 Data Understanding. The first step in our methodology in-
volved understanding the datasets and the task at hand. Initially,
songs were obtained from the Spotify Web API[8] based on their
popularity ratings, ensuring a balanced representation of hits and
flops. The popularity feature served as a crucial criterion for cat-
egorizing songs as hits or flops, with hits defined as songs with
a popularity score of 60 or above, and non-hits as songs with a
popularity score below 60.

2.3.2 Data Extraction. Data extraction was conducted using the
Spotipy library along with the Spotipy-random add-on. The extrac-
tion process involved sourcing track data directly from the Spotify
Web API[8]. In addition to leveraging Spotipy-random, genres were
carefully selected to ensure diversity and fairness in the broad
range of the features’ values. These genres ranged from unpopular
to popular and encompassed different audio features to ensure dis-
tributivity across the dataset.
During the extraction process, it was observed that songs with pop-
ularity ratings above 85 and below 60 were particularly challenging
to find, even when considering genres that were both unpopular
and popular. This highlights the inherent difficulty in obtaining

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

58

Hit Song Prediction Through Machine Learning and Spotify Data

Figure 3: Bar Graph for CV Accuracy Percentages

a balanced dataset, especially when targeting specific popularity
ranges.

2.3.3 Data Preparation. Following data acquisition, the dataset
was prepared for analysis by incorporating audio features obtained
from the Spotify API[8]. These features included danceability, en-
ergy, key, loudness, mode, speechiness, acousticness, instrumental-
ness, liveness, valence, and tempo. Additionally, data types were
adjusted to ensure categorical representation for key, mode, time
signature, and hit categories. After which another dataset was made
that contained the same features but just scaled using the default
StandardScaler from scikit-learn[3].

2.3.4 Model Training and Evaluation. During the model training
and evaluation phase, it was observed that KFold and StratifiedK-
Fold cross-validation techniques[3] encountered difficulties when
handling larger splits due to the relatively small size of the dataset.
With only 1299 songs available and an almost 50/50 balance between
hits and non-hits, the dataset size posed challenges for these cross-
validation methods to effectively cover all instances Despite these
challenges, various machine learning models, including ensemble
models and standard classifiers, were trained on the dataset. The
performance of each model was evaluated using Train-Test-Split[3]
(TTS) with varying test sizes (10%, 20%, and 33%), as well as KFold
and StratifiedKFold cross-validation techniques with different fold
splits (2, 3, 5, and 10).

3 RESULTS
The study[2] aimed to predict hit songs using machine learning
algorithms trained on Spotify API metadata. Results revealed vary-
ing accuracies across different models and evaluation techniques.
Notably, the AdaBoost Classifier and Passive Agressive Classifier
achieved the highest accuracy of 60% on a test size of 33%, followed
by the RandomForest (entropy criterion), and Ridge Classifiers,

and Logistic Regression that demonstrated stable performance on
the same test size. The MLP (logistic activation function) and the
SupportVector Classifier demonstrated the highest nad the most
constant through out all test sizes, 10%, 20% and 30%.
Regarding the cross-validation techniques, the stratified kfold had
a constant lower accuracy throughout all models and throughout
all kfolds, 2, 3, 5, and 10. ExtraTrees Classifier had the highest
accuracy with both techniques and using both the gini criterion
and the entropy criterion, with an an almost 60%. It was followed
by the GradientProcess Classifier that had a percent higher accu-
racy than similarly named the GradientBoosting Classifier. Other
notable mentions using the cross-validation techniques are the Pas-
sive Agressive Classifier, and the MLP Classifier with the ReLu
activation function with a very similar accuracy.

4 DISCUSSION
The findings of this study[2] shed light on the possibility of ma-
chine learning algorithms to be used to predict hit songs based
on Spotify metadata[8]. While some models exhibited promising
accuracy rates for a really general approach to the problem, devia-
tions from expected outcomes were observed, prompting deeper
analysis. The AdaBoost Classifier achieved the highest accuracy,
but only in the train-test-split. Additionally, the MLPClassifier with
identity and logistic activation functions showed accuracy, sug-
gesting the potential of neural network architectures in capturing
nonlinear relationships within the data. Theoretical implications
suggest the need for further investigation into ensemble models and
neural networks, and hyperparameter tuning to optimize model
performance.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

59

Andrej Natev

Table 1: Model Accuracy Comparison

Model Accuracy (%)
Train-Test-Split k-fold CV

RandomForestClassifier (Entropy) 57.69 / 54.62 / 52.68 56.12
AdaBoostClassifier 60.00 / 55.38 / 52.91 53.58
ExtraTreesClassifier 48.46 / 51.54 / 55.24 56.81
ExtraTreesClassifier (Entropy) 54.62 / 55.38 / 54.31 57.81
MLPClassifier (Identity) 50.00 / 58.46 / 53.85 55.66
MLPClassifier (Logistic) 58.46 / 58.46 / 54.78 55.50

4.1 Previous Research
Compared to prior research endeavors, which often grappled with
issues of data imbalance and feature scaling, this study’s results rep-
resent a significant improvement. The utilization of a more balanced
dataset, coupled with standardized feature scales, has led to more
reliable and interpretable models. The transition from overfitted
models, which yielded inflated accuracy rates, to robust and gen-
eralizable models underscores the importance of methodological
rigor in data science research.[1]

5 CONCLUSION
In summary, this study[2] investigated the application of machine
learning algorithms for hit song prediction using Spotifymetadata[8].
Through rigorous experimentation and evaluation, we have demon-
strated the potential of various classifiers and ensemble methods in
categorizing songs into hits and non-hits with reasonable accuracy
for a general approach. The findings contribute to the existing body
of research by providing insights into the performance characteris-
tics of different models and the impact of algorithmic parameters
on predictive outcomes.
Despite achieving competitive accuracy rates, the study[2] also
revealed nuances and deviations from expected results, making an
even bigger need for further investigation.
Moving forward, it is imperative to address open questions sur-
rounding the generalizability of models across diverse music genres,
the robustness of predictions over time, and the incorporation of ad-
ditional features such as lyrics and user-specific preferences. More-
over, future research should focus on refining model architectures,
exploring ensemble models and neural networks, and optimizing
hyperparameters to enhance predictive efficacy.

ACKNOWLEDGMENTS
Special recognition is also extended to the Google Developer Stu-
dent Club of the University of Primorska for organizing multiple
events focused on ML&AI. It was during these events that the seeds
of the initial research, which had overfitting issues, were sown.[4]

REFERENCES
[1] Andrej Natev. 2023. Initial Notebook. https://www.kaggle.com/code/andrejnatev/

hit-song-prediction
[2] Andrej Natev. 2024. MainNotebook. https://www.kaggle.com/code/andrejnatev/spotify-

api-spotipy-hit-song-prediction.
[3] David Cournapeau. 2007. Scikit-learn Documentation. https://scikit-learn.org/

stable/index.html
[4] GoogleDSC University of Primorska. 2023. ML&AI Summit. https://gdsc.

community.dev/university-of-primorska-koper-slovenia/

[5] Joakim Arvidsson. 2023. 30000 Spotify Songs dataset. https://www.kaggle.com/
datasets/joebeachcapital/30000-spotify-songs

[6] Nidula Elgiriyrwithana. 2023. Most Streamed Songs 2023 dataset. https://www.
kaggle.com/datasets/nelgiriyewithana/top-spotify-songs-2023

[7] Paul Lamere. 2014. Spotipy Documentation. https://spotipy.readthedocs.io/en/2.
24.0/

[8] Spotify. 2013. Spotify Web API Documentation. https://developer.spotify.com/
documentation/web-api

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

60

A Data-Driven Approach for the Analysis of Ridership
Fluctuations in Transit Systems

Jovan Pavlović
jovan.pavlovic@famnit.upr.si

University of Primorska,
FAMNIT,

Koper, Slovenia

Miklós Krész
miklos.kresz@innorenew.eu

InnoRenew CoE,
Izola, Slovenia

László Hajdu
laszlo.hajdu@famnit.upr.si
University of Primorska,

FAMNIT,
Koper, Slovenia

András Bóta
andras.bota@ltu.se

Luleå University of Technology,
Luleå, Sweden

ABSTRACT
This study focuses on identifying critical components within urban
public transportation networks, particularly in the context of fluc-
tuating demand and potential pandemic scenarios. By employing
advanced agent-based simulations, we analyzed passenger interac-
tions and ridership patterns across the San Francisco Bay Area’s
transit system. Key findings reveal specific transit stops and routes
that are highly sensitive to changes in demand, often serving as
bottlenecks or high-risk areas for the spread of infectious diseases.

KEYWORDS
network modeling, public transportation, agent-based simulation,
community detection, demand fluctuations

1 INTRODUCTION
Efficient public transportation is vital for urban mobility, economic
productivity, and public health. During the COVID-19 pandemic,
transit systems worldwide were dramatically affected, resulting in a
significant decline in ridership due to lockdowns, social distancing
measures, and the shift to remote work [1, 6]. Physical distancing, a
widely used non-pharmaceutical intervention to prevent the spread
of the virus, further reduced the capacity of public transportation
services, limiting their ability to meet demand [13].

Factors such as population growth, economic conditions, and
environmental policies can also cause fluctuations in public trans-
portation usage. Understanding these changes is crucial for plan-
ning resilient and efficient transit systems that can adapt to the
evolving needs of cities.

Adjusting service frequency during peak and off-peak hours al-
lows for more efficient use of resources and helps maintain service
levels that meet demand without overloading the system. Addition-
ally, rerouting or introducing new transit lines in underserved areas
can improve accessibility and attract more users, or conversely, in
the case of a pandemic, these changes can discourage usage to help
manage public health risks. Infrastructure updates, such as upgrad-
ing stations for better crowd flow can also help transit systems
adapt to changes. Therefore, it’s important to identify the parts of
the transit system that are most affected by changes in ridership to
develop these strategies effectively.

This research uses agent-based simulations to analyze passenger
interactions within transit systems. While networks traditionally
depict routes and stops, improved data collection now allows track-
ing individual passenger interactions. Smart card data [12] and
activity-based travel models [10, 11] capture detailed passenger
contact patterns. However, creating accurate real-world contact
networks from this data poses challenges, including computational
complexity and privacy issues [4, 5].

We used activity-based travel demand models to simulate proba-
ble traveler paths in transit networks, considering demand, supply,
and service details. These models are complemented by schedule-
based transit assignment models, which provide accurate estimates
of travel time and waiting times. We analyzed the outputs of tran-
sit assignments, considering transit route usage, congestion, and
waiting times at transit stops, to identify critical components of
the transit network that could be potentially affected by changes
in transit demand. Additionally, we processed this data to generate
contact networks. We then applied a modularity-based community
detection algorithm to extract non-overlapping communities of
passengers from the contact network and used these communities
to further analyze critical bus routes used by different communities.

2 BACKGROUND
This work is inspired by the methodologies used in previous stud-
ies [2, 3, 7]. However, rather than explicitly modeling the spread
of disease to identify high-risk transit components, it focuses on
examining the components most likely to be affected by changes
in ridership trends due to a pandemic or other scenarios.

The contribution of this work is to develop a framework that iden-
tifies critical components in terms of factors like changes in transit
demand, vehicle capacities, and transit schedules. The insights de-
rived from this framework can be further utilized for modeling
transit operations in these scenarios.

