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The COVID-19 pandemic has underscored the critical 
importance of predictive modelling in managing healthcare 
resources and shaping public health policies. This paper explores 
the application of advanced Artificial Intelligence (AI) 
techniques, specifically decoder-only transformer neural 
networks (DOTNN), in forecasting weekly Intensive Care Unit 
(ICU) admissions. Our research is driven by the necessity to 
enhance preparedness for potential future pandemics, referred to 
as "Disease X", by leveraging large datasets of publicly available 
information. A prediction model has been developed that 
incorporates several key indicators, such as new cases, ICU 
admissions, and testing rates. Our DOTNN architecture, 
inspired by the Generative Pre-trained Transformer (GPT), 
focuses on time series forecasting without the necessity for 
encoder components, thereby streamlining the prediction 
process. Despite limited data availability, the proposed method 
can achieve notable accuracy, with Mean Absolute Percentage 
Error (MAPE) values below 15% for a significant number of 
predictions. This performance highlights the potential of 
DOTNNs in forecasting ICU admissions, which is crucial for 
healthcare planning and resource allocation during pandemics. 
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1 Introduction 
 
The COVID-19 pandemic spurred a wide range of modelling efforts to predict the 
spread of the virus, inform public health policies, and manage healthcare resources. 
While numerous methodologies were employed, many of these efforts were indeed 
grounded in classical epidemiological models like the SIR (Susceptible-Infected-
Removed), SEIR (Susceptible-Exposed-Infected-Removed), SEIUR (Susceptible-
Exposed-Infected-Uncertain-Removed), and agent-based models. These models 
have a long history in epidemiology for their utility in understanding the dynamics 
of infectious diseases. In contrast, advanced Artificial Intelligence (AI) methods 
constituted a smaller proportion of the research landscape during the initial stages 
of the pandemic (Adam, 2020; Kucharski et al., 2020). 
 
In the aftermath of the COVID-19 era, one might question the need to continue 
refining pandemic prediction methods. However, it's essential to consider the 
concept of “Disease X”—a potential unknown threat that underscores the critical 
importance of preparing for yet-undiscovered pathogens capable of sparking future 
pandemics. Proactive stance in research of prediction methods for pandemics can 
markedly improve prepares for future pandemics. Such forward-thinking strategies 
are vital for saving lives, preventing the recurrence of past errors, and ensuring an 
effective response to novel infectious threats. (Banerjee et al., 2023; Prioritizing 
Diseases for Research and Development in Emergency Contexts, n.d.; What Is Disease X | Johns 
Hopkins | Bloomberg School of Public Health, n.d.) 
 
Our study aims to apply cutting-edge AI methodologies to a vast dataset for the 
purpose of forecasting ICU admissions. Rather than refining prediction algorithms, 
we seek to evaluate the efficacy of employing transformer neural networks for this 
task. Specifically, we are interested in predicting weekly ICU patient counts based 
on historical data, mirroring real-world scenarios where daily infection rates are 
recorded. This predictive capability holds promise for optimizing resource allocation 
and preparedness in managing COVID-19 patients. While existing research 
predominantly focuses on predicting ICU requirements for confirmed cases 
(Lorenzen et al., 2021) (Subudhi et al., 2021) (Chadaga et al., 2024) (Dipaola et al., 
2023), our methodology adopts a novel approach, utilizing time series forecasting 
with readily accessible data and a customized transformer architecture. However, 
our analysis is constrained by the limited availability of comprehensive weekly ICU 
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admission data from fewer than 20 countries, highlighting the necessity for enhanced 
data acquisition protocols, particularly in anticipation of future outbreaks. Despite 
potential challenges arising from data scarcity, precise forecasting of ICU occupancy 
remains pivotal for ensuring sufficient capacity to accommodate all critically ill 
patients. 
 
Development of Covid-19 models or “digital twins” should incorporate the real time 
sensing. In our early efforts in this regard, we have developed the hardware interface 
(Stojanovic et al., 2020) to monitor Covid-19 patients and provide the input to the 
predictive simulation models. In the next stage of our previous attempts to simulate 
the Covid-19 spread we have applied Bass diffusion model (Škraba et al., 2021). 
Agent-based approach has also been applied (Škraba & Vavtar, 2022) addressing the 
spatial distribution of the infected population. In order to improve the accuracy of 
the predictions the set of models was used: SI, Bass diffusion, SIR, SEIR and SEIUR 
(Stanovov et al., 2022) Parametrization was performed on parallel computer stack 
with the Differential Evolution (DE) methods. Combination of standard models 
with DE enabled us to confirm the hypothesis of latent spread mechanisms of 
Covid-19 which are important for the epidemics prediction. In present paper we 
strive to extend the predictability accuracy with the transformer neural network 
model. 
 
