




 
 
 
 
 
 
 
 
 
 
 

Introduction to the Computer Simulations 
 

Script 
 
 
 
 
 
 
 
 

Authors 
Nejc Novak 

Matej Borovinšek 
Matej Vesenjak 

Zoran Ren 
 
 
 
 
 
 

March 2024 



 

Title Introduction to the Computer Simulations 
  

Subtitle Script 
  

Authors Nejc Novak  
(University of Maribor, Faculty of Mechanical Engineering) 
 
Matej Vesenjak  
(University of Maribor, Faculty of Mechanical Engineering) 

Matej Borovinšek  
(University of Maribor, Faculty of Mechanical Engineering) 
 
Zoran Ren  
(University of Maribor, Faculty of Mechanical Engineering) 

   
Review Miran Ulbin  

(University of Maribor, Faculty of Mechanical Engineering) 
Srečko Glodež  
(University of Maribor, Faculty of Mechanical Engineering) 

   
Language editing Shelagh Margaret Hedges  

  
Technical editor Jan Perša 

(Univerza v Mariboru, Univerzitetna založba) 
 

Cover designer Jan Perša 
(Univerza v Mariboru, Univerzitetna založba) 

  
Graphic material Sources are own unless otherwise noted. Novak, Borovinšek, Vesenjak, Ren, 2024 

  
Cover graphics Glich, author: sunrisepohtam from Pixabay, 2024 

Simolations, authors: Novak, Borovinšek, Vesenjak, Ren, 2024 
  

Published by University of Maribor 
University Press 
Slomškov trg 15,  
2000 Maribor, Slovenia 
https://press.um.si 
zalozba@um.si 

  

  
Issued by 

 
University of Maribor 
Faculty of Mechanical Engineering  
Smetanova ulica 17 
2000 Maribor, Slovenia 
https://www.fs.um.si 
fs@um.si 

  
Edition 1st Published at Maribor, Slovenia, March 2024 

  
Publication type E-book Available at https://press.um.si/index.php/ump/catalog/book/858 

 
 

CIP - Kataložni zapis o publikaciji 
Univerzitetna knjižnica Maribor 
 
004.942(0.034.2) 
 
    INTRODUCTION to the Computer 
Simulations Script [Elektronski 
vir] : script / authors Nejc Novak 
... [et al.]. - 1st ed. - E-
publikacija. - Maribor : University 
of Maribor, University Press, 2024 
 
Način dostopa (URL): 
https://press.um.si/index.php/ump/c
atalog/book/858 
ISBN 978-961-286-836-9 (Pdf) 
doi: 10.18690/um.fs.2.2024 
COBISS.SI-ID 188309507 

 
© University of Maribor, University Press  
/ Univerza v Mariboru, Univerzitetna založba 

 
Text / besedilo © Novak, Borovinšek, Vesenjak, Ren, 2024 
 
This book is published under a Creative Commons 4.0 International licence (CC BY-
NC-ND 4.0). This license allows reusers to copy and distribute the material in any 
medium or format in unadapted form only, for noncommercial purposes only, and only 
so long as attribution is given to the creator. 
 
Any third-party material in this book is published under the book’s Creative Commons 
licence unless indicated otherwise in the credit line to the material. If you would like to 
reuse any third-party material not covered by the book’s Creative Commons licence, 
you will need to obtain permission directly from the copyright holder. 
 
https://creativecommons.org/licenses/by-nc-nd/4.0/ 

 
 

ISBN 978-961-286-836-9 (pdf) DOI https://doi.org/10.18690/um.fs.2.2024 
  

Price Brezplačni izvod For publisher prof. dr. Zdravko Kačič, rektor Univerze v Mariboru 
    

Citiranje 
Attribution 

Novak, N., Borovinšek, M., Vesenjak, M., Ren, Z.(2024). Introduction to the Computer Simulations: Script. University of 
Maribor, University Press. doi: 10.18690/um.fs.2.2024 

 



INTRODUCTION TO THE COMPUTER SIMULATIONS: SCRIPT 
N. Novak, M. Borovinšek, M. Vesenjak, Z. Ren  

 

 

 

Table of Contents 
 
1 Introduction and short history overview ......................................................................................... 1 
 
2 Theoretical foundations .................................................................................................................. 3 
2.1 Finite Element Analysis ............................................................................................................................................. 5 
2.2 Types of finite elements ............................................................................................................................................ 6 
2.2.1 Solid finite elements ................................................................................................................................................... 7 
2.2.2 Surface finite elements ............................................................................................................................................... 8 
2.2.3 Line finite elements ................................................................................................................................................. 10 
2.3 Symmetry and asymmetry ...................................................................................................................................... 12 
2.4 Unit systems ............................................................................................................................................................. 13 
 
3 Material definiton in FEA ............................................................................................................. 15 
3.1 Young's modulus and Poisson's ratio ................................................................................................................... 15 
3.2 Material data in advanced simulations .................................................................................................................. 19 
 
4 Boundary conditions and loads .................................................................................................... 25 
4.1 Definition of boundary conditions ....................................................................................................................... 25 
4.2 Loads ......................................................................................................................................................................... 26 
 
5 Meshing ........................................................................................................................................ 29 
5.1 Importing of geometry ........................................................................................................................................... 29 
5.2 Density of the FE mesh ......................................................................................................................................... 30 
5.3 Stress singularities .................................................................................................................................................... 33 
5.3.1 Stress singularities at geometric features .............................................................................................................. 34 
5.3.2 Stress singularities at boundary conditions .......................................................................................................... 34 
5.4 Quality of finite elements ....................................................................................................................................... 37 
 
6 Practical examples ........................................................................................................................ 39 
6.1 Basics of using PrePoMax ...................................................................................................................................... 39 
6.1.1 Downloading PrePoMax ........................................................................................................................................ 39 
6.1.2 Structure of the main window ............................................................................................................................... 40 
6.1.3 PrePoMax modules ................................................................................................................................................. 41 
6.1.4 View manipulation ................................................................................................................................................... 42 
6.1.5 Visualisation representation ................................................................................................................................... 43 
6.1.6 Results` representation ........................................................................................................................................... 43 
6.1.7 Troubleshooting ...................................................................................................................................................... 44 
6.2 Beam in Tension ...................................................................................................................................................... 44 
6.2.1 Analytical solution ................................................................................................................................................... 45 
6.2.2 Finite element solution ........................................................................................................................................... 46 
6.3 Bending of an L bracket ......................................................................................................................................... 69 
6.3.1 Analytical solution ................................................................................................................................................... 69 
6.3.2 Finite element solution ........................................................................................................................................... 70 
 
Literature ................................................................................................................................................... 81 
. 





INTRODUCTION TO THE COMPUTER SIMULATIONS: SCRIPT 
N. Novak, M. Borovinšek, M. Vesenjak, Z. Ren  

 

 

 
 
 
 
 
 
 
 
 
 

1 Introduction and short history overview 
 
 
The history of finite element software can be traced back to the early 1960s when the first 
computer programs were developed to solve complex problems in engineering and 
mechanics [1]. At that time, analytical methods were used primarily in mechanics, which 
were unsuitable for solving complex problems. Analytical methods are based on the 
assumption that the problem domain is simple and can be represented by a set of 
simplified equations. However, many real-world problems are complex and cannot be 
represented as such. The Finite Element Method (FEM) overcomes this limitation by 
dividing the problem domain into smaller subdomains with simple geometry called finite 
elements. Each finite element is first computed locally, and then combined with other 
finite elements to solve the overall problem. This approach allows the FEM to solve 
problems with very complex geometries and underlying fundamental relationships. The 
early FEM programs were elementary and required a lot of manual input, but they laid the 
foundation for the sophisticated software systems that are available today. Even today, 
simulation programs rely on model data input via text files, reminiscent of the card-based 
input technique of the past [2]. 
 
One of the first significant advances in finite element software came in 1964 with the 
development of the NASTRAN program (NASA STRucture ANalysis) by NASA [3]. 
NASTRAN is a general-purpose finite element program that can be used to solve a wide 
variety of problems, including linear and non-linear static and dynamic analysis. 
NASTRAN was adopted quickly by industry and academia, and it remains one of the most 
popular finite element programs today. 
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Another significant milestone in the history of finite element software was the 
development of the ANSYS program in 1970 by John Swanson [4]. ANSYS was one of 
the first commercial finite element programs, adopted quickly by engineers and scientists 
due to its versatility and ease of use. ANSYS has continued to evolve over the years, and 
it is now one of the world's most influential and widely used finite element programs. 
 
Other notable finite element software programs include ABAQUS, LS-DYNA, Marc, 
COMSOL Multiphysics, and many more. Engineers and scientists use these programs to 
analyse problems in various industries, including aerospace, automotive, civil engineering, 
manufacturing and biomedical engineering. Finite element software solves many 
problems, including structural analysis, heat transfer analysis, fluid flow analysis, 
electromagnetic analysis, and multiphysics problems. 
 
Computational simulations have revolutionised how engineers and scientists design and 
analyse products and systems in all stages of the design process. It has enabled engineers 
to solve previously intractable problems and improved engineering design's efficiency and 
quality significantly. 
 
Computational mechanics is a constantly changing discipline, with breakthroughs 
occurring regularly. The following are some of the essential trends in the finite element 
software development: 
 

− The development of new and more accurate finite element formulations; 
− The integration of finite element software with other engineering software tools, 

such as (Computer Aided Design – CAD) and (Computational Fluid Dynamics – 
CFD) software; 

− The development of cloud-based finite element software; 
− The development of Artificial Intelligence and Machine Learning techniques to 

improve the efficiency and accuracy of finite element analysis. 
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2 Theoretical foundations 
 
 
The Finite Element Method is a numerical technique for approximating solutions of 
boundary value problems described with governing partial differential equations in 3D, 
2D or 1D spaces [5]. It involves dividing a complex problem domain into smaller, 
geometrically simpler regions known as finite elements (FE) (Figure 1). The finite elements 
can be of different types, depending on the underlying one-dimensional (1D), two-
dimensional (2D), or three-dimensional (3D) theory describing the finite element's ability 
to simulate specific behaviour. These elements are characterised by nodes at their vertices, 
edges, or even volume, representing specific points in the domain where the problem state 
variables are computed. Each node has several degrees of freedom (DOF), depending on 
its formulation.  The type of finite element used always predetermines the number of 
DOFs associated with a node, see Section 2.2. The variation of state variables between 
nodes within finite elements is approximated by interpolation schemes, ranging from 
simple to complex, depending on the analysed problem. The finite elements are usually 
assembled into a mesh so that they are interconnected at the nodes.  
 
Since the problem domain is divided into many finite elements and then uses interpolation 
functions to approximate the solution within each element, and, consequently, over a 
while domain, the final result is always an approximation rather than an exact solution. 
The accuracy of FEM solutions depends on several factors, including the number/size of 
finite elements, the choice of interpolation functions, the mesh quality and the applied 
fundamental theory. More finite elements, higher-order interpolation functions and 
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detailed governing equations will generally lead to more accurate solutions. However, this 
also increases the computational time, and, consequently, the cost of the analysis. 
 

 
 

Figure 1: Finite element mesh 
 
The governing equations typically follow the principles of equilibrium and compatibility, 
which are fundamental concepts in mechanics. The primary goal in solid mechanics is to 
establish a relationship between the applied loads, the material properties, and the resulting 
displacements in a given structure [6]. In structural mechanics, the basic governing 
equation is derived from the quasi-static equilibrium equation, which states that the sum 
of forces acting on a structure must be zero. This equilibrium equation is, in the FEM, 
typically expressed as: 
 

 
 

Figure 2: Fundamental relationships in the FEA 
 
where K is the stiffness matrix, representing the material and geometric properties of the 
structure, u is the vector of nodal displacements for each degree of freedom, and F is the 
vector of all external forces. 
 
The equation states that, when a structure is in equilibrium, the internal forces (represented 
by K⋅u) must balance the external forces (F). This system of equations forms the core of 
the FEM approach in structural analysis. The boundary conditions have to be prescribed 
to solve the system. The stiffness matrix K and the external force vector F are derived 
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based on the properties of the finite elements and the selected material model. It's 
important to note that the governing equations can vary, depending on the problem being 
solved (e.g., structural, thermal, fluid dynamics) and the specific characteristics of the 
material and geometry involved. The process involves discretising the domain into finite 
elements, computing the contributions of each element locally, and assembling the global 
system of equations that govern the entire structure. 
 
2.1 Finite Element Analysis 
 

 
 

Figure 3: Typical FEA steps 
 
The Finite Element Analysis (FEA) is divided into three basic steps (Figure 3): 
 

1. The pre-processing step, where the computational model is prepared and checked 
with all the necessary computational data (FE mesh, boundary conditions (supports 
and loads), material properties, etc.). This step is usually done with integral or 
separate pre-processing programs, to create/import geometry, generate the FE 
mesh and define the boundary conditions, together with some specific problem 
data, like material or other domain data. 

2. The computing (or analysis) step, is where the computational model prepared in 
the previous step is used as input data for the solver, which can be integral or 
separated again. The solver program contains all the necessary physics, computing 
theory and algorithms, to compute the underlying problem described by the input 
computational model efficiently and generate the desired results as output data. 