3 METHODOLOGY
3.1 Transit simulation model
We used a schedule-based transit assignment model, FAST-TrIPs [8],
to simulate passenger movement within the transit network. This
model’s time-dependent structure captures daily service variability

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.14
ISBN 978-961-286-914-4

61

https://doi.org/10.18690/um.feri.6.2024.14

Jovan Pavlović, Miklós Krész, László Hajdu, and András Bóta

and focuses on specific transit vehicle trips, which is crucial for
accurately reflecting passengers’ route choices based on the service
schedule. FAST-TrIPs operates on a transit network composed of
nodes that represent stops. Trips are connected to specific routes
within this network, and transfer links connect nodes where passen-
gers can change vehicles. This setup allows for precise modeling of
both vehicle movements and passenger transfers across the transit
network.

At the heart of FAST-TrIPs is the Transit Hyperpath Algorithm,
which constructs a subnetwork of probable transit routes and as-
signs probabilities to these routes using a logit route choice model.
The algorithm calculates hyperpaths by considering user-preferred
arrival times and waiting time windows, allowing for the simulation
of passenger journeys with a focus on real-time decision-making
and path selection. Passenger movement is then modeled using a
pre-estimated route choice model that incorporates factors such as
in-vehicle time, waiting time, walking time (for access, egress, and
transfers), and transfer penalties.

The transit assignment model generates detailed outputs, such
as vehicle load profiles and passenger trajectories. The load profile
provides information on the number of passengers boarding and
alighting at each stop, along with timestamps, offering insight
into passenger counts throughout the route. Passenger trajectories
document each passenger’s activities, including stop and vehicle IDs
with timestamps, enabling the modeling of interactions between
passengers.

3.2 Input data
FAST-TrIPs requires various input files, including transit system
data stored in GTFS-PLUS format, and transit demand data that
contains information about the trips individual passengers make
throughout the day, including trip origins, destinations, and pre-
ferred arrival times. Additionally, path weights associated with
in-vehicle time, waiting time, walking time, and transfer penalties
must be specified as input.

In the current study, we used GTFS-PLUS data 1 from the San
Francisco Bay Area in California from 2017, which includes 854
routes (covering bus, heavy rail, light rail, and ferry routes) and
36,058 trips serving 6,181 stops over a 24-hour weekday. On the
demand side, we used data generated in the same year using the
SF-CHAMP travel forecasting tool.

Since calibrated path weights were not available for the Bay
Area network, we borrowed path weights from a previous study [9]
corresponding to the Austin, Texas region.

3.3 Contact network
As mentioned previously, FAST-TrIPs outputs detailed passenger
trajectories that can be further processed to produce a contact net-
work. In this network, each passenger traveling within the transit
system is considered a node, and edges connect any two passengers
who share a vehicle trip for a positive time period. The vehicle
trip refers to a specific route with a specific departure time and
is unique to a single vehicle. Each edge is associated with three
attributes: the contact start time, contact duration (in seconds), and
the vehicle trip ID
1https://mtcdrive.app.box.com/s/3i3sjbzpsrbhxlwpl4v4vx9b0movferz

3.4 Community detection algorithm
We used the Clauset-Newman-Moore greedy modularity maximiza-
tion algorithm [3] to find the community partition of the contact
network with the highest modularity. This community detection
algorithm is a hierarchical agglomeration method designed to effi-
ciently identify community structureswithin large, sparse networks.
Unlike traditional methods, which can be computationally expen-
sive, this algorithm operates in a time complexity of 𝑂 (𝑚𝑑 log𝑛),
where 𝑛 is the number of vertices,𝑚 is the number of edges, and 𝑑
is the depth of the dendrogram describing the community structure.
For many real-world networks, which are sparse and hierarchical
(with 𝑚 ∼ 𝑛 and 𝑑 ∼ log𝑛), the algorithm runs in nearly linear
time, 𝑂 (𝑛 log2 𝑛).

3.5 Limitations
The primary limitation of this study is the size of the demand data.
Although the GTFS data originates from a transit network serving
millions daily, computational constraints prevented us from simulat-
ing real-world demand accurately. Consequently, train routes were
not filled beyond half capacity, making it impossible to realistically
assess the effects of demand changes on the trains. Additionally, the
dataset contains outdated transit system and demand information.
However, the proposed method serves as a proof of concept and
can be directly applied to more comprehensive travel datasets.

Another limitation is the lack of a detailed comparative study
with state-of-the-art methodologies that aim to achieve similar
objectives. This choice was due to space constraints, but future
research will expand on this comparison, with findings to be pub-
lished in a full-length journal paper.

4 RESULTS
4.1 Model outputs and contact network
Due to computational limits, the simulations used a reduced number
of iterations to reassign passengers to alternative routes. Despite
this, most passengers (41,845 out of 44,912) successfully reached
their destinations, resulting in 83,280 completed trips.

Figure 1 presents a boxplot of average waiting times, aggregated
by passenger, transit route, and transit stop.

Figure 1: Boxplots of average waiting times

The derived contact network consisted of 41,845 passenger nodes
and 3,530,995 contact links. The density plot of contact start times,

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

62

A Data-Driven Approach for the Analysis of Ridership Fluctuations in Transit Systems

displayed in Figure 2, peaked at 7 AM and 5 PM, reflecting typical
weekday commutes. The average contact duration was 18 minutes
and 43 seconds. Figure 4 shows the density plot of contact durations.

Figure 2: Density plot of contact stat times

The degree distribution of the contact network, shown in Figure 3,
indicates an average of 134 contacts per person, with a maximum
of 1,011, following a skewed power law distribution.

Figure 3: Degree distribution

Figure 4: Density plot of contact duration

4.2 Identifying critical components
We first aimed to identify transit stops that may be sensitive to
changes in demand. These stops are characterized by two key prop-
erties: they serve sufficiently large groups of people, and the av-
erage waiting times at these stops are longer than those at most

other stops in the transit network. The idea is that such stops
could become critical in scenarios where transit demand increases,
potentially turning them into bottlenecks. Additionally, in epidemi-
ological situations, passengers waiting at these stops might face
an increased risk of infection. To focus on the most relevant stops,
we filtered out those serving fewer than 100 people and sorted the
remaining stops based on average waiting time. Table 1 provides
information on the 10 stops with the longest average waiting times.
Most of the listed stops are served by multiple bus routes and have
between 100 and 200 passengers waiting at them throughout the
day.

In order to identify critical transit routes we took two approaches.
Firstly we identified routes whose vehicle trips are on average most
congest. Due to limited transit demand here we focused only on
bus routes. Table 2 shows 10 most critical bus routes identified in
this way.

The second approach involved identifying critical trips with re-
spect to the community structure of the contact network. Commu-
nity detection algorithm divided the network into 627 communities,
with the largest 10 containing 37% of all passengers in the network.
We then identified transit routes used by passengers who appear in
at least two of these ten communities and ranked the routes by the
number of communities whose passengers travel on them. Table 3
shows the ten most critical routes identified in this way. As can be
observed, all of the identified bus and trolleybus routes belong to
the San Francisco Municipal Railway (SF Muni) system operating
in San Francisco.

Figures 5 and 6 summarize the obtained results. Critical stops
are marked in red, bus routes used by multiple communities are
colored in green, and the most congested bus routes are marked in
blue.

As observed, the majority of the most congested bus routes
connect different cities within the Bay Area or link various cities to
San Francisco. For example, several of these routes travel between
Contra Costa and Alameda counties, as well as between San Mateo
and Alameda counties. Additionally, some routes connect Berkeley
and San Francisco, while many others link SanMateo County, Santa
Clara County, Marin County, and Petaluma in Sonoma County to
San Francisco. Most of the critical bus stops are concentrated in San
Francisco, with several others located in the centers of various cities
in the Bay Area, including Berkeley, Oakland, San Jose, and Palo
Alto. As previously noted, the bus and trolleybus routes connecting
different communities that commute in the Bay Area belong to the
SF Muni system operating within San Francisco.

5 CONCLUSION
Using agent-based simulations and network analysis techniques,
we identified transit stops and routes that are most vulnerable to
changes in demand, whether due to a pandemic or other social and
economic factors. Our findings show the importance of focusing on
crowded routes and stops with long wait times, as these are likely
to become bottlenecks when demand increases. The application of
community detection to passenger contact networks further reveals
how interconnected different transit routes are within major urban
areas, emphasizing the importance of certain routes in keeping
public transportation running smoothly.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

63

Jovan Pavlović, Miklós Krész, László Hajdu, and András Bóta

Figure 5: Critical components of San Francisco Bay Area
transit system

Figure 6: SF Muni transit routes

Table 1: Critical bus stops

Stop ID Average waiting time Number of serving routes
6420 18m 23s 5
6051 14m 21s 8
Folsom/8th 12m 8s 29
6336 11m 33s 11
103007 11m 4s 12
7186 8m 21s 16
103688 7m 51s 9
3rd/Mendell/Palou 7m 41s 6
13537 7m 13s 1
103589 6m 34s 4

Table 2: Most congested bus routes

Route ID Capacity Average number of pessengers
samtrans_83D 60 25
samtrans_16A 50 25
samtrans_292NA 75 20
scvta_101 63 19
scvta_182 63 18
samtrans_397 75 17
scvta_304 63 17
scvta_330 63 17
golden_gate_transit_GG76 63 14
samtrans_295 75 13

Table 3: Bus routes used by multiple communities

Route ID Community appearance count
sf_muni_49 8
sf_muni_27 7
sf_muni_1 6
sf_muni_14 5
sf_muni_19 5
sf_muni_22 5
sf_muni_10 5
sf_muni_38_33RD 5
sf_muni_2 5
sf_muni_5 5

Additionally, during an epidemic outbreak, crowded routes and
stops with long wait times can significantly contribute to the spread
of infectious diseases. Areas where many passengers gather for
extended periods are likely to become hotspots for infection trans-
mission. Moreover, the interconnected nature of certain transit
routes means that an outbreak starting in one part of the network
could quickly spread to other areas, especially if key routes are
involved. This highlights the need to closely monitor and manage
these critical parts of the system to reduce the risk of widespread
transmission. Implementing measures such as increasing service
frequency, rerouting buses, or enhancing cleaning protocols at
these critical points could be crucial in controlling the spread of
diseases. These insights can also informmore effective public health
strategies, such as prioritizing vaccination or testing efforts in areas
served by these high-risk routes and stops.

REFERENCES
[1] Apple Inc. 2020, 2021, 2022. Apple Mobility Trends Reports.
[2] András Bóta, Lauren Gardner, and Alireza Khani. 2017. Identifying Critical

Components of a Public Transit System for Outbreak Control. Networks and
Spatial Economics 17, 4 (2017), 1137–1159.

[3] András Bóta, Lauren Gardner, and Alireza Khani. 2017. Modeling the spread
of infection in public transit networks: a decision-support tool for outbreak
planning and control. In Transportation Research Board 96th Annual Meeting.

[4] Ciro Cattuto et al. 2010. Dynamics of Person-to-Person Interactions from Dis-
tributed RFID Sensor Networks. PLOS ONE 5 (2010), e11596.

[5] Nicholas A. Christakis and James H. Fowler. 2010. Social Network Sensors for
Early Detection of Contagious Outbreaks. PLOS ONE 5 (2010), e12948.