2 Methodology 
 
2.1 Data 2.1 
 
To develop our prediction model, we used publicly available dataset on COVID-19 
infections (Data on COVID-19 (Coronavirus) by Our World in Data, n.d.) which includes 
data of number of confirmed cases, tests, intensive care units (ICU) admissions, 
number of hospitalizations and more per country. Data for number of weekly 
hospitalizations and intensive care patients for at least 102 weeks is only available 
for 17 countries. For input data of our model, we used some of the data from dataset 
(new_cases_smoothed_per_million, weekly_icu_admissions_per_million, date (as 
number YYMMDD), aged_65_older (fixed per country), aged_70_older (fixed per 
country),  gdp_per_capita (fixed per country), cardiovasc_death_rate (fixed per 
country), diabetes_prevalence (fixed per country), female_smokers (fixed per 
country), male_smokers (fixed per country), population (in millions) (fixed per 
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country), weekly_hosp_admissions_per_million (updated weekly), 
population_density (fixed per country), median_age (fixed per country), 
life_expectancy (fixed per country), human_development_index (fixed per country), 
new_deaths_smoothed_per_million(updated weekly), new_tests_per_thousand 
(updated weekly)). 
 
Figure 1 shows five time series per country that were used in the training phase. 
Here the timeseries for Chile (CHL) are shown as an example in order to illustrate 
the complexity of addressed task. The graph includes the following time series data: 
 

• new cases, smoothed per million people, which exhibits several peaks that 
correspond to waves of infections over time. 

• weekly intensive care unit (ICU) admissions per million people, which 
shows notable spikes that are usually correlated with the waves of new cases. 

• new deaths, smoothed per million people, again showing peaks which 
typically follow the trend in new cases with a certain lag. 

• weekly hospital admissions per million people, closely following the trends 
of the ICU admissions, but typically at higher levels, suggesting that not all 
hospital admissions require ICU care. 

• new tests conducted per thousand people which has visible drops on 
weekends, highlighting the consistency of testing throughout the pandemic 
except for lower testing rates on weekends. 

 
To represent the dynamic character of the input data, the timeseries were normalized 
on the interval [0, 1] (y-axis), which makes it easier to compare the different scales 
of data. The normalization process transformed the raw data so that each metric fits 
within the same range for comparative purposes. The "waves" of the pandemic are 
evident from the recurring peaks in new cases, hospitalizations, ICU admissions, and 
deaths, with testing showing periodicity Figure 1 shows the time series for only one 
of the seventeen countries which were used to train the neural network models. 
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Figure 1: Normalized time series that were used as the input for Chile (CHL) 
Source: Own 

 
2.1.1 Model 2.1.1 
 
Our architecture leverages a decoder-only transformer neural network (DOTNN) 
model inspired by GPT (Generative Pre-trained Transformer) as detailed by 
Radford et al. (2018). This design choice is a deviation from the original transformer 
architecture proposed by Vaswani et al. (2017), focusing on sequence generation task 
without the need for an encoder. This decision stems from the nature of our 
forecasting task, which primarily involves generating future values from past data 
rather than transforming one sequence into another. 
 
Following the methodology outlined by Wen et al. (2022) and Zhou et al. (2020), we 
implement zero-mean normalization on both model input and target data... During 
inference, we apply the inverse process (de-normalization) using the training data's 
mean and variance to transform model outputs back to their original scale, ensuring 
that our predictions are interpretable and comparable to real-world values. In our 
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model we employ learned positional embeddings (Wen et al., 2022; Zhou et al., 
2020).  
 
In our model before decoder blocks, we expand inputs dimensionality to 512 and 
combine it with positional embeddings, each decoder block is equipped with two 
masked multi-head attention layers featuring four attention heads. The attention 
mechanism is complemented by a feed-forward network with 512 neurons. As we 
started predictions after 20 weeks context length of 20 weeks was chosen and was 
then kept through all subsequent weeks. We have also developed a smaller model 
with only one decoder block and only one attention head to expedite the 
experimental phase since model training takes considerable computer time. 
 
For training, we utilized a cosine learning rate decay strategy (Loshchilov & Hutter, 
2016), starting with an initial rate of 3e-4 and gradually reducing it to 1e-4 across the 
epochs. Coupled with the AdamW optimizer, which introduces a decay component 
to the weights (Kingma & Ba, 2014) (Loshchilov & Hutter, 2017) All examples were 
feed into network in a single batch (1 step per epoch). 
 
Figure 2 illustrates our network architecture, adapted from Vaswani et al. (2017), 
detailing the composition and workflow of our model. 
 
Our experimental setup involves training the model on a dataset covering 20 weeks 
of data, aiming to predict ICU patient numbers in the subsequent week. This process 
is iteratively repeated, incorporating the data from the newly predicted week into the 
training set for subsequent predictions. This iterative retraining strategy simulates a 
real-world application where the model adapts to new information over time, aiming 
to provide accurate forecasts. During development we used up to 102 weeks of data. 
 
