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Peer-to-peer (P2P) energy trading has been recognized as an 
important technology to increase the local self-consumption of 
photovoltaics in the local energy system. Different auction 
mechanisms and bidding strategies haven been investigated in 
previous studies. However, there has been no comparatively 
analysis on how different market structures influence the local 
energy system’s overall performance. This paper presents and 
compares two market structures, namely a centralized market 
and a decentralized market. Two pricing mechanisms in the 
centralized market and two bidding strategies in the decentralized 
market are developed. The results show that the centralized 
market leads to higher overall system self-consumption and 
profits. In the decentralized market, some electricity is directly 
sold to the grid due to unmatchable bids and asks. Bidding 
strategies based on the learning algorithm can achieve better 
performance compared to the random method. 
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1 Introduction 
 
In order to reach carbon neutrality, the local energy system is undergoing a huge 
transformation (Salvia et al., 2021). Distributed generation resources, particularly 
photovoltaics (PVs) are becoming more and more popular at the demand side (B. 
Zhou et al., 2021). However, the large-scale penetration of PVs has a significant 
impact on the safe operation of the power system (Kumar et al., 2021). Therefore, 
to promote the self-consumption of PV within the local energy system is the focus 
of current research. 
 
Peer-to-peer (P2P) energy trading has been proposed as a critical technology to 
increase the PV consumption in recent years (Y. Zhou et al., 2020). P2P energy 
trading enables direct energy trading between prosumers and consumers within the 
local energy system (Zhang et al., 2018). A prosumer is defined as an entity that can 
produce and consume electricity, such as residential households with PVs (Iazzolino 
et al., 2022). In the P2P energy trading, prosumers can obtain additional benefits 
from selling their electricity to individual consumers (Zheng, 2022). Furthermore, 
P2P energy trading can facilitate power balance for the power system (Soto et al., 
2021). 
 
The research on the P2P energy trading can be categorized into two main streams 
according to the market structure: the centralized market and the decentralized 
market (Muhsen et al., 2022). In the centralized market, the coordinator collects 
information on electricity production and consumption of all prosumers and 
consumers. After the trading, the coordinator allocates the payoffs of the whole 
system to the participants according to a predefined rule. Some rules distribute costs 
or profits according to each participant’s contribution to the aggregate system net 
consumption or surplus generation (Reis et al., 2020). Some rules calculate the local 
market price based on the pricing mechanism, such as supply and demand ratio 
(SDR) (Liu et al., 2017), mid-market rate (MMR) (Long et al., 2017) and bill sharing 
(BS) (Y. Zhou et al., 2018). In this market, market participants are considered as 
price takers and they can only accept the price made by the coordinator. In the 
decentralized market, prosumers and consumers are able to make autonomous 
decisions about the amount and price of electricity to bid. These bids are submitted 
to a P2P trading platform and then cleared by a certain clearing approach. Different 
auction mechanisms, such as Discriminatory k-Double Auction (k-DA), Uniform k-
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DA, Vickrey-Clark-Groves (VCG), and Trade Reduction (TR), have been proposed 
and compared (Lin et al., 2019). Several bidding strategies have also been introduced 
to investigate their influence on the conditions of the market (Yu et al., 2018). 
Although current studies have investigated auction mechanisms and bidding 
strategies, there has been no comparatively analysis on how different market 
structures influence the local energy system’s overall performance. 
 
This paper presents and compares two market structures, namely a centralized 
market and a decentralized market, with the aim of providing valuable insights into 
establishing a P2P energy market. Firstly, two pricing mechanisms in the centralized 
market and two bidding strategies in the decentralized market are developed. 
Secondly, a comprehensive assessment of the local energy system's overall 
performance including costs, profits and self-consumption, is analyzed. 
 
2 Methodolodgy 
 
2.1 Simulation model 
 
We simulate a local energy market with the P2P energy trading in a local energy 
system. The market participants include N residential consumers or prosumers (I = 
1, 2, 3, ..., N), and a coordinator. A coordinator plays a different role in different 
market structures. In a centralized market, they typically act as the system operator 
responsible for managing the system's operations. In a decentralized market, they 
are generally the trading platforms where electricity order matching takes place. The 
simulation are conducted for the day-ahead at the time interval of 1 hour (Δt = 1 h). 
The internal market price in the local market should lie between the electricity feed-
in price and the retail electricity price. Therefore, consumers and prosumers can 
benefit from participating in the energy market. This can increase the local PV 
consumption and reduce the amount of electricity sold from the local energy system 
to the higher-level power grid. 
 