[6] Google LLC. 2020, 2021, 2022. Google COVID-19 Community Mobility Reports.
Retrieved from https://www.google.com/covid19/mobility/.

[7] Laszlo Hajdu, András Bóta, Miklós Krész, et al. 2020. Discovering the Hidden
Community Structure of Public Transportation Networks. Networks and Spatial
Economics 20 (2020), 209–231.

[8] Alireza Khani. 2013. Models and solution algorithms for transit and intermodal pas-
senger assignment (development of fast-trips model). PhD Dissertation. University
of Arizona, Tucson, AZ, USA.

[9] Alireza Khani, Tyler J. Beduhn, Jennifer Duthie, Stephen Boyles, and Ehsan Jafari.
2014. A transit route choice model for application in dynamic transit assignment.
In Innovations in Travel Modeling. Baltimore, MD.

[10] William H. K. Lam and Hai-Jun Huang. 2003. Combined Activity/Travel Choice
Models: Time-Dependent and Dynamic Versions. Networks and Spatial Economics
3, 3 (2003), 323–347.

[11] Matthew J. Roorda, Juan A. Carrasco, and Eric J. Miller. 2009. An integratedmodel
of vehicle transactions, activity scheduling and mode choice. Transportation
Research Part B: Methodological 43, 2 (2009), 217–229.

[12] Liang Sun, Kay W. Axhausen, Dong H. Lee, and Manuel Cebrian. 2014. Effi-
cient Detection of Contagious Outbreaks in Massive Metropolitan Encounter
Networks. Scientific Reports 4 (2014), 5099.

[13] Alejandro Tirachini and Oded Cats. 2020. COVID-19 and Public Transporta-
tion: Current Assessment, Prospects, and Research Needs. Journal of Public
Transportation 22, 1 (2020), 1–21. Epub 2022 Sep 13.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

64

Automatic Assessment of Bradykinesia in Parkinson’s Disease
Using Tapping Videos

Matjaž Zupanič
matjaz.zupanic1@gmail.com

University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

Dejan Georgiev
dejan.georgiev@kclj.si
University of Ljubljana,
Faculty of Medicine,
Ljubljana, Slovenia

Jure Žabkar
jure.zabkar@fri.uni-lj.si
University of Ljubljana,
Faculty of Computer and
Information Science,
Ljubljana, Slovenia

ABSTRACT
Parkinson’s disease is a chronic neurodegenerative illness that se-
verely affects the everyday life of a patient. The severity of Parkin-
son’s disease is assessed using the MDS-UPDRS scale. In this study,
we explore the feasibility of automatically evaluating bradykinesia,
a key symptom of Parkinson’s disease, from tapping videos recorded
on smartphones in everyday settings. We collected a dataset of 183
tapping videos, from 91 individuals. Videos were assessed by neu-
rologist into 5 classes of the MDS-UPDRS scale. For data extraction,
we employedMediaPipe Hand, which provides a time series of hand
skeleton movements. The data was preprocessed to eliminate noise
and subsequently used for either feature construction or directly in
neural networks. Utilizing manually created features in a multilayer
perceptron classifier resulted in 61 % accuracy and an F1 score of
0.61 on our test set. Employing a fully convolutional network, we
improved the accuracy to 78 % and the F1 score to 0.75. Additionally,
we developed the tool for visualising tapping and displaying key
data, providing detailed insights into tapping patterns.

KEYWORDS
bradykinesia evaluation, finger tapping test, Parkinson’s disease,
machine learning, tapping video analysis

1 INTRODUCTION
Parkinson’s disease (PD) is a chronic neurodegenerative condition
that profoundly impacts daily life. PD affects 1-2 % [23] of the popu-
lation over the age of 65. Currently, there are more than 1.2 million
cases in Europe [4] and this number is forecast to double in the
near future due to the demographic problem of an aging popula-
tion. Its etiology remains incompletely understood, yet researchers
suggest that a combination of genetic and environmental factors
contributes to its development. Factors such as exposure to polluted
air, pesticides, heavy metals, and head injuries have been associated
with an increased risk of Parkinson’s disease. The most common
symptoms include bradykinesia, which is also the main symptom,
tremor, rigidity, impaired postural reflexes, and dementia. There
are also numerous other symptoms that can accompany the disease,
such as sleep disturbances, depression, loss of smell, and fatigue.

The standardized MDS-UPDRS [6] scale is used to assess the
stage of Parkinson’s disease. It consists of 4 sections that evaluate
both motor and non-motor issues experienced by patients. The
finger-tapping test is used to evaluate the severity of bradykinesia.
This test involves asking the individual to tap their index finger and
thumb as quickly as possible with a maximal span, assessing the

number of pauses, time taken, decrease in amplitude, and slowing
of speed, all contributing to the final score. It was estimated that
up to 25 % of clinical diagnoses of PD are incorrect, due to lack of
experience or attention during tests [3].

2 RELATEDWORK
First automated systems for PD detection were based on wearable
sensors like gyros and accelerometers [5, 17, 20, 22] or on elec-
tromyography sensors [11, 28]. The main issues with sensors are
that they are commercially unavailable, require precise placement,
and can interfere with tapping test. Therefore, some researchers
have utilized keyboard tapping [1, 19] or tapping on a smartphone
screen [7, 8] for data acquisition. Sadikov et al. [21] collected data
using digital spirometry, where participants traced an Archimedes
spiral on a touchscreen device. Advances in hardware and software
have made computer vision combined with machine learning a
viable alternative for PD recognition, allowing for home testing
using a computer or smartphone. Lainscsek et al. [13] used a non-
linear delay differential equation, with the structure selected by a
genetic algorithm. While other researchers used machine learning
techniques, most focused on manual feature creation and utilized
these features in classification models [10, 18, 29, 30] like support
vector machines (SVM) and random forests (RF), or regression mod-
els [9] like support vector regression (SVR) and XGBoost. Others
employed neural networks (NN) to automatically learn patterns
from time series data [2, 14]. Researchers used segmentation neural
networks or optical flow for hand data extraction, with MediaPipe
Hand [16] becoming popular in later works. Due to limited data,
most studies combined some classes, and only a few performed
full-scale classification [2, 9, 14, 30].

3 METHODOLOGY
First, we collected and labeled data and preprocessed it to eliminate
noise. We initially applied Support Vector Machine (SVM), Multi-
Layer Perceptron (MLP), and Random Forest (RF) with manual
feature extraction, then used a Fully Convolutional Network (FCN)
directly on the time series.

3.1 Dataset
Since datasets of tapping videos were not publicly accessible, we
assembled our own database. From each participant, we collected
two videos: one of the left-hand tapping and another of the right-
hand, as they are independent from each other and have their own
score. Videos were recorded at a resolution of 3840 x 2160 or 1920

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.15
ISBN 978-961-286-914-4

65

https://doi.org/10.18690/um.feri.6.2024.15

Matjaž Zupanič, Dejan Georgiev, and Jure Žabkar

x 1080 at 60 or 30 fps. All PD patients were recorded in a clinical
setting, while some participants of the healthy group were recorded
in various other environments.

Table 1: Number of videos in each class.

MDS-UPDRS score 0 1 2 3 4 Sum

Number of videos 49 51 53 23 7 183
Percentage % 26 28 29 13 4 100

We excluded videos with significant tilts, incomplete hand vis-
ibility, and participants scoring above 0 on MDS-UPDRS without
confirmed PD. In total, we compiled 183 videos from 91 different in-
dividuals. The distribution of data between classes can be observed
in Table 1. As this study involves clinical data, ethical approval
was obtained as part of a larger research project approved by the
Neurological Clinic.

3.2 Preprocessing
Since datasets were collected without any professional equipment
we were dealing with different illuminations, angles, camera tilts,
distances between camera and hand, noise, and motion blur. Videos
were cut, so only hand is visible, due to privacy and faster pro-
cessing. We used Mediapipe Hand [16] to extract the thumb and
index finger positions and computed the Euclidean distances be-
tween their endpoints to generate time series data. Occasionally,
there were single-frame misses where Mediapipe detected previous
and next frames but missed the current one. We used linear inter-
polation to fill these gaps, but avoided interpolating longer gaps
to preserve tapping integrity. To reduce noise caused by inaccu-
rate detections from MediaPipe, we implemented a combination of
low-pass and moving average filter. Filtering also helped to elimi-
nate tremor which is not part of MDS-UPDRS, but masked tapping.
We balanced filtering and signal preservation using weaker filters.
The Low-pass filter addressed high-frequency noise from tremors
and MediaPipe Hand’s misalignment, which caused slight shifts
between frames even when the hand was still. We implemented
the Butterworth low-pass filter due to its flat response. The cutoff
frequency set uniquely for each input based on a specified influence
percentage k, as defined by the equation: 𝑓cutoff = 𝑓𝑚𝑎𝑥+ bandwidth∗𝑘2 .
Additionally, a moving average with a window size of 5 was used to
further smooth the data and reduce erroneous detections, such as
spikes. We restricted tapping sequences to a maximum of 15 taps,
as the MDS-UPDRS scale does not require longer sequences and
participants may tire during extended sessions. We also applied
min-max normalization to account for varying distances between
the camera and the hand. The finalised graphs of the processed
data are depicted in Figure 1.

3.3 Feature Engineering
In the 1st methodwe created a larger number of features following
the MDS-UPDRS scale to comprehensively describe finger tapping.
In addition to Euclidean distances between the endpoints of the
thumb and index finger, we included distances between the last
joints and absolute wrist movement as additional time series data.
We hypothesized that these metrics could provide supplementary

but limited insights into finger tapping, although movements in
these areas are typically less pronounced. The time series of dis-
tances represents the amplitude spectrum, from which we derived 4
additional spectra: velocity, acceleration, frequency, and spectrum
of amplitude peaks. Additionally, we included the spectrum of abso-
lute wrist movement. From these 6 spectra, we extracted 193 statis-
tical features. Our goal was to capture dependencies at global and
local levels, describing hesitations, slowdowns, amplitude decreases,
data distributions, tapping energy, and other characteristics.

In 2nd method we designed features closely aligned with the
MDS-UPDRS scale, categorizing them into 3 parts reflecting its
criteria. The first part assesses hesitations and freezes, the second
part measures reduced speed and the third part evaluates decreased
amplitudes. In our final analysis, we utilized 145 features, with
90 being coefficients from linear regressions to assess reductions
in amplitudes and velocities of finger tapping. These coefficients
were derived from local maxima of amplitudes and velocities. The
remaining 55 features were derived from amplitudes, velocities,
their extremes, and autocorrelated velocities and amplitudes.

Figure 1: Amplitude graphs of finger tapping.

3.4 Neural network
We opted for FCN due to its simplicity and efficiency, leaving the
exploration of more complex models for future work. We tested the
FCN presented by Li et al. [14], using preprocessed time series data
directly as input. Since the selected FCN is limited to processing
equally long inputs, we padded our time series data with 0 at the
end. We later modified the FCN by adding convolutional layers,
dropout layers, early stopping, and adjusted input layers to handle
2D inputs consisting of amplitudes and velocities. The architecture
of our extended FCN is shown in Figure 2.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

66

Automatic Assessment of Bradykinesia in Parkinson’s Disease Using Tapping Videos

Figure 2: FCN for classification of bradykinesia.