To accommodate the growing dataset, we proportionally increase the number of 
training epochs based on the added examples, opting for a pragmatic approach over 
hyperparameter optimization for each iteration.  
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Figure 2: Network architecture  
Source: adapted from (Vaswani et al., 2017) 

 
As the measure to determine the accuracy of a model's predictions the Mean 
Absolute Percentage Error (MAPE) (Oliva & Oliva, 1995; Sterman, 2000) was used, 
defined as: 
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where 𝐶𝐶 is the number of observations, 𝐶𝐶�𝑖𝑖 is the predicted value and 𝐶𝐶𝑖𝑖 is the actual 
value. While, due to the absolute value, the term 𝐶𝐶�𝑖𝑖 − 𝐶𝐶𝑖𝑖 is sometimes swapped 
which might contribute to the confusion, the proper order as is written enables us 
to understand the meaning of MAPE. There is also plethora of other possibilities to 
determine the accuracy of the predictions (Batagelj & Bren, 1995) however, we have 
used MAPE due to its intuitive interpretability, as it directly expresses error as a 
percentage of the actual values. 
 
3 Results 
 
With proposed method of using DOTNN for predicting the number of ICU 
patients the MAPE values for 6 out of the 17 countries were below 15% which might 
be considered good in terms of ICU prediction. Observing the results we saw that 
in some countries weekly ICU admissions were logged daily for those countries our 
model made daily predictions (Table 1, marked with asterisk *) and performed better 
in general. We have tested our method with two different model sizes. While the 
larger model exhibited a superior average MAPE, the smaller model demonstrated 
better performance in countries where the MAPE was below 15%. 
 
Bolded values in Table 1 indicates better, i.e. lower MAPE values indicating better 
model. The same goes for the MSE (mean squared error) while for the r2 (Wright, 
1921) higher values are better. Asterisk * marks the countries where daily data was 
used for training. 
 
In examining the accuracy of predictions, t-test was conducted to compare the mean 
accuracy of predictions with a MAPE below 25% (M = 8.70, SD = 3.09) against 
those with a MAPE above 25% (M = 87.81, SD = 58.45). Results indicated a 
statistically significant difference between the two groups, t(11) = -4.68, p < .001, 
two-tailed. The significant statistical difference in prediction accuracy, as evidenced 
by the t-test comparing MAPE values below 25% to those above this threshold, 
highlights a potential for enhancing the prediction method as well as good accuracy 
in the <25% group. 
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Table 1: Prediction scores 
 

ISO CODE 
MAPE 
(bigger 
model) 

MSE r2 
MAPE 

(smaller 
model) 

MSE r2 

CHL* 7.36 8.31 0.90 4.69 5.56 0.93 

CYP 64.78 31.69 0.60 113.31 38.11 0.55 

CZE* 112.03 0.36 0.84 152.98 0.25 0.88 

EST 52.51 45.32 0.70 112.88 52.16 0.53 

FRA* 11.44 0.51 0.99 13.00 0.52 0.99 

DEU* 12.77 2.03 0.82 5.50 0.32 0.98 

GRC 34.36 16.23 0.85 30.28 17.38 0.86 

IRL  137.52 19.35 0.35 230.85 16.72 0.12 

ISR* 244.66 1.21 0.84 191.91 0.72 0.90 

ITA* 7.59 4.22 0.64 4.97 2.10 0.86 

LVA 50.42 380.02 0.73 49.15 697.01 0.43 

LUX 75.45 46.59 0.59 84.28 57.49 0.60 

NLD* 8.86 2.40 0.80 7.23 1.80 0.85 

NOR 79.01 1.94 0.77 246.66 2.81 0.72 

SVK 105.28 13.17 0.81 163.89 14.27 0.82 

SVN 36.30 73.48 0.81 53.57 93.41 0.76 

ESP* 4.16 1.21 0.98 4.84 1.41 0.98 

AVERAGE 61.44 38.12 0.77 86.47 58.94 0.75 

 
Figure 3 represents the overall best forecasting accuracy for ICU admissions which 
is for Spain (ESP) over a span of 102 days, using a daily scale. The blue line signifies 
the actual reported ICU admissions per million individuals, while the red arrows 
illustrate our model's daily predictions. The accurate alignment between the blue line 
and the red arrows demonstrates the high precision of the predictions, with the 
MAPE being exceptionally low at 4.16%, indicating a close correspondence to the 
real data. The model's capacity to closely follow the trend lines throughout the entire 
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time highlights its robustness and the potential for reliable future forecasting in 
similar scenarios. 
 