Geometry 

FE mesh 

 
Boundary conditions 

Loads 

Pre-processing 
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These programs are sometimes called the "black box" programs, since they usually 
do not allow user interaction during the computing, i.e. solution phase.  

3. The post-processing step, where the output data generated in the previous step are 
evaluated and visualised. This step can also be done with integral or separate pre-
processing programs. 

 

A single FEA is usually not enough to achieve accurate results, so the above three steps 
are repeated in a loop by improving the computational model until convergence is 
achieved of the output results.  
 

2.2 Types of finite elements 
 

Finite elements in the FEM are mathematical entities used to discretise and represent 
physical structures or domains. The choice of finite element type depends on the 
geometry, material properties, and the behaviour of the physical system under 
consideration. The most common types of finite elements are solid (3D), shell (2D), and 
line (1D) finite elements (Figure 4). 
 

 
Figure 4: Use of different types of finite elements [2] 

 

In mechanical systems, we typically consider six basic degrees of freedom associated with 
translational and rotational movements in a three-dimensional coordinate system. These 
six degrees of freedom correspond to translation motion along the x, y and z axes and 
rotations about the x, y and z axes, as shown in Figure 5. 
 

Certain specific simulation requirements may require additional degrees of freedom. These 
can include non-mechanical degrees of freedom (e.g. temperature). It's important to 
consult the documentation or user guide of the specific software package to understand 
the additional degrees of freedom for proper simulation implementation. 
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Figure 5: Degrees of freedom 
 
The number of degrees of freedom in the FEA depends on the analysis type, which is 
often associated with the finite element type being used. In general 3D structural analysis, 
using 3D volume elements, only three translational DOFs (3 displacements) are enough 
to describe the problem fully. However, some specialised fundamental theories (like the 
beam or shell theory, separating the problem to the sum of in-plane and out-of-plane 
behaviour) also involve rotational degrees of freedom, where the nodes of associated beam 
and shell finite elements have the full set of DOF (3 displacements + 3 rotations) in 3D. 
 
2.2.1 Solid finite elements 
 
Solid (volumetric) finite elements are used for spatial discretization when the mechanical 
part or the problem domain displays typically dissimilar behaviour in all three dimensions. 
Solid finite elements are usually prismatic in shape, with tetrahedra and hexahedra being 
the most widely used elements in practical applications (Figure 6). However, due to the 
complexity of their shape functions, solid elements are computationally expensive and 
sometimes prone to errors. A common problem with solid elements is a negative volume 
that occurs when one face of the element passes through its opposite face under 
compression [7]. 
 
Solid finite elements, typically used for three-dimensional analysis of structures, have three 
translational degrees of freedom (x-displacement, y-displacement and z-displacement) at 
each node (Figure 7), and do not consider rotational displacements. The element shown 
in Figure 7 has a total of 24 degrees of freedom (8 nodes multiplied by 3 degrees of 
freedom per node). 
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Figure 6: Volume finite elements [1] 
 

 
 

Figure 7: Volume FE 
 
2.2.2 Surface finite elements 
 
Surface finite elements are used in cases where two-dimensional effects, such as bending 
and membrane loads, dominate the structural or mechanical behaviour. In such cases, the 
structure has a relatively thin cross-section compared to its other dimensions (e.g., plates, 
walls, shells). Shell finite elements commonly have triangular or quadrilateral shapes, and 
are positioned along the mid-plane of the volumes under consideration (Figure 8). In shell 
finite elements, it is often assumed that the thickness of the components does not change 
due to the applied load. They balance computational efficiency and accuracy for problems 
with two-dimensional effects dominating structural behaviour. Their application is 
particularly advantageous when modelling a structure's three-dimensional volume is 
unnecessary or computationally expensive. 
 
The basic variables are computed in finite element nodes on the mid-plane, while some 
theoretical relationships assume their variation through the thickness. In solid mechanics, 
such assumptions can be about specific stress-strain states, such as plane strain, plane 
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stress, axisymmetric symmetry, and separate membrane and bending stresses. These 
theoretical assumptions simplify the treatment of the problem by introducing some simple 
mathematical relationships to determine basic variables at nodes considering only two 
planar DOFs of the mid-plane. The stress-strain states outside the mid-plane, such as 
bending stress on the outer surface of a shell or circumferential stress in axisymmetric 
problems, are computed in the post-processing phase of the FEA, using simple analytical 
relationships based on established theories and principles. While these assumptions may 
not capture the full complexity of the problem, they provide reasonable approximations, 
and facilitate easier and faster analysis of the underlaying problem. 
 

 

are 
used 
for 

 

 
Figure 8: Surface finite elements [1] 

 
The 3D surface finite elements are generally divided into two groups. The first group 
comprises membranes and plates, while the other consists of shells. All of them represent 
a thin, flat structure. The shell elements have all six mechanical DOF (3 displacements + 
3 rotations) defined at each node, as shown in Figure 9. Three displacements (x-
displacement, y-displacement and z-displacement) and three rotations (around the x- , y- 
and z-axes) are defined in each node. This allows for the shell element's full translational 
and rotational motion at each node. The shell finite element in Figure 9 has a total of 24 
degrees of freedom (4 nodes multiplied by 6 DOF per node). 
 

 
 

Figure 9: Shell finite elements 
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The membrane and plate finite elements don’t account for the in-plane bending, so each 
node of the plates and membranes has five degrees of freedom, as shown in Figure 10. 
They account for all three possible displacements (x-displacement, y-displacement and z-
displacement) and two out-of-plane rotations (around the x- and y-axes). The plate and 
membrane finite element in Figure 10 has a total of 20 degrees of freedom (4 nodes 
multiplied by 5 DOF per node). 
 

 
 

Figure 10: Plates and membranes 
 
Planar finite elements are limited to two-dimensional analysis, and do not consider out-
of-plane displacements or rotations as fundamental variables (Figure 11). Each node of a 
planar finite element has only two DOFs (x-displacement and y-displacement). The plate 
finite element in Figure 11 has a total of 8 degrees of freedom (4 nodes multiplied by 2 
DOF per node). 
 

 
 

Figure 11: 2D planar FE 
 
2.2.3 Line finite elements 
 
Line finite elements are employed in the FEM when analysing structures that are long and 
slender, experiencing predominantly one-dimensional effects, such as axial and bending 
deformations. These elements are arranged along the mid-line or centroidal axis of the 
components (Figure 12). Line finite elements are mathematically the simplest, and involve 
theoretical assumptions about the basic variable variation over the cross-section of line 
elements, typically described by analytical functions. With line finite elements, it is often 
assumed that their cross-sections do not deform under the applied load. Thus, constant 
cross-sectional properties are considered (moments of inertia). 
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Figure 12: Beam and truss finite elements [2] 

 
Line finite elements are structural elements that model slender structures like trusses and 
beams. Beam elements are used to model structures that experience axial, bending and 
shear deformations. These elements are more complex than truss elements, and can 
capture structures' bending behaviour. Therefore, they have all six mechanical degrees of 
freedom (x-displacement, y-displacement, z-displacement and rotations around the x-axis, 
y-axis and z-axis) defined at each node (Figure 13). They allow for modelling the full range 
of structural deformations, including bending and torsion. For beams with an open profile, 
an additional DOF, known as the seventh DOF, is included, to control torsion in the open 
profile beams. This additional DOF allows for a more accurate simulation of the 
behaviour of beams with open cross-sections. The beam finite element in Figure 13 has a 
total of 12 degrees of freedom (2 nodes multiplied by 6 DOF per node). 
 

 
Figure 13: Beam finite elements 

 
Truss elements are the simplest finite elements for structural analysis by assuming that the 
deformation behaviour is primarily axial, neglecting bending effects. Truss elements 
(Figure 14) are used to model structures that experience primarily forces and deformations 
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along the axis of the element. Therefore, they have only three displacements (x-
displacement, y-displacement and z-displacement) defined at each node. Rotations are not 
defined for this element, as it is used primarily to model axial loads and does not account 
for bending or torsion effects. The truss finite element in Figure 14 has a total of 6 degrees 
of freedom (2 nodes multiplied by 3 DOF per node). 
 

 
 

Figure 14: Truss (bar) finite elements 
 
2.3 Symmetry and asymmetry 
 
Symmetry, or asymmetry, is often employed in FEA as a modelling technique, to reduce 
computational costs and simplify the analysis of structures whose boundary and loading 
conditions are (a)symmetrical. Symmetry conditions are applied to only one 
symmetric/asymmetric part, and replace the other with symmetric/asymmetric boundary 
conditions on the symmetry/asymmetry plane, where spatial degrees of freedom must be 
constrained appropriately. Figure 15 illustrates symmetric and asymmetric boundary 
conditions for a geometrically symmetric plate bending case exposed to symmetric (left) 
and asymmetric (right) bending load cases. 
 

 
 

Figure 15: Symmetry and asymmetry [17] 

 
Constraining only one displacement for both symmetric and asymmetric volume elements 
is adequate. However, when rotations are permitted in the chosen finite element (e.g., 
beams, shells), it is also essential to restrict rotations. Table 1 shows the boundary 
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conditions for symmetry and asymmetry, specifying the appropriate fixed displacements 
and rotations in all three coordinate directions. 
 

Table 1: Symmetry definition 
 

Type of (a)symmetry Degrees of freedom 
Symmetry in the x-direction ux = ury = urz = 0 
Symmetry in the y-direction uy = urx = urz = 0 
Symmetry in the z-direction uz = urx = ury = 0 
Asymmetry in the x-direction uy = uz = urx = 0 
Asymmetry in the y-direction ux = uz = ury = 0 
Asymmetry in the z-direction ux = uy = urz = 0 

 
2.4 Unit systems 
 
Consistent units are mandatory for successful finite element analysis [8]. Some modern 
FEA systems have no built-in unit systems, making the unit consistency the analyst's 
responsibility. The fundamental units in structural analysis are mass, length, time and 
temperature. All other units are derived from these fundamental units. The International 
System of Units (SI from French Système International) defines a consistent set of 
fundamental and derived units used commonly in engineering, as shown in Table 2. While 
SI uses 1 m as a fundamental unit for length, mechanical engineers prefer the 1 mm unit 
for length and 1 t for weight. Since 1 mm and 1 t are not SI-consistent units, scaling of 
dependent units is necessary, as in Table 2. 
 

Table 2: Consistent units 
 

Quantity SI (m, kg, s) mm-t-s 
Length m mm 
Mass kg t 
Time s s 
Temperature K K 
Work/Energy J mJ 

Properties for mild steel 
Density 7850 kg/m3 7.85∙10-9 ton/mm3 
Young's modulus 2.1∙1011 N/m2 (Pa) 2.1∙105 N/mm2 (MPa) 
Yield stress 2.35∙108 N/m2 (Pa) 2.35∙102 N/mm2 (MPa) 
Thermal conductivity 5.2∙101 W/mK 5.2∙101 mW/mmK 
Heat capacity 4.8∙102 J/kgK 4.8∙108 mJ/tonK 
Heat flux 1.0 W/m2 1∙10-3 mW/mm2 
Acceleration of gravity 9.81 m/s2 9.81∙103 mm/s2 
Equivalent to 1 km/h 2.78∙10-1 m/s 2.78∙102 mm/s 

 
Basic equations are used to test whether a set of units is consistent. For example, for a 
force using the second Newton’s law: 𝐹𝐹 =  𝑚𝑚 ∙ 𝑎𝑎, or elastic stress 𝜎𝜎 = 𝐸𝐸 ∙ 𝜀𝜀. 
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3 Material definiton in FEA 
 
 
The material properties of the components being analysed by the FEM are crucial for 
accurate simulations. Material properties characterise how a material responds to various 
loads and deformations. Typically, the material properties are associated with the CAD 
model, and are transferred to the computational model automatically if the FEA is 
integrated with the CAD software. However, most FEA software is not integrated with 
CAD software; therefore, the material properties must be defined following the consistent 
units described in Section 2.4. 
 
In linear elastic solid mechanics, two material parameters - the elastic modulus (E) and 
Poisson's ratio (ν), are sufficient to describe the linear elastic behaviour of solid isotropic 
material [9]–[11]. Additional material parameters are required in the case of more advanced 
material behaviour (nonlinear), loading (dynamic effects), or anisotropy. This necessitates 
a more refined and challenging determination of material parameters. 
 
3.1 Young's modulus and Poisson's ratio 
 
Young's modulus, also known as the modulus of elasticity (symbol E), is a measure of a 
material's stiffness in the elastic deformation region [9]. Hooke’s law defines it as the ratio 
of stress to strain for a material in the elastic proportional deformation region [11]. The 
most straightforward method to measure the modulus of elasticity is through a uniaxial 
tensile test, as illustrated in Figure 16. A test specimen is subjected to an axial tensile force 
during a uniaxial tensile test, resulting in its deformation. The applied stress is determined 
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by dividing the applied force by the cross-sectional area of the specimen, which generally 
changes during deformation. The strain is determined by dividing the specimen length 
change (extension) by the specimen length (initial measuring length + extension), which 
generally also changes during deformation. By plotting the true or engineering stress-strain 
relationship and identifying the linear elastic region, the modulus of elasticity can be 
determined from the slope of the linear portion of the curve by equation (1). It is 
important to note that this equation assumes that the material exhibits linear elastic 
behaviour, meaning that both stress and strain maintain a linear relationship within the 
material's elastic proportionality range. In practice, the elastic modulus is often determined 
by averaging multiple measurements taken within the linear portion of the stress-strain 
curve. 
 