4 EVALUATION
We created a visualization tool for analyzing finger-tapping dy-
namics, featuring a built-in video player with a MediaPipe Hand
skeleton overlay. Velocity and amplitude graphs on the right side
indicate the current frame with a vertical red line (Figure 3). Taps
are denoted by red dots and the tool includes a freeze labelling op-
tion. This interactive analysis of tapping dynamics could be useful
for neurologists in diagnosing and monitoring motor disorders.

All tests were conducted using 10-fold cross-validation due to the
relatively small dataset. The F1 score was calculated as the Macro
F1= 1

𝐶

∑𝐶
𝑖=1 F1𝑖 , where 𝐶 is the number of classes and F1𝑖 is the

F1 score for class 𝑖 . In Methods 1 and 2, we used SelectKBest [26]
for feature selection. As score functions we tried ANOVA F-test
[24] and mutual information for a discrete target [25], with the
latter performing better overall. By experimenting with various fea-
ture counts, we identified the optimal number that maximized the
model’s F1 score. Results are detailed in Table 2. Overall, SVM per-

Figure 3: Tool for detailed visualization of finger tapping.

formed the worst in Methods 1 and 2, while RF and MLP achieved
the best results, likely due to their superior ability to model com-
plex patterns. Method 1 outperformed Method 2 across all metrics.
Approximately 83 % and 73 % of misclassifications from Methods 1
and 2, respectively, differed from the reference tapping scores by
exactly 1 class. The FCN from Figure 2 significantly outperformed
Methods 1 and 2, achieving a 77 % accuracy. FCN excels at capturing
both local and global dependencies in signals by using filters of
varying sizes.

5 DISCUSSION
Our data set was diverse, assembled by tapping videos of differ-
ent people among all MDS-UPDRS classes. Since the dataset was
collected without any professional equipment we were dealing
with different illuminations, angles, camera tilts, distances between

hand and camera, noise, and motion blur. That required a robust
approach, with filtering being an important part. To balance noise
reduction and signal preservation, we opted for milder filtering.

Table 2: Results were obtained via 10-fold cross-validation.
FCN refers to Li et al.’s neural network [14], while FCN+
denotes our modified version (Figure 2). MLP was used for
Method 1, while RF was used for Method 2.

Model Accuracy % F1 % Precision % Recall %
FCN 72 62 84 63
FCN+ 77 75 88 75
Method 1 61 62 67 58
Method 2 60 55 67 58

Due to the low capture speed and fast movement of fingers, mo-
tion blur was present in the videos. To address this, we tested two
NNs for motion blur removal: Ghost-DeblurGAN [15] and PDV_net
[27]. However, both methods introduced artefacts in the frames,
prompting us to discontinue their use. We also experimented with
upscaling the resolution to 200 % of the original size using Video2x
[12]. This aimed to enhance image clarity, potentially improving
MediaPipe Hand’s skeleton detection precision and reducing noise.
Testing on a smaller upscaled subset showed minimal differences
in classification performance but significantly increased processing
time, prompting us to abandon this approach due to time constraints.
Similarities were observed across different classes of tapping, as
shown in Figure 1, where the graphs appear similar. Various factors
contribute to the overlapping of classes. Small differences in tap-
ping styles between adjacent classes mean even minor decreases in
velocity or amplitude can significantly impact the final classifica-
tion. Normalization contributes to reduced differentiation between
classes by masking tapping instances with low amplitudes. How-
ever, it is necessary to account for variations in recording distances
and resolutions. Additionally, recording angles can distort actual
finger distances, leading to misleading data representation. Another
factor for class overlap is the possibility of human errors in video
assessments. However, within the same class, tapping behaviours
can vary significantly. For example, in class 4, participants often
showed varying abilities: some managed to perform a few taps
despite severe difficulties, while others were unable to tap at all.

Direct comparisons with related research may be challenging
due to the use of different datasets. When comparing our Methods 1
and 2 with the method by Yu et al. [30], who derived features based
on MDS-UPDRS, we achieved lower scores. They reported 80 %
accuracy and 79 % recall on a test set of only 15 videos recorded as
close to a 90-degree angle as possible. Frame interpolation they used
might distort tapping details with artificial data, risking the reliabil-
ity of their classification outcomes. Islam et al. [9] investigated SVR,
LightGBM, and XGBoost regressor, achieving up to 55 % accuracy.
This is lower than the 61 % accuracy we achieved with Method 1,
possibly due to their larger database of 489 videos, less effective
preprocessing and a feature set of 65 features that may not fully
capture tapping dynamics. The FCN presented by Li and colleagues
[14] achieved 72 % accuracy on our dataset, compared to the 80 % re-
ported by the authors. We attribute the slightly lower classification

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

67

Matjaž Zupanič, Dejan Georgiev, and Jure Žabkar

performance on our data to its complexity and heterogeneity, over
37 % smaller size, and the use of 10-fold cross-validation compared
to their 5-fold approach. However, by enhancing the FCN (Figure 2)
we improved prediction accuracy to 77 %. Alam et al. [2] reported
81 % accuracy and F1 score of 0.81 on their test set using a graph
neural networks (GNN).

6 CONCLUSION
In conclusion, Method 1 with MLP provided the best performance
between the manual methods, with better overall metrics and 10 %
fewer misclassifications differing by one class from the reference
value. The modified FCN+ (Figure 2) further improved accuracy to
77 %. Results are expected, since with manual time-invariant feature
extraction it is challenging to capture all unique patterns at various
scales in a tapping sequence of around 400 frames. In the future,
we plan to expand the dataset, as our class with an MDS-UPDRS
score of 4 had a limited population. Increasing the dataset will
help achieve more precise results and provide more data to create
an unseen test set. Due to only one labeler, we plan to involve
another neurologist to cross-validate our dataset and eliminate
potential human errors. We also plan to explore regression models
on extracted features to predict continuous severity scores, offering
a more detailed evaluation of bradykinesia.Given neural networks’
superior performance, we aim to explore graph neural networks
(GNN) for handling all data points extracted by MediaPipe.

REFERENCES
[1] Warwick R Adams. 2017. High-accuracy detection of early Parkinson’s Disease

using multiple characteristics of finger movement while typing. PLOS ONE 12,
11 (11 2017), 1–20. https://doi.org/10.1371/journal.pone.0188226

[2] Zarif U Alam, Saiful Islam, Ehsan Hoque, and Saifur Rahman. 2023. PULSAR:
Graph based Positive Unlabeled Learning with Multi Stream Adaptive Convo-
lutions for Parkinson’s Disease Recognition. https://doi.org/10.48550/ARXIV.
2312.05780

[3] Nin P S Bajaj, Vamsi Gontu, James Birchall, James Patterson, Donald G Grosset,
and Andrew J Lees. 2010. Accuracy of clinical diagnosis in tremulous parkin-
sonian patients: a blinded video study. Journal of Neurology, Neurosurgery &
Psychiatry 81, 11 (2010), 1223–1228. https://doi.org/10.1136/jnnp.2009.193391

[4] Parkinson’s Europe. 2024. Parkinson’s Statistics. https://parkinsonseurope.org/
facts-and-figures/statistics/ Accessed: 7-3-2024.

[5] Joseph P Giuffrida, David E Riley, Brian N Maddux, , and Dustin A Heldman.
2009. Clinically deployable Kinesi technology for automated tremor assessment.
Movement Disorders 24, 5 (2009), 723–730. https://doi.org/10.1002/mds.22445

[6] Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T Steb-
bins, Stanley Fahn, Pablo Martinez-Martin, Werner Poewe, Cristina Sampaio,
Matthew B Stern, Richard Dodel, Bruno Dubois, Robert Holloway, Joseph
Jankovic, Jaime Kulisevsky, Anthony E Lang, Andrew Lees, Sue Leurgans, Pe-
ter A LeWitt, David Nyenhuis, Warren C Olanow, Olivier Rascol, Anette Schrag,
Jeanne A Teresi, Jacobus J van Hilten, and Nancy LaPelle. 2008. Movement
Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Move-
ment disorders: official journal of the Movement Disorder Society 23, 15 (2008),
2129–2170.

[7] Dimitrios Iakovakis, Stelios Hadjidimitrio, Vasileios Charisis, Sevasti Bostan-
tjopoulou, Zoe Katsarou, Lisa Klingelhoefer, Heinz Reichmann, Sofia B Dias,
José A Diniz, Dhaval Trivedi, Ray K Chaudhuri, and Leontios J Hadjileontiadis.
2018. Motor impairment estimates via touchscreen typing dynamics toward
Parkinson’s disease detection from data harvested in-the-wild. Frontiers ICT 5
(2018).

[8] Dimitrios Iakovakis, Stelios Hadjidimitriou, Vasileios Charisis, Sevasti Bostant-
zopoulou, Zoe Katsarou, and Leontios J Hadjileontiadis. 2018. Touchscreen
typing-pattern analysis for detecting fine motor skills decline in early-stage
Parkinson’s disease. Scientific Reports 8, 1 (2018).

[9] Saiful Islam, Wasifur Rahman, Abdelrahman Abdelkader, Sangwu Lee, Phillip T
Yang, Jennifer L Purks, Jamie L Adams, Ruth B Schneider, Earl R Dorsey, and
Ehsan Hoque. 2023. Using AI to measure Parkinson’s disease severity at home.
npj Digital Medicine 6, 156 (2023). https://doi.org/10.1038/s41746-023-00905-9

[10] Jacek Jakubowski, Anna P Chromik, Jolanta Chmielinska, Monika Nojszewska,
and Anna K Pruszczyk. 2023. Application of imaging techniques to objectify
the Finger Tapping test used in the diagnosis of Parkinson’s disease. Bulletin
of the Polish Academy of Sciences. Technical Sciences 71 (2023), art. no. e144886.
https://doi.org/10.24425/bpasts.2023.144886

[11] Hyoseon Jeon, Woongwoo Lee, Hyeyoung Park, Hong J Lee, Sang K Kim, Han B
Kim, Beomseok Jeon, and Kwang S Park. 2017. Automatic Classification of
Tremor Severity in Parkinson’s Disease Using a Wearable Device. Sensors (Basel)
17, 9 (Sept. 2017).

[12] k4yt3x. 2024. Video2x. https://github.com/k4yt3x/video2x Accessed: 16-02-2024.
[13] Claudia Lainscsek, Peter Rowat, Luis Schettino, Dongpyo Lee, D Song, Cristophe

Letellier, and Howard Poizner. 2012. Finger tapping movements of Parkinson’s
disease patients automatically rated using nonlinear delay differential equations.
Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 1 (2012). https:
//doi.org/10.1063/1.3683444

[14] Zhu Li, Lu Kang, Miao Cai, Xiaoli Liu, Yanwen Wang, and Jiayu Yang. 2022. An
Automatic Evaluation Method for Parkinson’s Dyskinesia Using Finger Tapping
Video for Small Samples. Journal of Medical and Biological Engineering 42, 3 (1
2022), 351–363. https://doi.org/10.1007/s40846-022-00701-y

[15] Yibo Liu, Amaldev Haridevan, Hunter Schofield, and Jinjun Shan. 2022. Ap-
plication of Ghost-DeblurGAN to Fiducial Marker Detection. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 6827–6832.
https://doi.org/10.1109/IROS47612.2022.9981701

[16] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo L Chang, Ming G Yong, Juhyun Lee, Wan T
Chang, Wei Hua, Manfred Georg, and Matthias Grundmann. 2019. MediaPipe:
A Framework for Building Perception Pipelines. ArXiv abs/1906.08172 (2019).
https://doi.org/10.48550/arXiv.1906.08172Focustolearnmore

[17] ALexanderMeigal, Saara Rissanen, Mika P Tarvainen, Stefanos Georgiadis, Pasi A
Karjalainen, Olavi Airaksinen, and Markku Kankaanpää. 2012. Linear and non-
linear tremor acceleration characteristics in patients with Parkinson’s disease.
Physiological measurement 33, 3 (2012), 395.