2.2 Centralized market 
 
In the centralized market, the information about the requested electricity from 
consumers and the available surplus PV generation from prosumers is transmitted 
to the coordinator. The coordinator calculates the total electricity demand and 
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electricity surplus of the local energy system. Then the coordinator trades with the 
grid to balance local supply and demand. After the trading, the coordinator decides 
how to distribute the system profits according to a predefined rule. This paper 
compares two rules: the costs and profits distribution rule, and the internal pricing 
mechanism. 
 
2.2.1 Costs and profits distribution rule 
 
The costs and profits distribution rule represents a fair mechanism to directly 
distribute the system costs and profits. Different rules have been proposed to 
achieve fairness in the distribution. Allocation based on the amount of each 
participant’s electricity consumption and electricity injected is the most basic rule. 
The costs and profits of participants are calculated by Eq. (1). 
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,i tNC  is the net consumption of the paticipant i at time t [kWh]. If , 0i tNC ≥ , the 

paticipant i is a buyer; otherwise the paticipant i is a seller. inf  is the retail electricity 

price from the grid [$/kWh]. marketf  is the internal market price [$/kWh]. outf  is the 

electricity feed-in price [$/kWh]. ,i tPE  is the purchased electricity of the paticipant i 

at time t [kWh]. ,
local
i tSE  is the locally sold electricity of the paticipant i at time t [kWh]. 

,
grid
i tSE  is the sold electricity into the grid of the paticipant i at time t [kWh]. If 

, 0i tNC <∑ , the system sells the surplus electricity to the grid, and the sold electricity 

is distributed among sellers according to the proportion of thier contribution to the 
system's net comsuption; otherwise, no surplus electricity is sold to the grid. 
 
2.2.2 Internal pricing mechanism 
 
As the costs and profits distribution rule are unable to reflect real-time electricity 
prices in the current trading market, various internal pricing mechanisms are 
proposed. Supply and demand ratio (SDR), mid-market rate (MMR) and bill sharing 
(BS) are three typical pricing mechanisms. Taking the SDR mechanism as an 
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example, an internal pricing model for energy sharing is established, where the 
internal price is defined as a segmented function of the energy supply-demand ratio 
within the market. Specifically, the supply-demand relationship in the P2P energy 
market can be represented by the total surplus and demand electricity at each time 
interval. The supply-demand ratio of electricity is defined by Eq. (2). 
 

,

,

S

B

i t
i N

t
i t

i N

SE
SDR

PE
∈

∈

=
∑
∑

                (2) 

 

tSDR  is the supply-demand ratio at time t. ,i tSE  is the sold electricity of the 

paticipant i at time t [kWh]. ,i tPE  is the purchased electricity of the paticipant i at 

time t [kWh]. SN  and BN  are the collection of sellers and buyers.  

 
Typically, there is an inverse proportion relationship between the price and the 
supply-demand ratio. Therefore, the selling and purchasing prices within the market 
are calculated by Eq. (3) and Eq. (4), respectively. 
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,sell tp  and ,buy tp  is the selling and purchasing prices within the market at time t 

[$/kWh].  
 
2.3 Decentralized market 
 
In the decentralized market, P2P energy trading allows consumers and prosumers to 
directly buy and sell PV resources using a blockchain-based platform. Consumers 
and prosumers can submit their own electricity bidding to the trading platform, and 
the platform settles orders through a specific clearing algorithm. In this paper, the 
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periodic double auction market that leads to a single clearing price for every trading 
period is implemented (Zade et al., 2022). During the trading period, participants 
submit bids or asks according to their roles of buyers or sellers. Once all bids and 
asks have been received, they are collected in an order book. At clearing time, bids 
are sorted in descending order and asks are sorted in ascending order by price. All 
bids where the buy price exceeds or equals the ask price are matched. At the end, 
the clearing prices are calculated based on the uniform price calculation method. 
Different bidding strategies have been proposed to test the feasibility of 
implementing a P2P trading market. This paper compares two bidding strategies: 
random bidding strategies and learning algorithm based bidding strategies. 
 