𝐸𝐸 =
𝐹𝐹
𝐴𝐴
∆𝐿𝐿
𝐿𝐿0

=
𝜎𝜎
𝜀𝜀  (1) 

 
The modulus of elasticity is constant in all directions for isotropic materials, but may vary 
in orthotropic and anisotropic materials. Different testing methods or models are often 
used to assess the material's elastic behaviour accurately in the latter materials. 
 

 
 

Figure 16: Tensile loading 
 
This simple equation does not account for any imbalances or nonlinearity within the 
material, nor does it consider the influence of other factors such as temperature changes, 
moisture, loading rate, etc. In such cases, more advanced methods and models are required 
to  determine the material's elastic properties accurately. 
 
Table 2 provides typical values of the elastic modulus for materials used commonly in 
engineering. The standard unit for the elastic modulus is Pascal (Pa) or Newton per square 
metre (N/m²). However, when performing simulations with different units for length or 
load, it is necessary to adjust the unit of the elastic modulus accordingly. 
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In mechanical engineering, it is common to use millimetres (mm) for length units and 
Newtons (N) for loads. The elastic modulus must be expressed in megapascals (MPa) or 
Newtons per square millimetre (N/mm²) to retain unit consistency. 
 

Table 3: Young's modulus of different materials [9] 
 

Material Young's modulus [N/m2] Young's modulus [N/mm2] 
tungsten 3,6 · 1011 3,6 · 105 
steel 2,1 · 1011 2,1 · 105 
copper 1,1 · 1011 1,1 · 105 
aluminium 6,9 · 1010 6,9 · 104 
Pyrex glass 6,2 · 1010 6,2 · 104 
nylon 3,7 · 109 3,7 · 103 
teflon 3,7 · 108 3,7 · 102 

 
Shear modulus, often denoted as G, is a material property that quantifies the material's 
resistance to deformation under shear stress. It is one of the elastic moduli, along with the 
previously described Young's Modulus and compressibility (bulk) modulus K (which 
characterises the material's response to volume-changing stress, i.e. hydrostatic stress). 
Shear modulus is particularly relevant in materials subjected to shear forces, such as those 
involved in torsional or shearing deformations. 
 

𝐺𝐺 =
𝐸𝐸

2(1 + 𝑣𝑣) (2) 

 

𝐾𝐾 =
𝜎𝜎
∆𝑉𝑉
𝑉𝑉

=
𝐸𝐸

3(1 − 2𝑣𝑣) (3) 

 
Poisson's ratio ν is a material property that equals the negative ratio of lateral strain to 
longitudinal strain in a material subjected to uniaxial loading, and is defined as [10]: 
 

𝜈𝜈 = −
𝜀𝜀𝑦𝑦
𝜀𝜀𝑥𝑥

 (4) 

 
where 𝜀𝜀𝑥𝑥 is the longitudinal specific strain and 𝜀𝜀𝑦𝑦 is the transverse specific strain. Both 
deformations are also determined based on measurements of changes in length and 
transverse dimension during a uniaxial tensile test of the material at engineering strains: 
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𝜀𝜀𝑥𝑥 =
∆𝐿𝐿
𝐿𝐿0

 and 𝜀𝜀𝑦𝑦 =
∆𝑑𝑑
𝑑𝑑0

 
 

(5) 

 
According to the second law of thermodynamics, all three moduli (elastic modulus, shear 
modulus and compressibility modulus) must be greater than 0. Therefore, the Poisson's 
ratio can only have values greater than -1 and less than 0.5. The theoretical upper limit for 
Poisson's ratio in isotropic materials is 0.5, corresponding to uncompressible material 
experiencing the maximum possible lateral contraction at a given axial strain. Materials 
with lower Poisson ratios exhibit smaller lateral deformation under axial loading. 
 
Most common materials have positive Poisson's ratios from 0 to 0.5. This means that the 
material contracts laterally when stretched longitudinally. Metals, polymers, and many 
other materials fall into this category. The higher the value, the greater the lateral 
contraction relative to axial elongation.  
 
A Poisson's ratio of 0 indicates that the material does not change in a lateral direction 
when stretched. Natural materials with such Poisson's ratio are very rare. Cork may exhibit 
values close to zero. 
 
A negative Poisson ratio implies that the lateral deformation of the material is qualitatively 
the same as the longitudinal. i.e. the material expands laterally when stretched 
longitudinally. Natural materials with such behaviour are ever rarer, and are known as 
auxetic materials [12]. Materials with negative Poisson's ratios experience large volumetric 
changes under deformation, which enhances some mechanical properties. The most well-
known examples of such materials can be found in sports equipment (tennis rackets)[13] 
and clothes (Gore-Tex) [14]. 
 
Table 4 provides typical values of Poisson's ratio for various materials. It's important to 
note that the specific Poisson`s ratio of a material depends on factors such as its molecular 
structure, composition and mechanical properties. Poisson's ratio can also vary with 
temperature, pressure, and other environmental conditions. Therefore, the range of values 
of Poisson’s ratio is usually given. However, a slight change of Poisson’s ratio generally 
doesn’t affect the simulation results. 
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Table 4: Poisson's ratio of different materials [10], [15] 
 

Material Poisson's ratio 
rubber ~ 0,5 
gold 0,42 
clay 0,3–0,45 

magnesium 0,35 
titanium 0,34 
copper 0,33 

aluminium 0,33 
stainless steel 0,3–0,31 

steel 0,27–0,3 
cast iron 0,21–0,26 

sand 0,2–0,45 
concrete 0,2 

glass 0,18–0,3 
foam 0,1–0,4 
cork ~0 

auxetic metamaterials -1 < ν < 0 
 

3.2 Material data in advanced simulations 
 
Additional material data are required for more realistic simulations of certain natural 
phenomena, or considering material behaviour beyond the elastic range. When materials 
undergo permanent (plastic) deformation, only Hooke's law (the linear relationship 
between stress and strain) can no longer describe their behaviour accurately. 
 

 
Figure 17: Engineering stress-strain relationships for different materials 

 

To capture the nonlinear behaviour of materials beyond the elastic range, it is necessary 
to determine the stress-strain relationship under increasing load until failure [16]. As 
mentioned in the previous section, uniaxial tensile testing is performed commonly, to 
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obtain engineering stress-strain relationships for different materials. During this test the 
material is subjected to increasing tensile loads until it fails, and the corresponding 
engineering stress R (the load divided by the original cross-sectional area) and engineering 
strain e (the change in measuring length divided by the original length) values are recorded, 
as can be seen in Figure 17. 
 
The resulting stress-strain relationship typically exhibits several distinct regions, including 
the elastic deformation region, the yield point and the plastic deformation region. The 
linear relationship between stress σ and strain ε in the elastic region is described by Hooke's 
law (σ = E⋅ε), where E is the elastic modulus. However, as the stress exceeds the yield 
point, the relationship becomes nonlinear (σ = f(ε)), indicating plastic deformation and 
permanent changes in the material's shape. 
 
The change of the specimen’s cross-section during deformation is difficult to measure, so 
the engineers have simplified the stress determination by neglecting this change and 
defined the engineering stress instead. The engineering stress is determined by dividing 
the applied force by the specimen's initial (undeformed) cross-sectional area. Similarly, the 
engineering strain  is calculated by dividing the specimen length change by the initial 
measuring length. The true and engineering stresses and strains are the same in the elastic 
region, but differ in the plastic or elastoplastic deformation regions. The true stresses are 
always higher than the engineering stresses, while the opposite is true for the true and 
engineering strains.  
 
The engineering stress-strain relationship provides valuable information about the 
material's behaviour under various load levels, including its strength, ductility and ability 
to withstand deformation. These data are essential for simulating the nonlinear behaviour 
of materials accurately, and predicting their response under different loading conditions 
in engineering simulations. 
 
However, it is important to note that the engineering stress-strain relationship, which 
assumes a constant cross-sectional area, does capture the material's behaviour accurately 
beyond the yield point, especially for ductile materials that undergo significant necking or 
localised deformations during testing.  
 
In the case of tensile testing of ductile materials, once the stresses exceed the yield point, 
a contraction of the cross-sectional area occurs, leading to a local increase of the stresses 
and a decrease of strains in this post-yield region. Since traditional uniaxial tests can not 
capture localised stresses and strains in the necking region, so-called true stresses (σ) and 
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true strains (ε) can be calculated from the engineering stresses (R) and engineering strains 
(e) using the following equations: 
 

𝜎𝜎 = 𝑅𝑅 ∙ (1 + 𝑒𝑒) and 𝜀𝜀 = ln (1 + 𝑒𝑒) (6) 

 
Where the engineering stresses and strains are defined as: 
 

𝑅𝑅 = 𝐹𝐹 𝐴𝐴0⁄  and 𝑒𝑒 = ∆𝐿𝐿 𝐿𝐿0⁄  (7) 

 
with 𝐴𝐴0 and 𝐿𝐿0 being the initial cross-section and initial measuring length of the specimen, 
respectively. 
 
The true stress considers the specimen's cross-sectional area at each point, reducing as the 
material undergoes necking or localised deformation. This accounts for the reduction in 
the effective area, and results in higher true stress values than engineering stress (Figure 
18). 
 
Similarly, the true strain represents the actual deformation of the material within the 
contracted section, accounting for the change in length (ΔL) relative to the total current 
length (L). The logarithmic term in the true strain equation accounts for the strain 
measured relative to the current length of the specimen. The true strains in the plastic 
deformation range of a material are generally smaller than their corresponding engineering 
values.  
 
It is important to note that true stresses and strains are equal to engineering stresses and 
strains in the elastic deformation region of the material, and that the initial true yield stress 
and engineering yield stresses are the same (𝑅𝑅𝑦𝑦 = 𝜎𝜎𝑦𝑦). 
 
A more accurate representation of the material's behaviour beyond the yield point is 
obtained using the true stress and strain values. These true stress-strain values are crucial 
for  capturing the material's response under high loads and plastic deformation accurately. 
 
It's important to note that the transition from engineering stress-strain to true stress-strain 
assumes a uniform deformation and a Poisson's ratio of 0,5. In reality, localised variations 
in deformation and Poisson's ratio may influence the behaviour. Nevertheless, true stress 
and true strain approximate the material's behaviour better during plastic deformation. 
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Figure 18: Comparison of engineering and true stress-strain relationships 

 
In computational simulations, when simulating the nonlinear (plastic) behaviour of a 
material, it is necessary to consider the relationship of true stresses (σ) and true strains (ε) 
instead of using the approximate engineering values. The true stress-strain relationship 
provides a more accurate representation of the material's response under plastic 
deformation. 
 

 
 

Figure 19: Piecewise linear true stress-strain relationship 
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The true stress-strain relationships are often represented using simplified, piecewise linear 
approximate curves in computational models, to capture the nonlinear behaviour. These 
are typically derived from experimental data, such as the stress-strain relationships from 
tensile tests. Figure 19 shows an example of the measured stress-strain relationship divided 
into linear segments with varying slopes. These segments represent different stages of 
plastic deformation, such as yielding, strain hardening and failure. The piecewise linear 
representation allows for a simplified approximation of the material's nonlinear behaviour 
in computational simulations.  
 
Advanced constitutive models, such as multiparametric plasticity models, can capture the 
highly nonlinear behaviour of specific materials more accurately, and simulate complex 
material responses in engineering simulations [16]. 
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4 Boundary conditions and loads 
 
 
The boundary conditions in FEA are conditions applied to the model to simulate the 
constraints and loading conditions that the actual structure or component would 
experience in the real world. They are essential for solving the system of equations that 
govern the behaviour of the structure. They ensure the structure`s equilibrium, and help 
determine the system's response to applied loads and constraints. Properly defined 
boundary conditions are critical for obtaining accurate and realistic simulation results in 
FEA. They define how the structure interacts with its surroundings, and are classified into 
two main types: displacement boundary conditions and force (load) boundary conditions. 
In the case of displacement boundary conditions, the degrees of freedom of finite 
elements are usually constrained, while, in the case of force boundary conditions, the load 
is applied to the FE nodes. 
 
4.1 Definition of boundary conditions 
 
Defining boundary conditions in FEA is essential for ensuring accurate and meaningful 
results. In FEA, each known displacement of a structure corresponds to a nodal degree 
of freedom displacement value, serving as input data for computational analysis. A DOF 
is assigned a zero value commonly, to indicate that the node is fixed or stationary in that 
direction. Unassigned DOFs are considered free, and their displacement is determined 
during the analysis. 
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In static analysis, the structure must be in equilibrium, necessitating the specification of 
displacements and rotations in global coordinate axes. Unconstrained DOFs result in an 
underdefined model, preventing the unique determination of displacements and reactions. 
Degrees of freedom are typically defined in Cartesian coordinates, but alternative 
coordinate systems can be employed, such as cylindrical or spherical. 
 