[18] Adonay S Nunes, Nataliia Kozhemiako, Christopher D Stephen, Jeremy D
Schmahmann, Sheraz Khan, and Anoopum S Gupta. 2022. Automatic Classifica-
tion and Severity Estimation of Ataxia From Finger Tapping Videos. Frontiers in
Neurology 12 (2022).

[19] Atemangoh B Peachap, Daniel Tchiotsop, Valérie Louis-Dorr, and Didier Wolf.
2020. Detection of early Parkinson’s disease with wavelet features using finger
typing movements on a keyboard. SN Applied Sciences 2, 10 (2020).

[20] Cameron N Riviere, Stephen G Reich, and Nitish V Thakor. 1997. Adaptive
Fourier modeling for quantification of tremor. Journal of Neuroscience Methods
74, 1 (1997), 77–87. https://doi.org/10.1016/S0165-0270(97)02263-2

[21] Aleksander Sadikov, Jure Žabkar, Martin Možina, Vida Groznik, Dag Nyholm,
and Mevludin Memedi. 2015. Feasibility of Spirography Features for Objective
Assessment of Motor Symptoms in Parkinson’s Disease. In Artificial Intelligence
in Medicine, Lucia Sacchi John H Holmes, Riccardo Bellazzi and Niels Peek (Eds.).
Springer International Publishing, Cham, 267–276.

[22] Arash Salarian, Heike Russmann, Christian Wider, Pierre R Burkhard, Françios
J G Vingerhoets, and Kamiar Aminian. 2007. Quantification of Tremor and
Bradykinesia in Parkinson’s Disease Using a Novel Ambulatory Monitoring
System. IEEE Transactions on Biomedical Engineering 54, 2 (2007), 313–322.
https://doi.org/10.1109/TBME.2006.886670

[23] Claudia Schulte and Thomas Gasser. 2011. Genetic basis of Parkinson’s disease:
inheritance, penetrance, and expression. The Application of Clinical Genetics 4
(2011), 67–80. https://doi.org/10.2147/TACG.S11639

[24] scikit learn. 2024. fclassif. https://parkinsonseurope.org/facts-and-figures/
statistics/ Accessed: 7-3-2024.

[25] scikit learn. 2024. mutual info classif. https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.mutual_info_classif.html#sklearn.feature_
selection.mutual_info_classif Accessed: 7-3-2024.

[26] scikit learn. 2024. Select K Best. https://scikit-learn.org/stable/modules/
generated/sklearn.feature_selection.SelectKBest.html Accessed: 28-02-2024.

[27] Hyeongseok Son, Junyong Lee, Jonghyeop Lee, Sunghyun Cho, and Seungyong
Lee. 2021. Recurrent Video Deblurring with Blur-Invariant Motion Estimation
and Pixel Volumes. ACM Trans. Graph. 40, 5, Article 185 (2021), 18 pages.

[28] Molly M Sturman, David E Vaillancourt, , and Daniel M Corcos. 2005. Effects of
aging on the regularity of physiological tremor. Journal of neurophysiology 93, 6
(2005), 3064–3074.

[29] Stefan Williams, Samuel D Relton, Hui Fang, Jane Alty, Rami Qahwaji, Christo-
pher D Graham, and David C Wong. 2020. Supervised classification of bradyki-
nesia in Parkinson’s disease from smartphone videos. Artificial Intelligence in
Medicine 110 (2020), 101966. https://doi.org/10.1016/j.artmed.2020.101966

[30] Tianze Yu, Kye W Park, Martin J McKeown, and Jane Z Wang. 2023. Clinically
Informed Automated Assessment of Finger Tapping Videos in Parkinsonrsquo;s
Disease. Sensors 23, 22 (2023). https://doi.org/10.3390/s23229149

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

68

Exploring Mathematical Decision-Making Through EEG Analysis
Riste Micev

riste.micev1@gmail.com
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Koper, Slovenia

Peter Rogelj
peter.rogelj@upr.si

University of Primorska,
Faculty of Mathematics, Natural Sciences

and Information Technologies,
Koper, Slovenia

ABSTRACT
In this study, mathematical decision-making tasks were used to pro-
vide further details on the flow of information across a number of
brain regions, with the objective of finding out whether connectiv-
ity patterns are informative in predicting decisional outcomes. The
experiment consisted of showing 50 mathematical expressions to
each participant, and they decided on their correctness by pressing
buttons. Neural activity and button presses were recorded by means
of the g.tec Nautilus EEG device, equipped with 64 electrodes. A
detailed epochs analysis was conducted with regard to participant
responses. Advanced techniques of signal analysis were applied,
including Granger causality, Phase Locking Value, and Complex
Pearson Correlation Coefficient. This research aims to determine
how the following tools could distinguish events from states, get
aware of their limitations, and develop novel analysis techniques
for better discrimination of brain processes. This research is specifi-
cally focused on using mathematical reasoning as a model to study
decision-making processes. Our objective is to test existing and
develop novel methods for gaining deeper understanding of the
brain dynamics involved in discrete cognitive activities.

KEYWORDS
EEG, mathematical decision-making, neural connectivity, connec-
tivity analysis, neural signal classification, EEGNet

1 INTRODUCTION
1.1 Background
Electroencephalography (EEG) devices are core tools in neuro-
science for the monitoring of brain activity through the detection
of electrical potentials in different places on the scalp [4]. They find
applications in a wide variety of both clinical and research settings
during the investigation of brain activity and connectivity. The abil-
ity to understand the brain processes is crucial for advancements in
neuroscience, medical diagnostics and brain-computer interfaces.
Identification and improvement of methods that are capable of clas-
sifying events and explaining the underlying decision process is
also of a great importance.

In this study we aim to set the whole pipeline for conducting
such research, which consists of data acquisition and analysis. For
our brain process of interest we selected mathematical reasoning,
which exemplifies decision-making processes. It is selected because
of its complexity that enables layered analysis of sub processes, as
mathematical thinking involves complex cognitive processes that
engage multiple brain regions. Mathematical decision-making tasks
require the integration of numerical processing, working memory,

and logical reasoning, making them an ideal for studying brain
connectivity.

1.2 Objectives
Our primary objective with this research is to assess existing tech-
niques for connectivity analysis and to develop a comprehensive
pipeline for the analysis of brain processes (during mathematical
decision-making tasks), with the focus on creation and refinement
of methodologies that would be able to classify and explain these
processes. Through the comprehensive analysis we also aim to
validate two specific hypotheses.

• H1 - Mathematical thinking causes unique connectivity
patterns, differentiable from resting state brain activity.

• H2 - True and false answers can be distinguished by their
EEG signals.

The motivation behind this study is to contribute to the un-
derstanding of cognitive processes by providing insights into the
neural dynamics of decision-making.

2 LITERATURE REVIEW
EEG has established itself as an invaluable tool in cognitive neu-
roscience, particularly for exploring brain activity in real time. Its
application in understanding the neural mechanisms of mathemat-
ical decision-making has drawn considerable interest due to the
dynamic and complex nature of the task. Previous studies have
demonstrated that specific brain regions, particularly within the
frontal and parietal lobes, are significantly active during mathemat-
ical cognition, reflecting the intricate process of problem-solving
and numerical reasoning [1, 2].

Basic methods for EEG analysis rely on statistical analysis of
independent electrode signals, and do not enable reliable differentia-
tion of complex brain activities. This can be achieved by additionally
considering the mutual signal interdependence as a reflection of
utilization of brain networks, known as brain connectivity analysis.
There are several accepted brain connectivity analysis methods,
which include Phase Locking Value (PLV), Weighted Phase Locking
Index (wPLI), Complex Pearson Correlation Coefficient (CPCC) [7]
and Granger Causality (GC). Most methods including PLV, wPLI
and CPCC are not directional and rely on analyzing phase differ-
ences between the electrode signals. GC is a directional method,
developed by Clive Granger in the 1960s, and determines whether
one time series can help predicting another one. Applied on EEG
data it can reveal directional influences between different neural
regions covered by corresponding EEG electrodes.

Granger causality has been widely used in neuroscience to ex-
plore the temporal dynamics of brain activity. For example, it has

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.16
ISBN 978-961-286-914-4

69

https://doi.org/10.18690/um.feri.6.2024.16

Riste Micev and Peter Rogelj

been applied to EEG signals to investigate the functional connec-
tivity between different brain areas during various cognitive states.
Recent research by Seth, Barrett, and Barnett (2015) [6] has further
demonstrated the effectiveness of GC in identifying directed func-
tional interactions in neuroscience and neuroimaging time-series
data. Their findings indicate that GC can reveal insights into the
functional circuits involved in perception, cognition, and behavior.
This research also emphasizes both the theoretical foundations and
practical applications of GC while discussing its limitations and
computational strategies, thus solidifying its role as a crucial tool
in neuroscience.

With the advances in artificial intelligence the use of artificial
neural networks also affects EEG analysis. One of the most promis-
ing artificial neural network architectures for classification of EEG
data is EEGNet [3], a compact convolutional neural network de-
signed for EEG-based brain-computer interfaces. Recently, it has
been shown that neural networks can contribute to understanding
of underlying processes, by computing saliency maps [5]. As such,
artificial neural networks could also be extended and utilized to
reveal connectivity patterns.

3 METHODOLOGY
3.1 Participants
For the purpose of the study, we recruited 15 participants from
the university. Each participant provided written informed consent
before participating in this experiment. This work was approved by
the university’s ethical committee to ensure the study conformed
to ethical standards for studies involving human participants.

3.2 Equipment
• EEG Headset: g.tec Nautilus EEG device with 64 channel

electrodes.
• Base Station: Connected to the EEG headset for data trans-

mission.
• Trigger Box: Connected to the base station, equipped with

two response buttons.
• Optical Sensor: Connected to the trigger box to detect

changes in the visual stimuli.
• Recording Software: g.recorder for capturing and storing

EEG data.

3.3 Procedure
The experiment was set in the following way:

A participant was seated comfortably in a noise-free, dimly lit
room to help eliminate other external factors that might cause
discomfort. An EEG headset was fitted on the head of the partic-
ipant, making sure that the contact of all the electrodes on the
scalp is good to ensure high-quality signals. The headset was then
connected to the base station and trigger box.

The experiment consisted of 50 mathematical equations that
were shown for 10 seconds each on a computer screen, where the
research participants had to determine whether the equation was
correct or incorrect. Responses were marked by pressing one of
the two corresponding buttons connected to the trigger box. At the
end of each equation, there was a resting phase of 3 seconds where
the subjects could rest before the next equation appears.

An optical sensor was used to exactly capture the display time
of each equation, thus ensuring correct synchronization with the
visual presentation and EEG data. This setup allowed for exact
timing of participant responses relative to the presentation of the
equations.