 
 

Figure 3: Best performing country (ESP bigger model) 
Source: Own 

 
Figure 4 presents a comparative analysis of ICU admission predictions for the three 
countries where both the smaller model (left column) and the bigger, more accurate 
model (right column) performed the least accurately. Each row represents one 
country, with Israel (ISR), Norway (NOR), and Ireland (IRL) from top to bottom. 
The time series data spans 102 days/weeks and shows weekly ICU admissions per 
million. The blue lines indicate the actual data for ICU admissions, while the red 
lines depict the predictions made by the respective model.  
 
Figure 4 reveals the limitations and challenges faced by the models, particularly in 
the countries where predictions did not align as closely with the actual data. Some 
of the error can be explained by extreme errors when predictions are close to 0 which 
is known disadvantage of MAPE. We observed the smaller model does not 
adequately account for all the information contained in the data. As the model gets 
larger, the predictions in our case improved on average. Model might be also missing 
some key data for making best predictions as for example amount and strictness of 
COVID measures and restrictions and country’s location and size.  
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Figure 4: worst performing countries (left smaller model, right bigger model) 
Source: Own 

 
To explore relationship between amount of data and prediction accuracy we selected 
the smaller set of countries to compare the results between smaller and larger data 
set. In the left part of table 2 (smaller model separate data), we have only one country 
in the training set and not all of seventeen selected countries. The set of input data 
is correspondingly smaller in this part. The right side of the table (smaller model all 
data) shows the results with all countries in the training set. 
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Table 2: Results for smaller (left) vs bigger (right) training set 
 

ISO CODE MAPE MSE r2 MAPE MSE r2 

GRC 48.54 24.04 0.80 30.28 17.38 0.86 

NOR 74.83 5.02 0.40 246.66 2.81 0.72 

SVK 77.70 16.90 0.77 163.89 14.27 0.82 

SVN 327.03 81.97 0.82 53.57 93.41 0.76 

ITA 3.15 0.75 0.96 4.97 2.10 0.86 

 
In the case of smoother data input, where there was small volatility in data the model 
trained on less data turns out to be better. With harder to predict countries we 
observed better performance if we included all countries in the training dataset. 
Considering better MSE and r2 scores for Norway and Slovakia predictions one 
could hypothesise that better MAPE might be explained by lower number of 
extreme errors when predictions are near zero. Figure 5 ~ Left shows predictions 
for Greece when trained with only Greece’s data and Figure 5 ~ Right shows 
predictions when trained on all data. Both cases used smaller model for prediction. 
 

    
 

Figure 5 Left ~ GRC trained only on GRC data | Right ~ GRC trained on all data (smaller 
model) 

 
Comparatively, the data in Figure 5 ~ Right may represent a more stable and possibly 
more accurate model for predicting ICU admissions, incorporating a diverse set of 
training data. However, Figure 5 ~ Left, with its higher resolution of Greece-specific 
fluctuations, might be more sensitive to local variations and potentially overfit to 
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Greece's patterns. With better performance observed with more data and a bigger 
model, gathering detailed data for regions or municipalities could potentially increase 
accuracy of predictions while adding additional value for planning. Pretraining the 
model on different diseases is also worth exploring. 
 
Main possible advantage of proposed method of predicting number of ICU 
admissions is the ability to put any data as an input and then let the model to learn 
if the data is valuable to making accurate predictions or if it should be ignored. 
Additionally, adding additional inputs to the model does not increase the complexity 
of modelling. Previous methods such us Google Flu Trends (Dugas et al., 2013)and 
Skraba (Škraba & Vavtar, 2022) were based on rather different principles as one was 
monitoring user searches and behaviours in Google search tools and the other was 
predicting epidemic dynamics for a single wave of pandemic. Our methodology 
could also provide ability to easily include predictions of other methods as inputs 
with zero additional modelling complexity increase besides gathering the data. 
 
4 Conclusion 
 
We've shown that the DOTNN method could offer high accuracy in predicting ICU 
admissions numbers, though occasional higher prediction errors can occur. Future 
research should focus on data preparation and identifying factors influencing 
inaccurate predictions. Despite some discrepancies, many predictions were 
satisfactory, with MAPE below 15%. Our aim wasn't to dive into prediction accuracy 
but to explore a novel method, unused in the context of COVID-19. This approach 
prepares for potential future pandemics, like "Disease X," where AI methods could 
be pivotal. While our methodology shows promise, its usability remains unclear due 
to data limitations. We observed better accuracy predicting ICU admissions a day 
ahead compared to a week ahead which indicates that predicting for less than week 
in advance may be worth exploring. We believe that for future research data 
preparation is critical, with need for manual inspection and filtering due to potential 
errors. Adapting these methods for real-time processing is vital, particularly for 
future pandemics. Despite challenges in modelling pandemic waves, our method 
shows potential, although comparing it with others is difficult due to data 
complexity.  
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