The connectivity of degrees of freedom is crucial, especially in models consisting of 
multiple parts that must be analysed as a whole. Connections can be established by 
merging parts, creating common nodes, or retaining separate bodies and adding 
connections between their respective nodes. These connections represent the 
interdependencies of degrees of freedom in the computational model, and are usually 
called constraints. Degree of freedom connections can range from simple ties, where the 
displacements of connected DOFs are equal, to more complex relationships involving 
constraints on specific DOFs, or equations describing the interdependence. Attention is 
required when connecting nodes with different numbers of degrees of freedom, especially 
in cases where additional rotational degrees of freedom are present. 
 
Errors in boundary conditions can lead to inaccuracies in FEA results. While some errors 
are detectable through computational analysis, others, such as incorrect stresses or 
displacements, may be more challenging to identify, and require experimental validation. 
Special consideration should be given to potential errors near transitions between different 
mesh densities, and it is advisable to seek boundary conditions that  reflect real-world 
physical conditions better. 
 
Defining boundary conditions on geometric entities such as surfaces, edges, or reference 
points in CAD models is preferable when prescribing boundary conditions. Using 
reference points allows for independence from model geometry changes, ensuring 
boundary conditions persist, even when the model undergoes modifications. The user 
specifies boundary conditions for a geometric domain, and the software converts them 
into appropriate conditions for corresponding finite element nodes. The process involves 
defining the region for assignment, creating a set based on user selection, and altering the 
specified conditions into suitable boundary conditions for analysis. 
 
4.2 Loads 
 
In FEA, the loads can vary in location and shape. In the Finite Element Method, the 
location of a load is always associated with a degree of freedom at a node. Modern software 
always links the location of loads to geometric entities, and pre-processing tools convert 



4   Boundary conditions and loads 27 
 
the prescribed loads into equivalent nodal loads according to their DOFs. Loads are not 
always required for every type of computational analysis. For example, the system's natural 
frequencies can be obtained in modal analysis without prescribed loads. The user should 
determine the type of analysis before specifying the loads for a given problem.  
 
The force is the usual type of load, but other types of loads, such as moments, pressures, 
displacements, velocities, accelerations, temperatures, etc., are also possible. Point loads 
are localised forces or moments, often applied at joints or critical connection points. 
Distributed loads, on the other hand, represent forces spread over lines, areas, or volumes. 
A line load might be used to apply a distributed load across a truss or beam finite element, 
while a pressure load acts on a surface, and captures the impact of fluids or gases on a 
structure. A gravity load acts on the whole structure's volume and accounts for the 
structure's weight. Force and moment loads, whether concentrated or distributed, simulate 
external dynamic forces and rotational effects essential for assessing structural responses.  
 
Other loads are prescribed displacements, where a selected DOF is set to a value different 
from 0, or remote loads, which allow for the simulation of forces acting at a distance from 
the structure. Inertia loads, integral to dynamic analyses, account for mass and acceleration 
effects. The versatility of these load types enables FEA practitioners to tailor simulations 
to diverse engineering scenarios, ensuring a thorough investigation of structural 
performance under various conditions. In general, the most commonly used loads in FEA 
are:  
 

− Point Loads: Concentrated forces or moments applied to specific nodes. Since the 
load is prescribed to the node and translated to the DOF of the node, the singular 
solution appears in the node, which is a consequence of the singular solution of the 
Boussinesq-Cerruti problem in the theory of elasticity [18]. Nevertheless, the FEM 
operates as an approximation method, relying on piecewise polynomial 
interpolation functions that struggle inherently to capture the singular solution in 
the proximity of a node subjected to a point load. However, saint-Venant's principle 
[19] plays a crucial role by diminishing the influence of the singularity associated 
with the point load as the distance from the loaded node increases.  

− Distributed Loads: Real-world loads are generally distributed over specific areas. 
Consequently, in simulations, these loads are distributed virtually  across a defined 
region within the computational model, transforming them into nodal loads upon 
discretization. The efficacy of this process depends upon factors such as the 
number of DOFs associated with the finite element nodes, and the degree of 
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polynomial interpolation functions applied. Modern pre-processors for FEA 
typically allow users to associate loads with the geometric model independently of 
the finite element mesh. The computational model might lack a finite element mesh 
during the initial stages when users introduce loads. Subsequently, the program 
correlates the loads with the finite element nodes automatically upon mesh 
generation. 

 
Understanding the nature of the physical problem and selecting the appropriate type of 
loads is crucial for obtaining accurate and meaningful results in FEA simulations. 
Different load combinations can be applied to study complex scenarios and assess the 
structural response under various conditions. Load units must be consistent with the units 
of geometry and material properties to obtain results in the desired units, which the user 
must ensure in most FEA programs. 
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5 Meshing 
 
 
5.1 Importing of geometry 
 
Mesh generation, or pre-processing software, often allows for modelling the problem's 
geometry, usually used for simple geometries. However, often an object that has already 
been modelled geometrically in 3D modelling software is the subject of computational 
analysis. This geometric model can be imported easily into an appropriate pre-processing 
program to prepare the computational model. 
 
The Standard STEP (Standard for the Exchange of Product Data - ISO 10303) is the most 
suitable format for importing data, which provides a neutral format for representing 3D 
CAD models and exchanging data between different CAD software systems [20]. It allows 
for transferring geometric and non-geometric information, making it a versatile choice for 
interoperability among various CAD applications. A STEP file typically has the .stp or 
.step extension, but the file extension alone does not provide information about its 
content. Geometric models can often be imported in formats supported by modelling 
libraries, such as ACIS (with the .sat extension) and Parasolid (with the .x_t or .x_b 
extension). Geometric models can also be imported as the IGES Standard, which provides 
a good description of lines and surfaces, but has limitations in representing volumetric 
geometry. 
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Often, errors may occur during geometry import, or the imported model may not suit our 
needs. Issues may arise when a seemingly appropriate model is insufficient for 
computational analysis. Therefore, different tools are available in the pre-processing 
software to prepare the geometry for meshing and avoid errors or low-quality mesh, 
 
5.2 Density of the FE mesh 
 
The definition of the FE type and dimensions follows the successful import of the 
geometry. The meshing process starts with the meshing of the geometry edges, then 
propagates to the meshing of the geometry surfaces, and ends with meshing the volume 
between the surfaces. The simplest method to define the size of an FE is edge-based 
meshing, where the user defines how many line elements (trusses) the edges will be divided 
into. The basic options are the definition of the size of the elements, or the definition of 
the number of elements per edge. Additionally, the size of an FE can be refined around 
the area of specific interest using the local mesh refinement (bias). Two methods of 
determining the size of finite elements in PrePoMax software (global mesh size and mesh 
refinement) can be seen in Figure 20. Edge-based meshing allows easy control over 
elements' sizes and distribution along a geometric model's edges. The choice between 
global element size, number of elements, or local mesh refinement, depends on the 
problem's specific requirements, the object's geometry, and the desired accuracy of the 
results. The same methods can be used for solid, surface and line finite elements. Each 
method has its advantages and limitations, and the appropriate choice should be made 
based on the specific needs of the analysis. 
  

 
 

Figure 20: Finite element mesh definition 

Global FE size Local refinement 
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After defining the global FE size and local refinement (Figure 20), a discretization with 
precisely defined elements is achieved by specifying a global element size and refinement 
on two surfaces. Based on the geometry, the program generates approximately the 
prescribed sized elements, and the generated mesh is shown in Figure 21. 
 

 
 

Figure 21: Volume finite elements mesh 
 
An FE mesh size is a critical consideration in computational simulations, and is influenced 
by many factors. The complexity of the geometry, ranging from simple to complex shapes, 
dictates the necessary mesh density to capture details accurately. The type of analysis being 
conducted, whether structural, dynamic, thermal, or fluid flow,  guides mesh refinement 
further. Material properties, boundary conditions, and the desired accuracy of results also 
play essential roles. The capabilities of the solver and available computational resources 
impose practical constraints on mesh size. A reasonable balance between computational 
efficiency and result accuracy is necessary, and it’s up to the user to choose the appropriate 
mesh size. During initial analyses, finite elements are typically large (a small number of 
elements). As the analyst improves the FE model, the element size is reduced in areas with 
higher result gradients, increasing the number of elements until reaching the desired 
convergence of results, which is usually determined with the convergence study. Figure 22 
illustrates a convergence analysis using multiple finite element meshes of varying densities 
for the same object. As the number of finite elements increases, the results converge 
progressively towards theoretical solutions. Coarse meshes with a limited number of 
elements exhibit a relatively large error, emphasising the substantial improvement achieved 
through mesh refinement. Notably, for less dense meshes, displacement values approach 
correct results faster than stress values. Computational models with more elements exhibit 
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minimal accuracy differences, showcasing near-identical results as the element count rises. 
However, caution is warranted, as further mesh refinement may lead to adverse effects, 
due to computational errors associated with finite computer arithmetic. 
 

 
 

Figure 22: Typical convergence analysis results [2] 

 
When building a Finite Element (FE) model for the first time, using a coarse mesh can be 
beneficial for several reasons: 
 

1. Simplicity: A coarse mesh consists of fewer elements and nodes than a fine mesh. 
This simplifies the model, and reduces the computational complexity, making it 
easier to set up and solve. 

2. Computational efficiency: With a coarse mesh, the number of equations to solve is 
low, resulting in faster computation times. This is particularly advantageous when 
dealing with large, complex models requiring significant computational resources. 

3. Convergence testing: Starting with a coarse mesh allows you to assess the model's 
behaviour and perform convergence testing quickly. Convergence testing helps 
determine if the solution is approaching a stable and accurate result as the mesh is 
refined. By identifying potential issues early on, you can adjust the model's 
parameters and refine the mesh incrementally. 

4. Insight into solution characteristics: Coarse meshes can provide valuable insights 
into the overall behaviour and trends of the solution. Observing the preliminary 
results allows you to identify areas of interest, potential errors, or unexpected 
behaviour that may require further investigation or refinement. 
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5. Mesh independence study: Using a coarse mesh initially allows for a mesh 
independence study. By refining the mesh gradually, you can analyse how the 
solution changes with increasing mesh density. This study helps to determine the 
mesh size required to achieve accurate and reliable results without excessive 
computational costs. 

 
However, it's important to note that using a coarse mesh also has limitations. It may not 
capture small-scale details, or represent localised phenomena in the model accurately. 
Therefore, once the initial analysis with a coarse mesh is complete, refining the mesh and 
increasing its density is typically necessary to improve accuracy and capture finer details in 
the solution. 
 
5.3 Stress singularities 
 
In finite element method analysis, a stress singularity refers to an infinite or highly 
concentrated stress value at specific points or regions in a structure. These singularities 
typically arise due to point loads, geometric features, or boundary conditions. 
 
It is important to note that stress singularities appear due to mathematical idealisations 
and do not exist in reality. In practical terms, they represent regions where the assumptions 
of the finite element model may break down or fail to capture the true behaviour of the 
structure accurately. Stress singularities are often regarded as artefacts of the analysis, and 
their magnitude may be mitigated or eliminated by adopting more advanced modelling 
techniques. 
 
When analysing structures with stress singularities, it is crucial to be aware of stress 
singularities and their potential impact on the overall accuracy of the results. Physical 
factors such as material properties, imperfections, and other phenomena can influence the 
stress distribution near sharp corners. Therefore, they should be interpreted cautiously, 
and validated against other analytical or experimental methods to understand the stress 
distribution and its influence on the structural response properly. 
 
Various techniques can be employed to mitigate the issue of stress singularities, including: 
 

1. Mesh refinement: By refining the mesh near the sharp corners or geometric 
discontinuities, the stress gradients can be captured better, reducing the effect of 
stress singularities. This approach involves increasing the number of elements near 
the singularity to represent the stress distribution accurately. 
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2. Higher-order elements: Using higher-order elements with more complex 
interpolation functions can help alleviate stress singularities somewhat. Higher-
order elements provide a more flexible solution interpolation, allowing a better 
representation of stress gradients near corners. 

3. Stress singularity removal techniques: Some specialised techniques, such as using 
the crack tip elements or enrichment functions, can address stress singularities 
directly. These methods modify the finite element formulation near the singularity, 
to capture the local stress behaviour more accurately. 

 
5.3.1 Stress singularities at geometric features 
 
The reason for stress singularity at sharp corners is due to the approximation of the 
solution using finite elements, which assumes a continuous and smooth variation of stress 
and strain throughout the domain inherently. However, at sharp corners or geometrical 
discontinuities, such as re-entrant corners or cracks, the stress and strain gradients become 
infinitely large, leading to stress singularities. 
 
Stress singularities occur because the shape functions used in FEM are typically chosen to 
be smooth and continuous over each element, but may not capture the abrupt changes or 
high gradients in stress that occur at sharp corners. As a result, the finite element 
approximation tends to underestimate the stress concentrations near these singularities. 
 
5.3.2 Stress singularities at boundary conditions 
 
At a boundary condition, especially at a fixed boundary condition which is a fully 
constrained or immovable boundary condition, stress singularities can occur (they always 
occur when using 3D finite elements). This is because the fixed support restricts the 
displacement of the structure, and imposes infinite stiffness at that location. As a result, 
stress concentrations can develop near the fixed support. 
 