In this experiment we recorded EEG data using the g.recorder
software, that captured the continuous EEG signals on all activi-
ties of 64 channels at a sampling rate of 250 Hz. The software also
recorded the presentation timings of the stimuli and participant re-
sponses according to the detection of the optical sensor and trigger
box. This setup ensured that all relevant events will be accurately
time-stamped and synchronised with the EEG data.

Each of the participants completed the experiment in an individ-
ual session, which in total lasted approximately 15 minutes. The
data was stored safely for later preprocessing and analysis.

3.4 Data Collection
Figure 1 shows the raw EEG data recorded from one of the subjects
while performing the mathematical decision-making task. EEG
signals, captured from 64 channels, are shown here along with their
respective labels on the y-axis, which represent electrode positions
at different locations on the scalp, and the x-axis represents time in
seconds.

In this visualization, specific triggers are marked to indicate im-
portant events during the experiment. The green line represents
a trigger at the moment the equation on screen changes, thus sig-
naling the beginning of a new arithmetic problem. This trigger is
important in synchronizing EEG data with the exact moment each
equation is presented to the participant, thus providing the ability
to analyze the neural response to the stimulus very precisely.

The red line marks the trigger corresponding to the event of a
user pressing the “incorrect” button, thus signaling his/her decision
that the equation presented is wrong.

Although not shown in the current image, a blue line is used as
a trigger to mark the event when a participant presses the “correct”
button, indicating their decision that the equation is correct.

3.5 Data Preprocessing
One of the most important steps in satisfying the quality and re-
liability of the recorded signal before detailed analysis is the pre-
processing of EEG data. MATLAB with the EEGLAB toolbox was
used for this purpose, where advanced functionalities were applied
to deal and handle with the intricate nature of EEG data. The pre-
processing pipeline started by filtering all frequencies of the raw
EEG data outside the frequency range of interest. That was easily
accomplished with the help of a bandpass filter with the limiting
frequencies of 0.1 Hz and 45 Hz. This filtering step was quite impor-
tant to avoid noise or other effects due to muscle activity, electrical
interference, etc.

After filtering, the EEG data was re-referenced to the common
average reference. This involved averaging the signal from all elec-
trodes and subtracting this average from each individual electrode’s
signal to give clarity to the signal and remove common noise. Com-
mon average referencing is conducted as a standard operation in
preprocessing when carrying out EEG. This operation helped to
normalize data across different channels.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

70

Exploring Mathematical Decision-Making Through EEG Analysis

Figure 1: Visualisation of the raw signals data.

Artifacts were removed by Independent Component Analysis
(ICA), where the EEG signal was decomposed into independent com-
ponents. With the help of ICA and the ICLabel add-on in MATLAB,
components related to common artifacts due to eye movements,
blinks, and muscle activity were identified and isolated. Removing
these artifact components from the data ensured that the remaining
signals are more representative of the true neural activity.

3.6 Hypothesis Testing
The basic idea of our hypothesis testing approach revolves around
developing and training classification methods on epochs that
we define specifically around key events (equation change, incor-
rect/correct marking). For example, for testing the first hypothesis
H1, two primary states can be defined:

• Rest - Epochs taken from a 3-second window just before
a new equation appears - shown by this green line in our
recording setup. This is the period not active for making
any judgment, which in turn gives our baseline or rest state.

• Active - In contrast active state epochs taken from a 3-
second window just prior to the participants’ responses
since these active states are thought to carry neural signa-
tures related to the cognitive processes of judgment and
decision making on the mathematical expressions.

In this way we can directly compare neural activity in both
"decision-making" and "resting" conditions, with the specific objec-
tive of the identification of distinct patterns that could validate our
hypotheses about the differential brain connectivity in different
cognitive states.

For the second hypothesis, H2, testing adapts methodologies
developed for H1 but focus on epochs particularly related to the
correctness of the participant’s response. It is hypothesized that
EEG signals could differentiate between true and false answers of
participants in mathematical decision-making tasks. The epochs

were extracted in a similar way with 3 second intervals before the
blue and red triggers in the dataset.

3.7 Connectivity Matrices
Connectivity matrices serve as a fundamental tool in neuroscience
for visualizing and quantifying the intricate patterns of neural
interactions within the brain. These matrices can be derived with
the use of the different connectivity analysis techniques mentioned
above.

In Figure 2 we can see the Granger causality matrices obtained
from one of the subjects’ EEG recordings in resting and active
cognitive states respectively. Each matrix describes the directional
influences between pairs of EEG electrodes over the scalp. The
x-axis labels denote the influencing electrodes, and the y-axis labels
indicate the influenced electrodes. Each cell in this matrix thus
corresponds to a pair of electrodes; the color of each cell reflects
the strength of causal influence from the electrode on the x-axis to
the electrode on the y-axis.

The color scale, ranging from 0 to 0.18, is provided at the right
side of the matrices. The colors change from cool colors like blue,
indicating very weak causal influence, to warm colors like yellow,
representing very strong influences. This scale will help the eye in
assessing the strength and distribution of connectivity across the
brain.

4 RESULTS
After segmenting the epochs and preparing the EEG data from all
participants, we used the EEGNet neural network to classify resting
and active states, in order to validate H1. The network was trained
with 80% of the data and tested with the remaining 20%.

This resulted in a classification accuracy of about 84%, show-
ing that distinct neural connectivity patterns are present during
mathematical decision-making tasks compared to resting states.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

71

Riste Micev and Peter Rogelj

Figure 2: Visualisation of the connectivity matrices of rest and active states.

The findings support our hypothesis that, mathematical thinking
causes unique connectivity patterns, differentiable from resting
state brain activity. This suggests the promising capability of the
EEGNet to discriminate between rest and active states based on the
neural data collected around the event-defined epochs.

We also did some testing on the second hypothesis H2. Initial
tests using the EEGNet neural network for epochs related to cor-
rect and incorrect responses resulted in classification accuracies
of about 50%, which is clearly insufficient. These results suggest
two possible explanations: either the EEG signals do not contain
enough distinguishing information, or the applied methods, are not
yet optimized to detect subtle differences in brain activity.

Given these results, we will continue to refine our analytical
methods and to explore alternative models for a better representa-
tion of neural dynamics. Hypothesis H1 has proven to be a more
accessible goal, while hypothesis H2 presents a greater challenge.
Should we confirm H2, it could revolutionize how we estimate
knowledge and decision-making processes based on neural data.

5 CONCLUSION
The main objective of this research is the development and enhance-
ment of methodologies to analyse EEG signals during cognitive
tasks, with a special emphasis on mathematical decision-making.
The strategy taken in this research provides a model for future
works on more complex cognitive phenomena. It indicates the need
for precise acquisition of data, sophisticated preprocessing strate-
gies, and new analytical techniques in an attempt to capture and
interpret correctly the activity in the brain.

In summary, this research adds a great deal into the field of devel-
opment of methodologies that further improve our understanding
of cognitive processes and pushes the boundaries of how we can in-
teract with technology using Brain Computer Interfaces (BCI) and
analyse neurological conditions. Further evolution of these meth-
ods is likely to close the gap between human cognitive functions
and machine interpretation, setting the stage for possible future
advances that may change neurological healthcare and technology
interfacing.

REFERENCES
[1] Mike X Cohen. 2014. Analyzing Neural Time Series Data: Theory and Practice. The

MIT Press.
[2] S. Dehaene, N. Molko, L. Cohen, and A. J. Wilson. 2004. Arithmetic and the brain.

Current Opinion in Neurobiology 14, 2 (2004), 218–224.
[3] V. J. Lawhern et al. 2018. EEGNet: a compact convolutional network for EEG-based

brain-computer interfaces. Journal of Neural Engineering 15, 5 (2018), 056013.
[4] G. A. Light, L. E.Williams, F.Minow, J. Sprock, A. Rissling, R. Sharp, N. R. Swerdlow,

and D. L. Braff. 2010. Electroencephalography (EEG) and Event-Related Potentials
(ERPs) with Human Participants. Current Protocols in Neuroscience 52 (2010),
6.25.1–6.25.24.

[5] S. Mortier et al. 2023. Classification of Targets and Distractors in an Audiovisual
Attention Task Based on Electroencephalography. Sensors 23, 23 (2023), 9588.

[6] A. K. Seth, A. B. Barrett, and L. Barnett. 2015. Granger Causality Analysis in
Neuroscience and Neuroimaging. Journal of Neuroscience 35, 8 (2015), 3293–3297.

[7] Z. Šverko, M. Vrankić, S. Vlahinić, and P. Rogelj. 2022. Complex Pearson Cor-
relation Coefficient for EEG Connectivity Analysis. Sensors (Basel) 22, 4 (2022),
1477.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

72

Analysis of Verbal Fluency in Slovenian Language in Patients
With Schizophrenia

Mila Marinković
mm9136@student.uni-lj.si
University of Ljubljana,

Faculty of Computer and Information Science,
Ljubljana, Slovenia

Polona Rus Prelog
polona.rus@psih-klinika.si

University Psychiatric Hospital Ljubljana,
Ljubljana, Slovenia

Martina Zakšek
martina.zaksek@gmail.com
Splošna bolnišnica Celje,

Celje, Slovenia

Jure Žabkar
jure.zabkar@fri.uni-lj.si
University of Ljubljana,

Faculty of Computer and Information Science,
Ljubljana, Slovenia

ABSTRACT
This study investigates verbal fluency in the Slovenian language
among individuals diagnosed with schizophrenia compared to
healthy controls. Participants completed a verbal fluency task,
which involved producing as many words as possible starting with
a specific letter in Slovenian within a set time limit. The analy-
sis included statistical testing and semantic similarity measures
using FastText embeddings. Significant differences were found
between the groups in terms of the number of correct and total
words produced. While semantic similarity showed minimal dif-
ferences, global optimality divergence revealed notable disparities.
These findings highlight the utility of comprehensive analytical
approaches in understanding verbal fluency deficits in schizophre-
nia, emphasizing the need for nuanced methods to capture the
complexity of cognitive impairments in this population.

KEYWORDS
verbal fluency, schizophrenia, Slovenian language, semantic analy-
sis, statistical analysis

1 INTRODUCTION
Verbal fluency tests are widely used to assess cognitive function and
linguistic abilities in various clinical populations, including individ-
uals with schizophrenia. These tests, which require participants to
say words based on specific criteria, provide valuable insights into
semantic memory, executive function, and language processing
capabilities.

Schizophrenia is a chronic mental disorder characterized by
symptoms such as cognitive disorganization, impaired semantic
processing, and executive dysfunction. These symptoms often mani-
fest as deficits in verbal fluency, where affected individuals typically
produce fewer words and commit more errors, such as repetitions,
intrusions, and neologisms. Understanding these verbal fluency
deficits is crucial for developing targeted cognitive and linguistic
interventions.

Previous studies [1–8] have documented that individuals with
schizophrenia exhibit notable impairments in verbal fluency tasks,
producing fewerwords andmakingmore errors compared to healthy

controls. To address this gap, we employed a comprehensive analyt-
ical approach combining traditional statistical tests with advanced
semantic similarity measures using FastText embeddings.

We hypothesized that while local semantic relationships might
not differ significantly between groups, broader semantic coherence
and structural organization of speech would be markedly impaired
in schizophrenia. By leveraging advanced techniques such as Fast-
Text embeddings, we aimed to uncover deeper insights into the
semantic characteristics of verbal fluency in schizophrenia.