2.3.1 Random bidding strategies 
 
During the trading period, each consumer or prosumer bids with a random buy or 
sell price without any strategic foresight. This means that it does not take into 
account historical or retail electricity costs on the market. Participants randomly bid 
in a certain price interval. Prosumers are unwilling to accept a price below the 
electricity feed-in price, while consumers are unwilling to pay a price above the retail 
electricity price. Therefore, the upper price limit is set to the retail electricity price, 
and the lower price limit is set to the electricity feed-in price. Bid and ask prices are 
randomly sampled from a uniform distribution between outf  and inf . 

 
2.3.2 Learning algorithm based bidding strategies 
 
In a real-world setting, consumers and prosumers are capable of learning from past 
decision-making experiences, which reflects their intelligent characteristics. Based 
on the income they earn as prosumers and the costs that incur to them consumers, 
they adjust their propensities to place specific orders. Different reinforcement 
learning algorithms have been proposed to simulate the learning ability of 
participants, such as Roth-Erev (RE) algorithm (Nicolaisen et al., 2001) and Q-
learning algorithm (Chiu et al., 2022). This paper takes the RE algorithm as an 
example to illustrate the performance of reinforcement learning algorithms 
(Mengelkamp et al., 2017). The basic idea of the algorithm is to give priority to 
previous successful decisions and to learn from recent experiences. 
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Firstly, participants determine their own set of bidding strategies. In this paper, the 
market price range is discretized into an integer number of bid strategies according 
to its upper and lower bounds. Therefore, the set S = { outf  , ... , inf } represents all 

possible bidding strategies of the participants. In the beginning, the participants have 
the same initial propensities for each strategy. 
 
Secondly, as the P2P energy trading clears, participants update their own 
propensities for each strategy, as shown in Eq. (5).  
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, ,i j tpr  represents the propensity of the participant i for each strategy j at time t. The 

parameter [0,1]λ∈  represents the participant's memory factor. The higher the value 
of λ  is, the faster the participant forgets the past decision results. The parameter 

[0,1]ε ∈  represents the participant's learning speed. As the value of ε  decreases, the 
importance of the previous action in future decisions increases for the participant. 

( )t tR s  is the achieved income or the saved costs of the participant when its chosen 

strategy is s at time t. For prosumers and consumers, ( )t tR s  is calculated by Eq. (6) 

and Eq. (7). 
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Finally, the probabilities with which the participant i chooses strategy j are then 
derived from these propensities at time t +1, as shown in Eq. (8). The roulette 
method is employed to select the final bid strategy. 
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3 Case study description 
 
This study targets a hypothetical local energy system of 100 residential homes. In 
order to reflect the diversity of the houses, the size of the house is randomly sampled 
from 1,000 to 4,000 square feet. Figure 1 presents the hourly base load and PV 
generation profiles of a 2,546 square feet house during a summer month, which are 
obtained from (Lin et al., 2019). The load and PV generation profile of each house 
in the system is determined by scaling the base load and PV generation profile 
proportionally to the previously generated house size. The retail electricity price is 
$0.123/kWh and the electricity feed-in price is $0.033/kWh. For the system, two PV 
penetration levels are tested (40% and 60%) with two market structures (the 
centralized market with the distribution rule and SDR pricing mechanism, and the 
decentralized market with random and learning algorithm based bidding strategies). 
 

 
 

Figure 1: A 24h base load and PV generation profile 
 
4 Simulation results 
 
4.1 Case I: 40% PV penetration 
 
The 24h load and PV generation profiles of the local energy system with 60 
consumers and 40 prosumers are illustrated in Figure 2. It should be noted that the 
load profile for the 60 consumers is superimposed on the aggregate load profile for 
the 40 prosumers. By combining these two profiles, the total load of the system can 
be determined. As a result of the 40% ratio of prosumers to consumers, the total 
prosumer load is lower than the total consumer load. Between approximately 8:30 
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am and 16:30 pm, prosumers in the system generate surplus PV energy that can be 
exchanged with their neighbors. 
 