The stress singularity at the support is characterised by an extremely high-stress value, 
approaching infinity. It manifests typically as a sharp spike or peak in the stress distribution 
near the boundary, or at specific points adjacent to the fixed support. The singularity is a 
consequence of the idealised boundary condition (infinite stiffness), and the simplification 
assumptions in preparing the finite element model. 
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5.4 Automatic meshing in FE pre/post-processors 
 
Most pre-processing programs can generate finite element meshes automatically, which 
can be unstructured, structured, or hybrid. Discretising any geometric model using an 
unstructured finite element mesh is always achievable. Unstructured meshes, often 
comprised of triangles or tetrahedra, find their basis in Jim Rupert's algorithm [21], 
pioneered in the early 1990s. This marked a significant departure from the predominantly 
manual or partially automated mesh generation approaches employed before the advent 
of finite element mesh modelling. Figure 23 demonstrates an unstructured mesh visually, 
showcasing its composition with tetrahedral finite elements. 
 

 
 

Figure 23: Unstructured FE mesh 
 
Using an unstructured mesh provides flexibility in discretising geometries, adapting well 
to irregular shapes and complex structures. Comprising tetrahedral or a combination of 
tetrahedral and hexahedral FE, unstructured meshes are versatile, catering to specific 
analysis requirements and preprocessor capabilities. However, triangular or tetrahedral 
finite elements, common in unstructured meshes, may yield less accurate results than 
quadrilateral or hexahedral elements. This discrepancy often arises from formulating the 
triangular element as a collapsed quadrilateral with merged vertices. The situation is 
worsened with quadratic or cubic finite elements, where even more vertices are merged.  
 
Unstructured meshes are suitable for initial analyses, or when time constraints hinder the 
creation of a higher-quality mesh. On the contrary, the most accurate results, especially in 
three dimensions, are achieved with structured meshes composed of quadrilateral or 
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hexahedral finite elements. Figure 24 depicts a structured mesh of hexahedral finite 
elements, offering better control over element shape and size for increased analysis 
accuracy in the targeted region. Ideally, a mesh with uniform element sizes produces 
optimal results, as deviations from this ideal shape introduce errors. While structured 
meshes generally outperform unstructured ones, the challenge lies in their automatic 
generation, which is feasible primarily for relatively simple geometric shapes. For more 
complex models, the geometry must be subdivided into simpler shapes before meshing, 
to create a structured finite element mesh. 
 

 
 

Figure 24: Structured FE mesh 
 
Dividing complex geometric models is a highly challenging task, which is why meshing, 
despite automated generation, remains the most time-consuming process in the pre-
processing phase. Therefore, computational models often consist of hybrid meshes, which 
combine structured and unstructured meshes, allowing for better adaptation to complex 
geometries. Figure 25 illustrates an example of a hybrid mesh, where structured elements 
(hexahedrons) are used in the fillet between the pipes, which can be divided into regular 
shapes, such as cubes or rectangular prisms easily, and generate a mesh with structured 
hexahedra. The unstructured mesh (tetrahedrons) is used in areas with higher complexity, 
where the division is less regular. Three-sided prism elements are needed to connect 
hexahedral and tetrahedral elements in hybrid meshes. Using hybrid meshes enables a 
better balance between result accuracy and meshing efficiency, as structured elements are 
employed where possible for more accurate analysis. In contrast, unstructured elements 
are utilised for more complex geometry parts. This facilitates faster mesh generation and 
better adaptation to analysis requirements. 
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Figure 25: Hybrid FE mesh 
 
The choice between different meshing strategies, including the combination of structured 
and unstructured meshes, depends on factors such as computational resources, analysis 
accuracy requirements, and the complexity of the modelled geometry. It is a trade-off 
between computational efficiency and accuracy, aiming to achieve the best possible 
balance in the given constraints. 
 
5.4 Quality of finite elements 
 
Evaluating finite element mesh quality is a critical step in ensuring the accuracy and 
reliability of computational simulations. Various metrics assess the geometric and 
numerical characteristics of individual elements within the mesh. Key considerations 
include the aspect ratio, which measures the elongation of elements, skewness deviation 
from ideal shapes, and the Jacobian ratio, indicating potential element distortion. Perfect 
finite elements are equilateral triangles, squares and cubes. However, we cannot mesh all 
models with ideally shaped elements. Due to the adaptation to the actual geometric shape 
of the domain, an individual finite element can deviate significantly from the ideal shape, 
leading to less accurate results. Accurate results can be expected only in the case of an 
ideal-shaped finite element. In extreme cases, the loss of accuracy can be so significant 
that the results become unusable. In such cases, mesh generation programs usually prevent 
using highly distorted finite elements. For this reason, mesh generation programs often 
provide options to set specific thresholds or acceptable ranges for these geometric 
properties, to ensure that the resulting mesh meets the desired criteria. 
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By controlling these properties, the mesh generation programs can optimise the mesh, to 
improve the accuracy and stability of the subsequent analysis. For example, excessive taper 
or highly distorted elements can lead to computational instabilities or inaccurate results. 
The program can avoid generating problematic elements and produce a higher-quality 
mesh by setting appropriate limits on these properties. 
 
It's important to note that the acceptable ranges for these geometric properties may vary, 
depending on the specific analysis requirements and the characteristics of the problem 
being solved. Therefore, users have the flexibility to adjust these settings based on their 
needs and the expected behaviour of the finite element model. 
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6 Practical examples 
 
 
6.1 Basics of using PrePoMax 
 
In the following chapters, practical examples are described in which the procedure of 
preparing a finite element model is demonstrated, together with running the analysis and 
analysing the results. The practical examples are prepared and analysed using the open-
source program PrePoMax. PrePoMax is a pre- and post-processor for the Finite Element 
Method, which uses the open-source finite element solver CalculiX. 
 
PrePoMax does not support modelling or preparation of the geometry, so the geometry 
for the finite element models must be prepared using other CAD systems. The geometry 
can be transferred to PrePoMax using the geometry file formats STEP and IGES, or the 
STL file format usually applied with 3D printing. 
 
6.1.1 Downloading PrePoMax 
 
To use PrePoMax, download the zip compressed container from the PrePoMax home 
page: https://prepomax.fs.um.si/downloads. Move the downloaded file into a non-
system folder (a folder where the user has all the security permissions) and extract it. The 
extracted folder PrePoMax v1.4.0 contains five subfolders; the lib folder contains the 
program dynamic library files, the Models folder contains some general geometry models, 
the NetGen folder contains the finite element mesher, the Solver folder contains the 
CalculiX finite element solver, and the Temp folder, where temporary files and analysis 
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results will be stored. No other installation process is necessary. Run the executable file 
PrePoMax.exe to start the program and open the main control window (Figure 27). 
 
6.1.2 Structure of the main window 
 
The main window is divided into five active areas (Figure 26), which are: 
 

1. Main menu, 
2. Toolbar menu, 
3. Feature tree, 
4. 3D view and 
5. Data output control. 

 
The Main menu and its submenus contain all the features and commands implemented in 
the user interface. The most common commands have their shortcuts depicted as icons 
in the Toolbar menu. A graphical representation of the model setup is shown in the 
Feature tree, while the 3D view is used to visualise the 3D model, mesh and results. During 
feature and command executions, some information is printed in the Data output control. 
 

 
 

Figure 26: Five active areas of the PrePoMax main window 
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6.1.3 PrePoMax modules 
 
The finite element model preparation is divided into three major steps representing the 
three main modules in PrePoMax. These modules are (Figure 27): 
 

1. Geometry 
2. FE Model 
3. Results 

 
The Geometry module is used for importing the geometry, analysing the geometry, 
preparing the local and global mesh sizes and starting the meshing procedure. After 
meshing, the module is changed automatically to the FE Model module. In this module, 
all features of the finite element model are added to the mesh, such as materials, sections, 
constraints, contacts, analysis steps with boundary conditions and loads. After the model 
is completely prepared, the analysis can be started. PrePoMax writes the model into the 
inp file (CalculiX input file), starts the solver CalculiX, which reads the inp file, solves the 
analysis and writes the results into the frd file (CalculiX output file). The results file is then 
read into PrePoMax, and visualised in the Results module. To change between modules, 
click on the tab that has the module name written in it. 
 

 
 

Figure 27: PrePoMax main window 
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6.1.4 View manipulation 
 
Once a model is opened in PrePoMax it will be visualised in a 3D view. The view 
manipulation is performed using the mouse in the following ways: 
 

1. Rotation: hold down the middle mouse button while moving the mouse. 
2. Set rotation centre: click the middle mouse button once over the model geometry. 
3. Reset rotation centre: click the middle mouse button once over an empty region of 

the 3D view. 
4. Zoom: scroll the mouse wheel. 
5. Pan: hold the Shift button on the keyboard and the middle mouse button while 

moving the mouse. 
 
The view manipulation toolbar (Figure 28) contains shortcuts to the following commands: 
 

1. Zoom to fit: scale and centre the model to the 3D view. 
2. Front view: rotate the view to show the model from the front. 
3. Back view: rotate the view to show the model from the back. 
4. Top view: rotate the view to show the model from the top. 
5. Bottom view: rotate the view to show the model from the bottom. 
6. Left view: rotate the view to show the model from the left. 
7. Right view: rotate the view to show the model from the right. 
8. Normal view: rotate the view to point one axis perpendicular to the monitor. 
9. Vertical view: rotate the view to point one axis in the vertical direction. 
10. Isometric view: rotate the view to show the model in the isometric view. 

 

 
 

Figure 28: View manipulation toolbar 
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6.1.5 Visualisation representation 
 
The model can be visualised in four different ways, depending on the requirements of the 
specific module and user actions (Figure 29): 
 

1. Wireframe: only the model edges are shown (model edges split the model into 
surfaces). 

2. Show Element Edges: the model is shown using shaded surfaces with element 
edges drawn over them (in the Geometry module the element edges represent the 
triangulation of the geometry for the s, while in other modules the element edges 
represent the edges of the finite elements in the mesh). 

3. Show Model Edges: the model is shown using shaded surfaces with model edges 
drawn over them. 

4. No Edges: the model is shown only using shaded surfaces without any edges. 
 

 
 

Figure 29: Visualisation representation 
 
6.1.6 Results` representation 
 
The results can be visualised only in the Results module in five different ways, depending 
on the requirements of the user actions (Figure 30): 
 

1. Undeformed: the undeformed model is shown without results. 
2. Deformed: the deformed model is shown without results. 
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3. Deformed with colour contours: the deformed model is shown with the colour 
contours of the selected field output. 

4. Show undeformed wireframe model: the deformed model is shown with the colour 
contours of the selected field output, and an undeformed model in a wireframe 
representation is superimposed on it. 

5. Show undeformed solid model: the deformed model is shown with the colour 
contours of the selected field output, and an undeformed model in a solid 
representation is superimposed on it. 
 

 
 

Figure 30: Results` representation 
 

6.1.7 Troubleshooting 
 
If the main window does not open, or there are any problems while using the software, 
moving the program folder to a folder without any special characters like 
C:\Fem\PrePoMax is recommended. 
 
6.2 Beam in Tension 
 
The first practical example is a beam in tension, as shown in Figure 31. The beam is fixed 
to the wall on one side and loaded in an axial direction with a tensile force of F = 10 kN. 
The beam is made of S235 carbon steel, with the following elastic material parameters: 
Young’s modulus E = 210 GPa and Poisson’s ratio ν = 0.3. The yield stress of the S235 
material is σy = 235 MPa. It is necessary to determine the maximum stresses and 
displacement in the beam. 
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Figure 31: Beam in tension 

 
6.2.1 Analytical solution 
 
The beam example is formulated so that an analytical solution can be obtained. The 3D 
beam model is first simplified into a 1D beam model, shown in Figure 32. For such a 
model the internal normal tensile stress σn can be computed using Equation 8, while the 
beam elongation ∆l is determined by Equation 9. 
 
The resulting normal tensile stress of 50 MPa, which is constant through the whole length 
of the beam, is lower than the material yield stress, which shows that the beam can  
withstand the applied load elastically. 

 
 

Figure 32: 1D model of the beam 
 

𝜎𝜎𝑛𝑛 =
𝐹𝐹
𝐴𝐴 =

10000 N
200 mm2 = 50 MPa 

 
𝐴𝐴 =  𝑎𝑎 ∙ 𝑏𝑏 = 10 mm ∙ 20 mm = 200 mm2 

(8) 

 

𝜀𝜀 =
∆𝑙𝑙
𝑙𝑙0

     𝜎𝜎𝑛𝑛 = 𝐸𝐸 ⋅ 𝜀𝜀 

 

∆𝑙𝑙 =
𝜎𝜎𝑛𝑛 ⋅ 𝑙𝑙0
𝐸𝐸 =

50 MPa ⋅ 200 mm
210000 MPa = 0.0476 mm 

(9) 
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6.2.2 Finite element solution 
 
Preparing a new model 
 
A model space and the system of units must be selected to start working with a new finite 
element model. The beam model will be analysed as a solid 3D model, and the unit system 
will be used using mm for the length and N for the force. Apply the following steps to 
create a new model in PrePoMax (Figure 33): 
 

1. After starting PrePoMax select File → New in the main menu to open the Model 
Properties dialog. 

2. Select 3D as the Model Space. 
3. Select mm, t, s, and °C as a Unit System Type. 
4. Click the OK button to confirm the new model preparation. 