In this paper, we present a detailed analysis of verbal fluency per-
formance in individuals with schizophrenia compared to healthy
controls. We discuss the implications of our findings for under-
standing the cognitive and linguistic disruptions associated with
schizophrenia and propose directions for future research to further
explore these impairments.

2 RELATEDWORK
The analysis of verbal fluency in individuals with schizophrenia has
been extensively researched to understand the cognitive and neural
mechanisms underlying the disorder. This study draws upon several
key pieces of related work that have influenced our methodology
and analytical approaches.

Nour et al. [8] investigated the semantic trajectories in schizophre-
nia by analyzing verbal fluency tasks using a computational model
of word embeddings. Their study highlighted the reduced seman-
tically guided word selection in people with schizophrenia and
its correlation with hippocampal disruptions. This approach un-
derscored the importance of semantic distance in understanding
cognitive disorganization in schizophrenia and inspired our use
of FastText to compute word embeddings and analyze semantic
distances between words generated during verbal fluency tasks.

Galaverna et al.[1] conducted a detailed analysis of errors in
verbal fluency tasks among individuals with chronic schizophre-
nia. Their research emphasized the prevalence of perseverative
and intrusion errors in verbal fluency tasks, highlighting signifi-
cant moderators such as the severity of negative symptoms, formal

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

DOI: https://doi.org/10.18690/um.feri.6.2024.17
ISBN 978-961-286-914-4

73

https://doi.org/10.18690/um.feri.6.2024.17

Mila Marinković, Polona Rus Prelog, Martina Zakšek, and Jure Žabkar

thought disorder, and pharmacological variables. This study pro-
vided crucial insights into the patterns of errors (intrusions, repeti-
tions, neologisms) in verbal fluency tasks, which are essential for
understanding the cognitive deficits associated with schizophrenia.

Ojeda et al. [5] explored the relationship between verbal fluency
and other cognitive domains in patients with schizophrenia and
healthy controls. Their findings indicated that while healthy con-
trols’ verbal fluency was primarily predicted by processing speed, in
patients with schizophrenia, it was more closely related to working
memory. This study highlights the differing cognitive mechanisms
underlying verbal fluency performance in schizophrenia and in-
formed our consideration of different cognitive variables in our
analysis.

Grimes et al. [2] examined the stability of verbal fluency abilities
in outpatients with schizophrenia over a one-year period. They
found that verbal fluency abilities remained stable over time, pro-
viding evidence against significant longitudinal decline in these
cognitive domains among individuals with chronic schizophrenia.
This study’s findings on the stability of verbal fluency informed
our understanding of the temporal consistency of cognitive impair-
ments in schizophrenia.

Lehtinen et al.[4] presented a systematic administration and anal-
ysis approach for verbal fluency tasks, highlighting the importance
of detailed scoring guidelines and exploring various underlying
cognitive processes. Their method provided strong inter-rater relia-
bility and demonstrated significant effects of education and gender
on verbal fluency performance, reinforcing the need for compre-
hensive analysis beyond total scores. This study’s emphasis on
clustering, switching, and error analysis informed our analytical ap-
proach to understanding the cognitive processes involved in verbal
fluency tasks in schizophrenia.

Kosmidis et al. [3] studied verbal fluency in institutionalized
patients with schizophrenia, focusing on age-related performance
decline. They found that elderly patients exhibited a dispropor-
tionate decline in phonemic fluency compared to younger patients,
while semantic fluency remained relatively stable. This research
highlighted the impact of aging on cognitive strategies like cluster-
ing and switching, which are critical for verbal fluency tasks. The
findings underscore the importance of considering age and institu-
tionalization duration when analyzing verbal fluency in schizophre-
nia

Nogueira et al. [7] provided normative data on semantic and
phonemic verbal fluency tasks for a European Portuguese popula-
tion, considering the effects of age, gender, and education. Their
study demonstrated that age and education significantly affect ver-
bal fluency performance, while gender has a more variable impact.
This research supports the need for demographic adjustments in
verbal fluency assessments and informed our methodology in ad-
justing for these variables in our analysis.

These studies collectively emphasize the multifaceted nature of
verbal fluency impairments in schizophrenia, necessitating the use
of advanced analytical techniques to capture the underlying cogni-
tive and linguistic disruptions. Our approach, combining traditional
statistical tests with semantic similarity measures using FastText
embeddings, aims to build on this foundation to provide deeper
insights into the verbal fluency deficits in schizophrenia.

3 METHODOLOGY
This section outlines the methodology used in our study to in-
vestigate verbal fluency deficits in individuals with schizophrenia
compared to healthy controls. We describe the participants, pro-
cedures, data collection, and data analysis methods employed to
gather and analyze the data.

3.1 Participants
The study involved a total of 126 participants, divided into two
groups: 58 individuals diagnosed with schizophrenia and 68 healthy
controls. The participants were matched for age and gender to en-
sure comparability between the groups. All participants were 18
years or older. Exclusion criteria included an inability to speak
Slovenian, a history of intellectual disability, organic brain condi-
tions, or substance abuse. For healthy controls, additional criteria
included no history of psychiatric disorders or substance abuse.
The study was approved by the Medical Ethics Committee of the
Republic of Slovenia, and all participants provided written informed
consent.

3.2 Procedure
Participants were asked to perform a verbal fluency task in which
they had to say as many words as possible that start with the letter
"L" in Slovenian within one minute. This task was administered
individually in a quiet room to minimize distractions. All responses
were recorded for subsequent analysis. Demographic data, includ-
ing age, gender, education level, marital status, employment status,
and hospitalization history, were collected prior to the test to pro-
vide a comprehensive overview of the sample population.

3.3 Data Collection
All data were recorded and stored in a secure database. The verbal
fluency responses were transcribed and annotated for analysis.
Each word was evaluated for its accuracy and categorized as correct,
intrusion (an incorrect word not fitting the criteria), repetition (same
word used more than once), or neologism (made-up word). The
timestamps for each word were also recorded to facilitate temporal
analysis. Additionally, FastText embeddings were computed for
each word to enable semantic similarity analysis.

Table 1: Demographic Characteristics of the Participants.
Measure Schizophrenia Patients Healthy Controls

Total Participants 58 68
Average Age (years) 46.05 46.71
Prevalent Education Level Primary school High school
Avg. Elementary School

grade-point 3.57 4.72

Avg. Secondary School
grade-point 3.46 4.39

Male Distribution 29 35
Female Distribution 29 33

Demographic data, summarized in Table 1, were analyzed to en-
sure that the groups were comparable in terms of age and gender, so
that any differences observed in verbal fluency performance are less
likely to be confounded by these factors. Although there were dif-
ferences in the average education level between the schizophrenia

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

74

Analysis of Verbal Fluency in Slovenian Language in Patients With Schizophrenia

and healthy control groups, we verified that within each education
level, there were no significant differences between the groups,
ensuring that education level did not confound the verbal fluency
comparisons.

3.4 Data Analysis
The collected data underwent various analyses to explore the dif-
ferences in verbal fluency between individuals with schizophrenia
and healthy participants. The following analytical techniques were
employed:
(1) Statistical Analysis: A t-test was conducted to compare the total

number of words and the number of correct words produced
by the two groups, where correct words are those that are
neither intrusions, repetitions, nor neologisms. Before using
the t-test, we checked that the data was normally distributed.
This statistical test provided evidence of differences in verbal
fluency performance between individuals with schizophrenia
and healthy controls.

(2) Semantic Similarity Analysis: For this study, we used FastText
embeddings to capture semantic relationships between words
produced during the verbal fluency tasks. FastText is a word em-
bedding technique designed to capture the semantic meaning
of words. It breaks words into character-level n-grams, which
allows it to capture more contextual information and better
handle rare or morphologically complex words. This makes
FastText particularly effective for languages like Slovenian, as
it can better represent linguistic nuances and provide more
meaningful embeddings for semantic similarity analysis. Us-
ing these embeddings, we calculated cosine similarity, mean
semantic distance, local optimal divergence, and global opti-
mality divergence to capture the semantic relationships and
coherence of word sequences.
By combining these analytical approaches, our study aims to

provide a comprehensive understanding of the verbal fluency im-
pairments associated with schizophrenia, contributing valuable
insights to cognitive functioning.

4 RESULTS
The results of the verbal fluency tests conducted on both individuals
with schizophrenia and healthy individuals are summarized in this
chapter. Figure 1 and 2 display the most frequently spoken words
by each group. Figure 1 presents the top five words spoken by
healthy individuals, along with the occurrences of these words
among people with schizophrenia. Similarly, Figure 2 illustrates
the top five words spoken by individuals with schizophrenia, along
with the occurrences of these words in the healthy group.

Figure 1: Top 5 Words by Healthy People.

Figure 2: Top 5 Words by Individuals with Schizophrenia.

In addition to the graphical representation of the top words,
Table 2 provides a summary of various key metrics from the verbal
fluency tests. This includes the total number of different words, the
number of unique words, and the counts of intrusion, repetition,
and neologism words for both groups.

Table 2: Comparison of Verbal Fluency Test performance
between individuals with schizophrenia (SP) and healthy
controls (HC). The bottom rows summarize the total number
of different words across all users and overlapping words
between the groups.

Total number of SP HC

Different words 176 247
Unique words 60 131
Intrusion words 44 8
Repetition words 21 8
Neologism words 20 0
Different words across all users 307
Overlapping words between observed groups 116

The analysis indicates significant differences in verbal fluency
between healthy individuals and those with schizophrenia. The
following sections will provide a detailed examination of the data,
including statistical analyses and further discussion on the implica-
tions of these findings.

4.1 Statistical Analysis
The statistical analysis compared the total number of words and the
number of correct words (no intrusion, no repetition, no neologism)
produced by participants in both groups.

Table 3: Mean and Standard Deviation (SD) of Words Pro-
duced by Healthy Controls (HC) and Individuals with
Schizophrenia (SP).

Measure HC (Mean ± SD) SP (Mean ± SD)
Correct Words 10.32 + 4.24 6.86 + 4.19
Total Words 10.69 + 4.32 8.52 + 5.12

The results of the t-test, after confirming that the data is normally
distributed, are summarized in the table below:

These results indicate significant differences between the groups,
with healthy participants producing more correct and total words
than participants with schizophrenia.

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

75

Mila Marinković, Polona Rus Prelog, Martina Zakšek, and Jure Žabkar

Table 4: T-test Results for Correct and Total Words by Group.
Measure t-statistic p-value
Correct Words 4.77 < 0.001
Total Words 3.04 0.002

4.2 Semantic Similarity Analysis
Using FastText embeddings, we calculated various semantic simi-
larity measures. The average cosine similarity for the group with
schizophrenia was 0.2, while for the healthy group, it was 0.19.

In addition to the average cosine similarity, we analyzed other
measures which are summarized in Table 5.

Table 5: Semantic Similarity Measures.
Measure t-statistic p-value
Mean Semantic Distance -0.59 0.554
Global Optimality Divergence 2.75 0.007
Local Optimality Divergence 0.29 0.769
Repetitions -2.26 0.026
Intrusions -1.83 0.070
Neologisms -4.47 <0.001

The differences in global optimality divergence and occurrences
of intrusions, repetitions, and neologisms were significant, high-
lighting disruptions in the overall semantic coherence and increased
errors in individuals with schizophrenia.