 
 

Figure 2: System supply vs demand at 40% PV penetration 
 

Some key performance evaluation indicators regarding the overall performance of 
the system under different market structures are analyzed in Table 2. The centralized 
market achieved 100% local PV self-consumption, while in the decentralized market, 
some prosumers have to sell electricity directly to the grid due to the failure of some 
bidding orders. This leads to lower self-consumption in the decentralized market. In 
both pricing rules of the centralized market, the same total system profits are 
achieved. However, the benefits obtained by different consumers and consumers 
vary. Consumers earned revenue by selling electricity to consumers and the grid, 
while consumers saved costs through the P2P energy trading. Under the distribution 
rule, consumers could not benefit from energy trading. The SDR mechanism 
appears to be a fair mechanism that can benefit both consumers and consumers. In 
the decentralized market, bid strategies based on the learning algorithm achieves 
higher system self-consumption and total profits. However, the cost savings 
obtained by consumers actually decrease. As shown in Figure 3, this is due to the 
higher clearing prices resulting from the learning algorithm. The increase of the 
average percentage traded through the learning algorithm is not significant 
compared to the random algorithm. This is because the key to achieving higher self-
consumption lies in the bidding of a small number of prosumers. 
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Table 1: The system performance of different market structures at 40% PV penetration 
 

 Self-
consumpti

on 

Profits ($) Average 
Percentag
e traded 

Consum
er 

Prosume
r 

Total 

Centralized – 
Distribution 
rule 

100% 0 95.29 95.29 / 

Centralized –  
SDR 
mechanism 

100% 56.46 38.83 95.29 / 

Decentralized –  
Random 
bidding 

64.79% 16.72 45.02 61.74 46% 

Decentralized –  
Learning 
algorithm 

92.32% 10.06 77.91 87.97 48% 

 
From Figure 3, it can be seen that in the centralized market, the internal selling price 
and buying price determined by the SDR mechanism are highly correlated with the 
power supply-demand ratio. The greater the supply-demand ratio is, the lower the 
internal price is. In the decentralized market, the clearing price obtained through the 
learning algorithm gradually increases because it is a seller's market and the electricity 
cannot fully meet the needs of all consumers. 
 

 
Figure 3: Internal market price of different market structures at 40% PV penetration 
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4.2 Case II: 60% PV penetration 
 
Figure 4 displays the load and PV generation profiles for the system at 60% PV 
penetration. Even after meeting the electricity demand of the system, there is an 
excess of PV output from the system between approximately 9:30 am and 14:30 pm 
due to a higher penetration of PV. 
 

 
 

Figure 4: System supply vs demand at 60% PV penetration 
 
According to Table 2, the centralized market can only achieve an ideal 75.43% local 
energy consumption. Higher total system profits are achieved at a 60% PV 
penetration rate compared to a 40% PV penetration rate. The conclusions drawn 
from Table 2 are similar to those in Table 1, where the centralized market leads to 
higher self-consumption and total profits compared to the decentralized market. In 
the decentralized market, bid strategies based on the learning algorithm can achieve 
better performance than the random method. 
 
In Figure 6, due to the surplus of electricity caused by PV generation being greater 
than consumers demand at noon, the internal electricity price in the centralized 
market equals the electricity feed-in price. Similarly, in the decentralized market, the 
clearing price resulting from bid strategies based on the learning algorithm first 
decreases and then increases, which is also a response to the surplus of electricity 
resources. 
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Table 2: The system performance of different market structures at 60% PV penetration 
 

 Self-
consumpti

on 

Profits ($) Average 
Percentag
e traded 

Consum
er 

Prosume
r 

Total 

Centralized – 
Distribution 
rule 

75.43% 0 118.68 118.68 / 

Centralized –  
SDR 
mechanism 

75.43% 41.77 76.91 118.68 / 

Decentralized –  
Random 
bidding 

42.31% 23.91 59.71 83.62 46% 

Decentralized –  
Learning 
algorithm 

43.64% 24.54 73.96 98.50 42% 

 

 
 

Figure 5: Internal market price of different market structures at 60% PV penetration 
 
5 Conclusions 
 
P2P energy trading plays a significant role in increasing the self-consumption of the 
local energy system. It can also involve consumers and prosumers in the local energy 
market. In different market structures, namely centralized and decentralized markets, 
P2P energy trading provides great economic advantages to market participants to 
encourage their involvement. The centralized market-based approach seems to have 
greater advantages as it leads to higher overall system self-consumption and profits. 
However, participants in the centralized market are considered as price takers and 
may not be fully incentivized to participate the market actively. Otherwise, 
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participants can make decisions and bid in the decentralized market. Bid strategies 
based on the learning algorithm in the decentralized market show better 
performance compared to the random method, but this relies on participants 
learning from their bidding history. Overall, this study provide insights for evaluating 
the impact of different P2P energy trading market structures on the performance of 
the local energy system. 
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