 

Importing geometry 
 

The geometry will be imported in the next step. The geometry for this example was 
prepared in advance, and is saved in the Models subfolder of the PrePoMax folder. The 
file is named “Beam in tension.STEP”. The geometry import is done by following the 
next steps: 
 

1. Select File → Import in the main menu to open the Open file dialog. 
2. Browse to the location of the Models subfolder ../PrePoMax v1.4.0/Models. 
3. Select the file “Beam in tension.STEP”. 
4. Click the OK button to confirm the import of the geometry file. 

 

 
 

Figure 33: Preparing a new model 
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Figure 34: Importing geometry 
 

Changing the part properties 
 

By default, the imported parts are given a generic name, such as "Solid_part-1", 
"Solid_part-2", etc. Renaming the parts is a good practice, especially when analysing 
assemblies with multiple parts. The parts' names and colours can be changed by editing 
the parts` properties. For this example, change the name of the imported part to "Beam" 
using the following steps (Figure 35): 
 

1. Select the imported part in the Geometry feature tree or in the 3D view by right-
clicking it to open the context menu. 

2. Select Edit from the context menu to open the Edit Part window. 
3. Select the Name data field and enter a new name for the part "Beam" (all names 

inside PrePoMax can only use letter characters, number characters, the underscore 
character _ and the hyphen character -). 

4. Click the OK button to confirm the newly set part properties. 
 

 
 

Figure 35: Changing the part properties 
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Definition of the meshing parameters 
 
The parameters of the required finite elements for all parts must be defined before 
generating the finite element mesh. If the user creates no mesh parameters, default mesh 
parameters will be used. Mesh parameters can be set for each part separately, or they can 
be set for multiple parts at the same time. Mesh parameters represent the global mesh 
properties, while the mesh size can also be set locally to refine the mesh in the areas of 
interest. 
 
First, a coarse mesh (Density of the FE mesh) will be used for this example, defined by 
the global meshing parameters. Set the global maximum mesh size to 10 mm and 
minimum global mesh size to 0.2 mm, and set the element interpolation functions to 
second order using the following steps (Figure 36): 
 

1. Select Meshing Parameters in the Geometry feature tree by right-clicking it to open 
the context menu. 

2. Select Create from the context menu to open the Create Meshing Parameters 
window. 

3. To set the meshing properties for the part named "Beam" select the part in the 3D 
view by clicking on it. 

4. Rename the meshing parameters in the Name data field to "Beam". 
5. Set the Max element size data field to 10 mm. 
6. Set the Min element size data field to 0.2 mm. 
7. Set the Second order data field to Yes. 
8. Click the OK button to create the meshing parameters. 
 

 
 

Figure 36: Setting the meshing parameters 
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Creating the finite element mesh 
 
Once the meshing parameters are set, the part mesh can be generated by (Figure 37): 
 

1. Select the Beam part in the Geometry feature tree, or in the 3D view by right-
clicking it to open the context menu. 

2. Select the Create Mesh from the context menu to generate the mesh (mesh 
generation for complex models can be time-consuming, so using the Preview Edge 
Mesh command can inspect how the model edges will be divided into finite 
elements quickly). 
 

 
 

Figure 37: Creating the finite element mesh 
 
Querying the part mesh properties 
 
After creating the mesh, the program  changes the Geometry module automatically to the 
FE Model module and displays the generated mesh. The properties of the part mesh can 
be inspected by editing the mesh part properties (Figure 38): 
 

1. Select the "Beam" part in the FE Model feature tree or in the 3D view by right-
clicking it to open the context menu. 

2. Select Edit from the context menu to open the Edit Part window. 
3. Check the Number of elements data field to get the number of elements in the 

selected part: 344. 
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4. Check the Number of nodes in the data field to get the number of nodes in the 
selected part: 820. 

5. Check the Parabolic tetra type data field to get the finite element type: C3D10 (C – 
continuum, 3D – three-dimensional, 10 – the element has 10 nodes). 

6. Click the Cancel button to close the Edit Part window. 
 

 
 

Figure 38: Querying the part mesh properties 
 
Adding a material model 
 
For most static engineering problems the material can be modelled using the linear-elastic 
material model. This model is defined only by two material parameters, namely, Young’s 
modulus and Poisson’s ratio. Such a model describes the material behaviour correctly up 
to the limit of the elastic behaviour denoted by the yield stress. Yield stress is usually not 
entered as a material parameter in the linear elastic FEA. It is used in the post-processing 
step, to check if the computed stresses are lower or higher than the yield stress, thus 
indicating if linear elastic analysis is feasible. The linear elastic model can be added to the 
FEM model in the following way (Figure 39): 
 

1. Select Materials in the FE Model feature tree by right-clicking it to open the context 
menu. 

2. Select Create from the context menu to open the Create Material window. 
3. In the Material name field, enter the name S235. 
4. Click Elastic from the Available material models to select it. 
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5. Click the right arrow button to transfer the available model to the selected models. 
6. Select the Young’s modulus data field and enter 210 GPa (data fields with units 

support unit conversions 210 GPa = 210000 MPa; any unit entered is converted to 
the selected unit system type shown in the bottom right corner of the main 
window). 

7. Select the Poisson’s ratio data field and enter 0.3. 
8. Click the OK button to confirm the material creation. 

 

 
 

Figure 39: Adding a linear-elastic material model 
 
Creating a section assignment 
 
In one finite element model multiple materials can be defined, since different parts of an 
assembly can be made from different materials. To connect a material property to the part 
of an assembly a section assignment must be prepared, even if the assembly is comprised 
of only one part. A section assignment is generally also used to prescribe additional 
physical properties to parts, such as thickness in the case of shell finite elements or section 
properties, and section orientation in the case of beam finite elements. The section 
assignment is created by the following steps (Figure 40): 
 

1. Select Sections in the FE Model feature tree by right-clicking it to open the context 
menu. 

2. Select Create from the context menu to open the Create Section window. 
3. In the Name data field, enter the section name Solid_S235. 
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4. In the Material data field, select material S235 from the drop-down menu. 
5. In the 3D view, select the geometry of the Beam part to which this section will be 

assigned. 
6. Click the OK button to confirm the section creation. 

 

 
 

Figure 40: Creating a section assignment 
 

Adding a simulation step 
 
Actual structures are exposed to many loading conditions through the time of their use, 
and each loading condition can be divided into multiple loading phases. Multiple loading 
phases can be modelled as time-dependent loads, or using multiple analysis steps that 
follow one after the other. These analysis steps can represent different solution 
procedures, like a static, linear, or nonlinear dynamic procedure. For the Beam model, a 
default static analysis step will be created by the following steps (Figure 41): 
 

1. Select Steps in the FE Model feature tree by right-clicking it to open the context 
menu. 

2. Select Create from the context menu to open the Create Step window. 
3. In the Name data field, enter the step name: Static. 
4. Click the OK button to confirm the step creation. 

 
Depending on the type of the analysis step, a new entry is added to the FE model feature 
tree under Steps. A static analysis step contains the following feature collections: History 
Outputs, Field Outputs, Boundary Conditions (BCs), Loads and Defined Fields, into 
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which new items can be added. The History Output collection defines which results 
should be stored for individual nodes or elements. The Field Output collection is used to 
define which results should be stored for all nodes and elements of the model, the BCs 
collection is used to define the model's boundary conditions, the Loads collection is used 
to define the loads acting on a model, and the Defined Fields collection is used to define 
scalar fields for selected nodes. 
 
A default step configuration contains two Field Outputs. A nodal field output, named NF-
Ouptut-1, where outputs of the displacements and reaction forces in all nodes is requested, 
and an element field output named EF-Output-1, where outputs are requested of the 
stresses and strains in all the elements. 
 

 
 

Figure 41: Creating a static analysis step 
 
Creating a displacement/rotation boundary condition 
 
In a 3D space there are 6 independent degrees of freedom (DOF), 3 translations and 3 
rotations. In a static analysis, a static equilibrium problem can only be solved if all parts of 
the assembly are supported in all directions to prevent free body motion – all DOF must 
be defined as zero or non-zero values in at least one node on each part of the assembly, 
thus generating the reaction forces at these nodes to assure static equilibrium.  
 
In case of the beam in tension, one side surface of the beam is fixed to the wall. In the 
analysis, a fixed support will replace this connection to the wall. For this reason, a fixed 
boundary condition exists in PrePoMax, but a displacement/rotation boundary condition 
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will be used to demonstrate a more general approach. Using a displacement/rotation 
boundary condition, each DOF of the selected nodes can be prescribed individually. 
Nodes can be unconstrained (free to move), and their position can be fixed to 0 mm (a 
homogeneous boundary condition), or equal to a prescribed nonzero displacement (a non-
homogeneous boundary condition). The translational DOFs of all nodes on the beam 
surface connected to the can be set to 0 mm using the following steps (Figure 42): 
 

1. Select BCs in the FE Model feature tree by right-clicking it to open the context 
menu. 

2. Select Create from the context menu to open the Create Boundary Condition 
window. 

3. Select Displacement/Rotation as the boundary condition type. 
4. In the Name data field, enter the boundary condition name: Wall. 
5. In the U1 data field (U – displacement, 1 – the first axis of the coordinate system) 

enter the value of the prescribed displacement: 0 mm. 
6. In the U2 data field, enter the value of the prescribed displacement: 0 mm. 
7. In the U3 data field, enter the value of the prescribed displacement: 0 mm. 
8. In the 3D view, select the side surface of the beam oriented towards the negative 

x-axis direction. 
9. Click the OK button to confirm the boundary condition creation. 
10.  

 
 

Figure 42: Creating a displacement/rotation boundary condition 
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Defining a surface traction load 
 
The beam in tension is loaded by an axial tension load acting on one side surface of the 
beam. Since the whole surface is loaded, a surface load type must be applied to it.  Two 
types of surface loads can be prescribed in PrePoMax. One type is a pressure load, where 
the magnitude of the load must be defined while the load direction is defined by the loaded 
surface normal, and the second type is a surface traction load, where both the magnitude 
and direction must be prescribed. Here, both load types could be used (to apply the 
pressure load first, the pressure magnitude would have to be computed), but the surface 
traction load will be added to the analysis step using the following steps (Figure 43): 
 

1. Select Loads in the FE Model feature tree by right-clicking it to open the context 
menu. 

2. Select Create from the context menu to open the Create Load window. 
3. Select Surface Traction as the load type. 
4. In the Name data field, enter the load name: Force. 
5. In the F1 data field (F – force, 1 – the coordinate system's first axis), enter the axial 

load value: 10 kN. 
6. In the 3D view, select the side surface of the beam oriented towards the positive x-

axis direction. 
7. Click the OK button to confirm the load creation. 

 

 
 

Figure 43: Creating a load 
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Analysis setup 
 
Once the setup of the finite element model is finished, the analysis must be prepared 
before it is started. An analysis named Analysis-1 is created by default when the first step 
is added to the steps` collection. To rename the analysis and determine the solver and the 
work folder that will be used for the analysis, follow the steps: 
 

1. Select Analysis-1in the Analyses collection of the FE Model feature tree by right-
clicking it to open the context menu. 

2. Select Edit from the context menu to open the Edit Analysis window. 
3. In the Name data field, enter the analysis name: Beam-Static. 
4. The solver and its path that will be used to run the analysis is displayed under the 

Executable data field. 
5. The work folder that will be used to store temporary and result files is displayed 

under the Work directory data field. 
6. Click the OK button to confirm the changes in the analysis properties. 

 
Running the analysis and loading the results 
 
To submit the analysis, which will solve the prepared finite element model and load the 
results into PrePoMax, use the following steps (Figure 45): 
 

1. Select Beam-Static in the Analyses collection of the FE Model feature tree by right-
clicking it to open the context menu. 

2. Select Run from the context menu to submit the analysis to the solver. This will 
open the Monitor window, where the solver progress in shown in the Output tab 
(if the analysis is running for a long time and needs to be stopped, use the Kill 
button). 

3. Once the analysis is finished, the status will change to Finished (a Job finished 
prompt and the elapsed time will also be shown in the Output tab). 

4. Click the Results button to load the results into PrePoMax. 
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Figure 44: Editing the properties of the default analysis 
 

 
 

Figure 45: Running the analysis and loading the results 
 
Analysing the results 
 
To visualise the results (Figure 46), the active module is switched automatically to the 
Results Module in which the results can be analysed. The results of the computed scalar 
fields in all nodes and elements can be visualised on the model’s mesh using colours. The 
following information about the results is displayed by default: 
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1. The path and name of the results frd file. 
2. The Field Outputs collection shows the available results stored in the frd file, and 

enables the selection of the visualised field output. The DISP field represents 
displacements, the STRESS field represents stresses, the TOSTRAIN field 
represents total strains, the FORC field represents nodal forces, and the ERROR 
field represents an approximate accuracy of the results. 

3. The Colour legend shows which output field is currently visualised and it's unit, and 
gives interval values for each colour. 

4. The Status block shows the name of the results file and the date and time when the 
analysis was completed. It shows the numbers of the selected result step, increment, 
and displays the increment time. Lastly, it displays the name of the deformation 
variable and the deformation scale factor. The deformation scale factor defines the 
factor used to scale the deformations of the model, to adjust them for better 
visibility to the user. If the deformations of the results are relatively small compared 
to the model size, a scale factor larger than 1 is  computed automatically to improve 
the quality of the visualised results. 

5. The maximum value box shows the location, value and name of the node in which 
the maximum value of the selected output field is determined. 