5 DISCUSSION
The results of this study highlight significant differences in verbal
fluency performance between individuals with schizophrenia and
healthy controls. Healthy participants produced a higher number
of correct words and exhibited more coherent and interconnected
semantic structures compared to individuals with schizophrenia.
These findings are consistent with established research on the cogni-
tive impairments linked to schizophrenia, particularly in the domain
of verbal fluency.

In addition to the differences in correct word production, indi-
viduals with schizophrenia also showed a significantly higher fre-
quency of errors, including repetitions, neologisms, and intrusions.
These errors are characteristic of the cognitive disorganization
associated with schizophrenia and reflect the impaired executive
function and semantic processing commonly observed in the dis-
order. The increased number of neologisms and intrusions further
highlights the semantic and linguistic disruptions that differentiate
individuals with schizophrenia from healthy controls.

Furthermore, although the use of FastText embeddings was a
key aspect of this study, the method was not sensitive enough
to capture local semantic disruptions. Measures such as cosine
similarity and mean semantic distance, focusing on local semantic
relationships, failed to highlight significant differences between the
groups. This outcome suggests that while local word relationships
may remain relatively preserved in individuals with schizophrenia,
or that FastText embeddings may not effectively capture subtle local
disruptions, the broader semantic coherence was impacted. This
was evidenced by the significant differences in global optimality
divergence, demonstrating a marked reduction in overall word
sequence coherence among individuals with schizophrenia.

5.1 Conclusions
In conclusion, our study highlights the significant cognitive and
linguistic impairments in individuals with schizophrenia, particu-
larly in verbal fluency performance. We matched participants on
age and gender to ensure comparability between the groups. While
education is known to influence cognitive abilities, our analysis
confirmed that within each educational level, there were no signifi-
cant differences between the two groups. However, a larger sample
size is needed to increase the power of our statistical analyses and
allow for better generalizability and more in-depth exploration of
all demographic variables.

Additionally, while FastText embeddings provided useful insights
into semantic coherence, they were not sensitive enough to capture
more subtle cognitive impairments. Future studies should explore al-
ternative methods to provide a more comprehensive understanding
of verbal fluency deficits in schizophrenia, contributing to improved
diagnostic and therapeutic strategies.

REFERENCES
[1] Flavia Galaverna, AdriÃ¡n M. Bueno, Carlos A. Morra, MarÃa Roca, and Teresa

Torralva. 2016. Analysis of errors in verbal fluency tasks in patients with chronic
schizophrenia. The European Journal of Psychiatry 30 (12 2016), 305 – 320.

[2] Kyrsten Grimes, George Foussias, Gary Remington, Kathryn Kalahani-Bargis,
and Konstantine Zakzanis. 2020. Stability of Verbal Fluency in Outpatients with
Schizophrenia. Psychiatry Research 295 (10 2020), 113528. https://doi.org/10.1016/
j.psychres.2020.113528

[3] Mary Kosmidis, Vassilis Bozikas, Christina Vlahou, Grigoris Kiosseoglou, George
Giaglis, and Athanasios Karavatos. 2005. Verbal fluency in institutionalized
patients with schizophrenia: Age-related performance decline. Psychiatry research
134 (05 2005), 233–40. https://doi.org/10.1016/j.psychres.2005.02.003

[4] Nana Lehtinen, Ida Luotonen, and Anna Kautto. 2021. Systematic administration
and analysis of verbal fluency tasks: Preliminary evidence for reliable exploration
of processes underlying task performance. Applied Neuropsychology: Adult 30 (09
2021), 1–13. https://doi.org/10.1080/23279095.2021.1973471

[5] Ojeda Natalia, Pedro Sanchez, Javier Peña, Edorta Elizagárate, Ana Yoller, Juan
Larumbe, Miguel Gutiérrez-Fraile, Leonardo Casais, and Jesús Ezcurra. 2010. Ver-
bal Fluency in Schizophrenia Does Cognitive Performance Reflect the Same Un-
derlying Mechanisms in Patients and Healthy Controls? The Journal of ner-
vous and mental disease 198 (04 2010), 286–91. https://doi.org/10.1097/NMD.
0b013e3181d61748

[6] Angel Nevado, David Del Río, María Teresa Martín-Aragoneses, José M. Prados,
and Ramón López-Higes. 2021. Preserved semantic categorical organization in
mild cognitive impairment: A network analysis of verbal fluency. Neuropsychologia
157 (2021), 107875. https://doi.org/10.1016/j.neuropsychologia.2021.107875

[7] Dália Nogueira, Elizabeth Reis, and Ana Vieira. 2016. Verbal Fluency Tasks:
Effects of Age, Gender, and Education. Folia Phoniatrica et Logopaedica 68 (12
2016), 124–133. https://doi.org/10.1159/000450640

[8] Matthew M. Nour, Daniel C. McNamee, Yunzhe Liu, and Raymond J. Dolan. 2023.
Trajectories through semantic spaces in schizophrenia and the relationship to
ripple bursts. Proceedings of the National Academy of Sciences 120, 42 (2023),
e2305290120. https://doi.org/10.1073/pnas.2305290120

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

76

Proc. of the 10th Student Computing Research Symposium (SCORES’24), Maribor, Slovenia, October 3, 2024

Index of Authors

Bedrač, Žan, 33
Bele, Simon, 7
Bubnic, Bostjan, 49
Bubnič, Gal, 49
Bóta, András, 61

Dolanc, Domen, 15

Filipič, Bogdan, 2
Fister, Iztok, 1, 78

Georgiev, Dejan, 65
Grošelj, Ema Leila, 3, 45

Hajdu, László, 61

Jeromel, Aljaž, 15

Kohek, Štefan, 11, 78
Kosar, Tomaž, 49
Krész, Miklós, 61

Lukač, Niko, 11, 15, 78

Marinković, Mila, 73
Micev, Riste, 69
Milosavljević, Vera, 37
Mlakar, Uroš, 41
Molan, Nika, 45

Natev, Andrej, 57
Nikov, Mitko, 33

Paliska, Dejan, 37
Pavlović, Jovan, 61
Piskar, Sašo, 15
Plankelj, Marko, 41
Poljanšek, Tomaž, 3
Pur, Aleksander, 11
Pustoslemšek, Jure, 19

Repič, Tjaša, 15
Rihter, Nejc, 19
Rogelj, Peter, 69
Roj, Lea, 11
Rus Prelog, Polona, 73

Vovk, Klemen, 45

Zadravec, Hana, 53
Zakšek, Martina, 73
Zupanič, Matjaž, 65

Črne, Ema, 19

Šinko, Matija, 23
Šprajc, Žan Tomaž, 33
Žabkar, Jure, 7, 65, 73

Proceedings of the
10th Student Computing Research Symposium (SCORES’24)

Niko Lukač (ed.)
niko.lukac@um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science
Maribor, Slovenia

Iztok Fister (ed.)
iztok.fister@um.si

University of Maribor,
Faculty of Electrical

Engineering and Computer Science
Maribor, Slovenia

Štefan Kohek (ed.)
stefan.kohek@um.si
University of Maribor,
Faculty of Electrical

Engineering and Computer Science
Maribor, Slovenia

ABSTRACT
The 2024 Student Computing Research Symposium (SCORES 2024), organized by the Faculty of
Electrical Engineering and Computer Science at the University of Maribor (UM FERI) in collabora-
tion with the University of Ljubljana and the University of Primorska, showcases innovative student
research in computer science. This year’s symposium highlights advancements in fields such as ar-
tificial intelligence, data science, machine learning algorithms, computational problem-solving, and
healthcare data analysis. The primary goal of SCORES 2024 is to provide a platform for students to
present their research, fostering early engagement in academic inquiry. Beyond research presen-
tations, the symposium seeks to create an environment where students from different institutions
can meet, exchange ideas, and build lasting connections. It aims to cultivate friendships and future
research collaborations among emerging scholars. Additionally, the conference offers an opportu-
nity for students to interact with senior researchers from institutions beyond their own, promoting
mentorship and broader academic networking.

KEYWORDS
student conference, computer and information science, artificial intelligence, data science, datamin-
ing

ISBN 978-961-286-914-4
DOI: https://doi.org/10.18690/um.feri.6.2024

https://doi.org/10.18690/um.feri.6.2024

	Preamble
	Cover

	Conference Program
	Plenary Speakers
	SCORES’24: History, mission and visionIztok Fister
	Evolutionary Computation: Overview, Trends and PerspectivesBogdan Filipič

	Section 1: Advances in Graph Theory and Algorithmic Solutions Chairman: Štefan Kohek
	Influence of Graph Characteristics on Solutions of Feedback Arc Set ProblemEma Leila Grošelj, Tomaž Poljanšek
	Learning Multi-Level Skill Hierarchies with GraphwaveSimon Bele, Jure Žabkar
	Integration of Named Entity Extraction Based on Deep Learning for Neo4j Graph DatabaseLea Roj, Štefan Kohek, Aleksander Pur, Niko Lukač
	Efficient Implementation of Spreadsheet User ApplicationTjaša Repič, Aljaž Jeromel, Sašo Piskar, Domen Dolanc, Niko Lukač
	Improvement and Evaluation of a Heuristic Method for the Minimal Feedback Arc Set ProblemJure Pustoslemšek, Ema Črne, Nejc Rihter

	Section 2: Image Processing, Computer Vision, and NLP Applications Chairman: Grega Vrbančič
	Counter-Strike Character Object Detection via Dataset GenerationMatija Šinko
	Cross-Lingual False Friend Classification via LLM-based Vector Embedding AnalysisMitko Nikov, Žan Tomaž Šprajc, Žan Bedrač
	Analyzing Tourist Destinations in Belgrade using Geotagged Photos from FlickrVera Milosavljević, Dejan Paliska
	Volleyball Game Analysis Using Computer Vision AlgorithmsMarko Plankelj, Uroš Mlakar

	Section 3: Machine Learning and Data Analytics in Various Domains Chairman: Marko Bizjak
	A Bayesian Approach to Modeling GPS Errors for Comparing Forensic EvidenceNika Molan, Ema Leila Grošelj, Klemen Vovk
	Seven Components of Computational Thinking: Assessing the Quality of Dr. Scratch Metrics Using 230,000 Scratch ProjectsGal Bubnič, Tomaž Kosar, Bostjan Bubnic
	Machine Learning Approaches to Forecasting the Winner of the 2024 NBA ChampionshipHana Zadravec
	Hit Song Prediction Through Machine Learning and Spotify DataAndrej Natev
	A Data-Driven Approach for the Analysis of Ridership Fluctuations in Transit SystemsJovan Pavlović, Miklós Krész, László Hajdu, András Bóta

	Section 4: Machine Learning Applications in Neuroscience and Healthcare Chairman: Uroš Mlakar
	Automatic Assessment of Bradykinesia in Parkinson’s Disease Using Tapping VideosMatjaž Zupanič, Dejan Georgiev, Jure Žabkar
	Exploring Mathematical Decision-Making Through EEG AnalysisRiste Micev, Peter Rogelj
	Analysis of Verbal Fluency in Slovenian Language in Patients With SchizophreniaMila Marinković, Polona Rus Prelog, Martina Zakšek, Jure Žabkar

	Index of Authors