 
The displacement results of the beam in tension analysis are shown in Figure 46. The 
results show the maximum displacement of 0.0475 mm on the loaded side surface of the 
beam, while the displacement at the support is equal to 0 mm. The displacements increase 
linearly from the support towards the loaded surface. The comparison of the results with 
the analytical result from chapter 6.2.1, which equals 0.0476 mm, shows a relative 
difference of about 0.2 %, which can be regarded as negligible. In this case, the results of 
both approaches gave the same result. Based on this fact, a conclusion can be made that, 
for computing displacements, the selected mesh is fine enough. 
 
Selecting DISP→U2 (1 in Figure 47) shows the displacements only in the y-axis direction. 
It can be seen from the results (DISP→U2 and DISP→U3) that, while the beam is 
extended in the longitudinal direction, its cross-section decreases in the transverse 
direction. This results from the applied linear elastic material model with a positive 
Poisson’s ratio (0.3 for the steel S235). The cross-section decreases equally almost at the 
whole beam length except at the support. There, the prescribed boundary condition with 
displacements of 0 mm prevents the deformation of the beam in the transversal direction. 
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Figure 46: Visualising the results 
 

 
 

Figure 47: Resulting displacements in the y-axis direction 
 

Selecting STRESS→MISES (1 in Figure 48) shows the von Mises equivalent stress, a good 
scalar stress measure for steel, since it is a ductile isotropic material with the same 
behaviour in the tensile and compressive directions. Other stress measures must be 
considered for other material types (brittle material). 
 
The results show a constant von Mises stress through the beam length, with a discrepancy 
in the stress field at the support, where the values (colours) of the stress field change 
rapidly irregularly. This indicates that, locally, the mesh in this region is comprised of finite 
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elements that are too large, and to improve the accuracy of the result, a finer mesh is 
needed. A mesh convergence study based on the value of stress can be used to determine 
the correct mesh size in this region. 
 
To measure the field values at any mesh node a query tool can be used (2 in Figure 48). 
With the query tool set to Vertex/Node (3 in Figure 47) and moving the mouse over the 
model, the node id coordinates, and field values are displayed in a moving query box (4 in 
Figure 48). Using the query box, a constant stress of 50 MPa can be measured through 
the beam length away from the support. 
 
The stress field changes at the support, and reaches the minimum and maximum values 
of 26 MPa and 55.35 MPa (< 235 MPa), respectively. Comparing this result with the 
analytical result from Chapter 6.2.1, which equals 50 MPa, shows a relative difference of 
about 7 % for the maximum stress value, and about 50 % for the minimum stress value, 
which cannot be regarded as negligible. 
 
The reason for this relative difference in stress values is the support preventing the beam's 
lateral deformation. The analytical model is a 1D model, where the support only acts in 
the axial beam direction, while, in the transversal directions, there are no supports that 
would prevent the lateral deformation of the beam. At the same time, the analytical 
solution neglects the effect of the transversal deformation altogether, assuming a Poisson’s 
ratio of 0. 
 

 
 

Figure 48: Resulting von Mises stress 
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A mesh convergence study should usually be carried out to determine the appropriate 
mesh size. From the analysis of the displacements in this case, it was determined that the 
global mesh size was good enough to determine the displacements' value accurately. 
However, the analysis of the stress results showed that stress at the support was not 
computed accurately. This suggests that a finer mesh should only be used around the 
support. It is known from the theory (Chapter 5.3) that a stress singularity will appear at 
the fixed support when using 3D finite elements. In this case, the mesh convergence will 
result in higher stress as the size of the finite elements decreases. 
 
A mesh convergence study will be carried out to demonstrate this behaviour using the 
stress value at node 1 (maximum value box in Figure 48) as the convergence measure. 
 
Defining the local mesh size 
 
The mesh size can be defined globally using the Meshing Parameters feature, or locally 
using the Mesh Refinements feature in the Geometry module (change the module if 
necessary by clicking on the tab named Geometry above the feature tree). For this 
example, the mesh size will be adjusted locally on the beam surface connected to the wall, 
where the size of the elements will be set to 4 mm. Use the following steps to define a 
local mesh size based on geometry (Figure 49): 
 

1. Select Mesh Refinements in the Geometry feature tree by right-clicking it to open 
the context menu. 

2. Select Create from the context menu to open the Create Mesh Refinement window. 
3. Rename the mesh refinement in the Name data field to Wall. 
4. Set the Element size data field to 4 mm. 
5. In the 3D view, select the side surface of the beam connected to the wall. 
6. Click the OK button to create the mesh refinement. 

 
Updating the mesh, running the analysis and loading new results 
Once a global mesh size changes or a new local mesh size is defined, the mesh must be 
generated again. Follow the instructions from the chapter "Creating the finite element 
mesh" to create an updated mesh of the model. Then, run the analysis and load its results 
following the instructions in the chapter "Running the analysis and loading the results" 
again. 
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Figure 49: Defining the local mesh size 
 

Results with improved mesh on the wall 
 
Figure 50 shows the resulting von Mises stress field on the side surface of the beam 
connected to the wall. The value of the stress at node 1 can be determined using the Query 
tool (2 in Figure 48), and to improve the visibility of colours, turn off the element edges 
by setting the visualisation representation to Show Model Edges (3 in Figure 29). As 
predicted in the previous chapter, the stress value in node 1 increased and is equal to 62.68 
MPa. The mesh convergence study will be repeated using the finite element size of 3 mm. 
 

 
 

Figure 50: Resulting von Mises stress 
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Editing the mesh refinement 
 
Once a mesh refinement is created, its properties can be changed by editing in the 
Geometry module (change the module if necessary by clicking on the tab named 
Geometry above the feature tree). Use the following steps to change the local mesh size 
of the mesh refinement named Wall from 4 mm to 3 mm (Figure 51): 
 

1. Select the Wall mesh refinement in the Mesh Refinements collection in the 
Geometry feature tree by right-clicking it to open the context menu. 

2. Select Edit from the context menu to open the Edit Mesh Refinement window. 
3. Set the Element size data field to 3 mm. 
4. Click the OK button to confirm the changes in the mesh refinement. 

 

  
 

Figure 51: Editing the local mesh size 
 
Updating the mesh, running the analysis and loading new results 
 
Once a global mesh size changes or a new local mesh size is defined, the mesh must be 
generated again. Follow the instructions from the chapter "Creating the finite element 
mesh" to create an updated mesh of the model. Then, run the analysis and load its results 
following the instructions in the chapter "Running the analysis and loading the results" 
again. 
  



64 INTRODUCTION TO THE COMPUTER SIMULATIONS: SCRIPT 
 
Continuing the mesh convergence study 
 
Looking at the results of the von Mises stress, the value of the stress in node 1 increased 
again, and is now equal to 67.52 MPa. The process of the mesh convergence study will be 
continued using meshes with the following sizes of the finite elements at the wall: 2 mm, 
1 mm and 0.5 mm. This can be achieved by repeating the chapters "Editing the mesh 
refinement" and "Updating the mesh, running the analysis and loading new results". 
 
The results of the complete mesh convergence study are shown in Figure 52. The Figure 
shows the change of von Mises stress in node 1 concerning the the finite element size at 
the wall. The results show that stress increases exponentially as the size of the finite 
element decreases. This confirms the existence of the stress singularity at the support. 
Despite the existence of the stress singularity at the support, the stresses away from the 
wall are computed accurately, and represent the correct solution to the problem. 
 

 
 

Figure 52: Mesh convergence results 
 
Improving the modelling of the support 
 
The stress singularity at the fixed support results from model simplification when 
preparing the boundary condition. In reality, the beam is connected to a deformable wall, 
while the fixed boundary condition is rigid, thus making the wall nondeformable. 
 
Improving the support modelling is the only way to get around the stress singularity. There 
are different approaches to improving the models, where moving the support away from 
the important parts of the assembly is the most common. In this example, we could move 
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the support away from the side surface of the beam if we included the wall in the model 
and applied the support to the wall. 
 
Another working approach in this case is to use an elastic support on the wall instead of 
the fixed support. First, the fixed support will be disabled, and then a new elastic spring 
constraint will be added on the wall. 
 
Deactivating mesh refinements 
 
Some features in the feature tree can be deactivated or activated to study their effect on 
the results. The mesh refinements are one of these features, and thus can be deactivated 
in the Geometry feature tree (change the module if necessary by clicking on the tab named 
Geometry above the feature tree). To deactivate the mesh refinement named Wall, follow 
the steps (Figure 53): 
 

1. Select the Wall mesh refinement in the Mesh Refinements collection in the 
Geometry feature tree by right-clicking it to open the context menu. 

2. Select Deactivate from the context menu to deactivate the feature. 
 
To deactivate/activate other features, search for them by name in the appropriate feature 
tree and then repeat steps 1 and 2. 
 

 
 

Figure 53: Deactivating mesh refinements 
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Updating the mesh 
 
Follow the instructions from the chapter "Creating the finite element mesh" to create an 
updated mesh of the model. 
 
Deactivating the support 
 
Change the module to the FE model (by clicking on the tab named FE model above the 
feature tree) and search for the support named Wall in the BSc collection. To deactivate 
the support, follow the steps from the chapter "Deactivating mesh refinements". 
 
Creating a surface spring constraint 
 
Constraints of different kinds can be added to the finite element models. For this example, 
a surface spring constraint with linear elastic properties will be added to the model. 
 
In general, the stiffness of spring constraints must be selected carefully, to reflect the actual 
behaviour of the structure. A surface spring constraint with a stiffness of 10,000 N/mm 
in the axial and 100 N/mm in the transversal direction was chosen for this example. The 
axial stiffness was selected so that the constraint springs would elongate by exactly 1 mm 
when the load was applied to the model. In contrast, a much smaller transversal stiffness 
was selected, only to prevent the rigid body motion of the beam. These stiffness values 
were selected to get the analysis stress results close to the analytical stress results. 
 
A new constraint can be added to the Constraints collection in the FE model module 
(change the module if necessary by clicking on the tab named FE model above the feature 
tree). Use the following steps to create a new surface spring constraint on the side surface 
of the beam connected to the wall (Figure 54): 
 

1. Select Constraints in the FE model feature tree by right-clicking it to open the 
context menu. 

2. Select Create from the context menu to open the Create Constraint window. 
3. Select the Surface Spring as the constraint type. 
4. Rename the constraint in the Name data field to: Spring_Wall. 
5. Set the K1 data field (K – stiffness constant, 1 – the first axis of the coordinate 

system) to 10,000 N/mm. 
6. Set the K2 data field to 100 N/mm. 
7. Set the K3 data field to 100 N/mm. 
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8. In the 3D view, select the side surface of the beam connected to the wall. 
9. Click the OK button to create the surface spring constraint. 

 

 
 

Figure 54: Creating a surface spring constraint 
 
Running the analysis and loading new results for the spring constraint 
 
Changing the model requires the analysis to be submitted again. Follow the steps from the 
chapter "Running the analysis and loading the results" to load new results from the model 
with the surface spring. 
 
Results with the surface spring 
 
The results of beam displacements (Figure 54) show an increase in the displacement 
values. The deformed results show that the beam moved exactly 1 mm at the surface 
supported by the springs. The rest of the beam deformed similarly as previously, but to 
get the actual beam deformations, a length of 1 mm must be subtracted from the 
displacement value. 
 
The results of the von Mises stress are shown in Figure 56. The colours at the beam surface 
attached to the surface spring constraint show that the stress field in this area was not 
constant. On the other hand, checking the values in the Colour legend indicates that the 
difference between the maximum and minimum value is less than the currently used 
number precision, so all colours represent a value of 50 MPa. 
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Figure 55: Resulting displacements 
 

 
 

Figure 56: Resulting von Mises stress 
 

Conclusions 
 
The beam in tension example first shows how to use the PrePoMax user interface to 
prepare a basic linear static finite element model and then deal with stress singularities. In 
the example, the stress singularity was avoided from the results by using an elastic instead 
of a fixed support. The disadvantage of this approach is that the absolute displacements 
are always increased. Combining both approaches can be used to evaluate the 
displacements and stresses correctly. 
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6.3 Bending of an L bracket 
 
The second practical example is the L-shaped bracket in Figure 57. The bracket is fixed 
on its top surface (green colour). An F = 200 N load acts on the frontal bracket surface 
(blue colour) in the tranversal direction. The bracket is made of S235 steel, with the 
following material properties E = 210 GPa in ν = 0.3 and σy = 235 MPa. Determine the 
maximum stresses and displacements in the bracket. 
 

 
 

Figure 57: The L bracket example 
 
6.3.1 Analytical solution 
 
Solving the L bracket example analytically, the 3D beam model is simplified into a 2D 
beam model (a in Figure 58), and then divided into two 1D beam models (b and c in 
Figure 58). 
 
The analytical solution first starts by solving model b using Equation (10). Model b is 
loaded by a bending stress (neglecting the transversal shear stress), where the largest 
bending stress appears at point B, and equals 𝜎𝜎𝑏𝑏  = 27 MPa. In the next step the reaction 
forces from point B are transferred to model c into point C, where they are applied as 
loads (their orientation is reversed). Model c is loaded with a constant bending stress and 
a constant axial stress that give a combined maximum stress of 𝜎𝜎𝑐𝑐  = 28 MPa. 
 

𝐹𝐹 
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𝐹𝐹𝑇𝑇 = 𝐹𝐹 = 200 N 
𝑀𝑀𝑧𝑧 = 𝐹𝐹 ∙ 𝐿𝐿 = 200 N ∙ 90 mm = 18000 Nmm 

𝜎𝜎𝑏𝑏 =
𝑀𝑀𝑏𝑏

𝑊𝑊 =
𝑀𝑀𝑧𝑧

𝑊𝑊 =
18000 Nmm
666,6 mm3 = 27 MPa 

𝑊𝑊 =
𝑏𝑏 ∙ ℎ2

6 =
10 mm ∙ 202mm2

6 = 666,6 mm3 

(10) 

 

𝜎𝜎𝑡𝑡 =
𝐹𝐹𝑇𝑇
𝐴𝐴 =

200 𝑁𝑁
200 mm2 = 1 MPa 

𝐴𝐴 =  𝑎𝑎 ∙ 𝑏𝑏 = 10 mm ∙ 20 mm = 200 mm2 

𝜎𝜎𝑏𝑏 =
𝑀𝑀𝑏𝑏

𝑊𝑊 =
𝑀𝑀𝑧𝑧

𝑊𝑊 =
18000 Nmm
666,6 mm3 = 27 MPa 

𝜎𝜎𝑐𝑐 = 𝜎𝜎𝑏𝑏 + 𝜎𝜎𝑡𝑡 = 27 MPa + 1 MPa = 28 MPa 

(11) 

 

 
Figure 58: Dimensions of the L bracket 

 
6.3.2 Finite element solution 
 
The workflow of preparing the finite element model of the L bracket follows the same 
steps as the workflow for preparing the beam in the tension model: 
 

1. Create a new model inside PrePoMax by using the 3D model space and the unit 
system type of mm, ton, s, °C (Preparing a new model). 

2. Import the L bracket geometry form the file “L Bracket.STEP” contained in the 
Models subfolder of the PrePoMax folder (Importing geometry). 

3. Change the name of the imported part from Solid_part-1 to L_Bracket (Changing 
the part properties).  
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4. Create new global meshing parameters for part L_Bracket. Rename the new 
meshing parameters to L_Bracket, with a maximum element size of 10 mm and a 
minimum element size of 0.1 mm (Definition of the meshing parameters). A coarse 
mesh will be used for the first analysis of the model. A minimum size of 0.1 mm 
is needed for a later mesh convergence study. 

5. Create the finite element mesh (Creating the finite element mesh). 
6. Add a linear elastic material model named S235 and the following elastic properties: 

Young’s modulus of 210 GPa and Poisson’s ratio of 0.3 (Adding a material model). 
7. Create a section assignment called Solid_S235 from material S235 connected to 

the geometry of the L_Bracket part (Creating a section assignment). 
8. Add a static analysis step called Step-1 with the default parameters (Adding a 

simulation step). 
 
In the next step, a fixed boundary condition must be applied to the bracket's surface, 
which is green in Figure 59. This could be done the same way as for the beam in the 
tension model, but here a simpler approach will be used using a boundary condition called 
Fixed. 
 
Creating a fixed boundary condition 
 
A fixed boundary condition applies a value of 0 automatically to all DOFs, fixing them in 
place, and can be added by the following steps (Figure 59): 
 

1. Select BCs in the FE Model feature tree by right-clicking it to open the context 
menu. 

2. Select Create from the context menu to open the Create Boundary Condition 
window. 

3. Select Fixed as the boundary condition type. 
4. In the Name data field enter the boundary condition name: Wall. 
5. In the 3D view select the smaller bracket surface oriented towards the positive y-

axis direction. 
6. Click the OK button to confirm the boundary condition creation. 
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Figure 59: Creating a fixed boundary condition 
 
Continuation of the L bracket model preparation 
 
The preparation of the L bracket model continues with the following steps: 
 

7. Add a surface traction load to the smaller bracket surface oriented towards the 
positive x-axis direction (the blue surface in Figure 58) called Force, with the force 
component F2 equal to -200 N (Defining a surface traction load). 

8. Rename the prepared Analysis-1 to Static_L_Bracket (Analysis setup). The finished 
L bracket model is shown in Figure 60. 

9. Run the analysis and load the results (Running the analysis and loading the results). 
 

 
 

Figure 60: Finished L bracket finite element model 
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Analysing the results 
 
The displacement results of the L bracket analysis are shown in Figure 61. The results 
show the maximum displacement of 0.1488 mm on the loaded side surface of the bracket, 
while the displacements at the support are equal to 0 mm. The black wire frame lines 
represent the bracket's undeformed shape, and the bracket deformation is increased by a 
factor of 55 (deformation scale factor). The undeformed shape of the bracket can be 
hidden by using a result visualisation called Deformed with colour contours (Results` 
representation). 
 

 
 

Figure 61: Resulting displacements for the L bracket 
 
Figure 62 shows the von Mises stress distribution in the L bracket. The highest von Mises 
stress appears in the corner of the bracket on its internal side and equals 34.82 MPa. In 
this region it is hard to compare the numerical result with the analytical result, since the 
shape of the bracket is changing from a horizontal to a vertical direction. That is why an 
additional measure point was selected on the vertical part of the bracket (model c in Figure 
58), where the stress was determined analytically as constant through the vertical part of 
the bracket, with the combined stress of 𝜎𝜎𝑐𝑐  = 28 MPa. At the same time, von Mises stress 
of 28 MPa was measured at a point in the middle of the vertical part of the bracket using 
the query tool (Node 281 in Figure 62) in the numerical model. Since analytically and 
numerically determined stress values are the same, the numerical model was prepared 
correctly, and the mesh density in the measured point is adequate. 
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The stress field around the position of the maximum von Mises stress is not smooth, 
suggesting that the result can be improved using a finer mesh. On the other hand, it is well 
known from the theory (Paragraph 5.3) that stress singularities may occur in sharp corners. 
To confirm this fact, a mesh convergence was carried out using the stress value at node 8 
(Figure 62) as the convergence measure. 
 

 
 

Figure 62: Resulting von Mises stress for the L bracket 
 
Mesh convergence study of the L bracket 
 
For the mesh convergence study, different local mesh sizes were used on the internal edge 
of the L bracket part (Figure 63). The local mesh sizes were 3 mm, 2 mm, 1 mm, 0.5 mm 
and 0.3 mm. The user is encouraged to do the mesh convergence study by repeating the 
following steps for each local mesh size used: 
 

1. Create a mesh refinement named Edge on the edge of the L bracket corner with 
the local mesh size of 3 mm (Defining the local mesh size). The next time this 
process is repeated, edit the existing mesh refinement and change the finite element 
size (Editing the mesh refinement). 

2. Update the finite element mesh (Creating the finite element mesh). 
3. Run the analysis and load the results (Running the analysis and loading the results). 
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Figure 63: Mesh refinement on the edge of the L bracket corner 
 
The results of the mesh convergence study for the L bracket model are shown in Figure 
64. The Figure shows the von Mises stress in node 8 in dependence on the local finite 
element size at the edge. The result shows that stress increases exponentially as the size of 
the finite element decreases. This confirms the existence of the stress singularity at the 
edge of the corner. Despite the existence of the stress singularity at the support, the 
stresses away from the sharp corner are computed accurately and represent the correct 
solution to the problem. 
 

 
 

Figure 64: Mesh convergence results 
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Improving the modelling of the sharp corner 
 
Stress concentration at the sharp corner is the consequence of simplification in the L 
bracket geometrical model. Namely, the L bracket part cannot be produced with a corner 
of 90°, since no matter which manufacturing process is used, a fillet will be in the corner. 
Additionally, a good engineer should predict a stress concentration in this region and 
design the bracket with a fillet in the first place. 
 

An analysis of the updated geometry is carried out to show the stress distribution in the L 
bracket with a fillet. Generally, a completely new model would have to be prepared for 
that, but PrePoMax records all user steps while preparing the finite element model. 
Additionally, this recording can be repeated, and other geometry files can be used while 
importing the geometry. 
 
Regenerating the model 
 
The L bracket geometry containing a fillet in the sharp corner is stored in the file “L 
Bracket R.STEP” in the Models subfolder of the PrePoMax folder. To recreate the L 
bracket model using the modified geometry, follow the steps (Figure 65): 
 

1. Select Edit in the Main menu to show the menu items. 
2. Select the menu item Regenerate Using Other Files to open the File Open dialog 

window. 
3. Browse to the location of the Models subfolder ../PrePoMax v1.4.0/Models. 
4. Select the file “L Bracket R.STEP”. 
5. Click the OK button to confirm the model regeneration. 
 

 
 

Figure 65: Regenerating the model 
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After the file is selected, the regeneration of the model will begin. Rebuilding the model 
might take some time, depending on the workflow of the model preparation, since all 
steps of meshing the model will be repeated. 
 
Fixing the mesh refinement 
 
While preparing the model with the sharp corner, a mesh refinement was created on the 
edge inside the sharp corner. The new bracket geometry misses this edge, so that the 
nearest geometry item will be selected automatically. For the new geometry, the mesh 
refinement should be created on the surface of the fillet, but the chosen automatically 
generated geometry item could not be the right one. To fix the automatic selection of the 
mesh refinement, edit the mesh refinement called Edge, change the element size to 0.5 
mm, and select the fillet surface as the selected region (Figure 66). 
 

 
 

Figure 66: Fixing the mesh refinement 

 
Updating the mesh, running the analysis and loading new results 
 
Once the mesh refinement is fixed, the mesh needs to be generated again. Follow the 
instructions from the chapter "Creating the finite element mesh" to create an updated 
mesh of the model. Then, run the analysis and load its results (Running the analysis and 
loading the results). 
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Results with the fillet 
 
The displacements of the L bracket with fillet are shown in Figure 67. The visualisation 
representation was changed to Show model edges (Visualisation representation) to hide 
the mesh. The maximum displacement of 0.1402 mm is shown on the loaded side surface 
of the bracket, which is less than the maximum displacement of the L bracket without a 
fillet (0.1488 mm). This is because, due to fillet creation, added material reinforces the 
model, making it stiffer and harder to deform. 
 

 
 

Figure 67: Resulting displacements for the L bracket with fillet 
 

 
 

Figure 68: Resulting von Mises stress for the L bracket with fillet 
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Figure 68 shows the von Mises stress of the updated L bracket geometry. The highest 
stress equals 38.18 MPa, and appears in the fillet of the bracket corner. The magnified 
view of the stress concentration shows a smooth stress field without any rapid changes of 
stress, and a stress concentration that stretches over multiple layers of finite elements 
(mesh must be turned on for this to be visible), which suggests that a convergent stress 
result was found. To prove this assumption, a mesh convergence study using the stress on 
the fillet surface would have to be carried out. 
 
Conclusions 
 
The L bracket example demonstrates the existence of stress singularity in sharp corners 
and how to deal with them. In the example, the stress singularity was removed from the 
model by adding a fillet to the critically loaded sharp corner. This approach's disadvantage 
is that fillets used on the production models are generally very small. To  mesh a fillet 
accurately, at least a couple of elements must be used over their arc length, making the 
finite elements inside the fillets extremely small, increasing the complexity of the model 
and its computational time. Thus, the finite element models include only important fillets 
for predicting the stresses accurately. 
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The script entitled „Introduction to the computational simulations“ in 
the field of engineering computer simulations is intended as a study aid 
in the lectures of the courses Engineering Computer Simulations for 
foreign students at the University of Maribor and for students at 
Kumamoto University, Japan. It contains an explanation of the entire 
material that students must master in these subjects and is consistent 
with the curriculum of the aforementioned subject. The basics of 
computational simulations based on the finite element method are given 
from the theoretical basics to step-by-step preparation of simple 
computational models in PrePoMax software. 

 Keywords: 
computational 

simulations,  
solid mechanics, 

 finite element method, 
desing,  

numerical methods 

 
 




	Table of Contents
	1 Introduction and short history overview
	2 Theoretical foundations
	2.1 Finite Element Analysis
	2.2 Types of finite elements
	2.2.1 Solid finite elements
	2.2.2 Surface finite elements
	2.2.3 Line finite elements
	2.3 Symmetry and asymmetry
	2.4 Unit systems

	3 Material definiton in FEA
	3.1 Young's modulus and Poisson's ratio
	3.2 Material data in advanced simulations

	4 Boundary conditions and loads
	4.1 Definition of boundary conditions
	4.2 Loads

	5 Meshing
	5.1 Importing of geometry
	5.2 Density of the FE mesh
	5.3 Stress singularities
	5.3.1 Stress singularities at geometric features
	5.3.2 Stress singularities at boundary conditions
	5.4 Quality of finite elements

	6 Practical examples
	6.1 Basics of using PrePoMax
	6.1.1 Downloading PrePoMax
	6.1.2 Structure of the main window
	6.1.3 PrePoMax modules
	6.1.4 View manipulation
	6.1.5 Visualisation representation
	6.1.6 Results` representation
	6.1.7 Troubleshooting
	6.2 Beam in Tension
	6.2.1 Analytical solution
	6.2.2 Finite element solution
	6.3 Bending of an L bracket
	6.3.1 Analytical solution
	6.3.2 Finite element solution

	Literature
	Blank Page



