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This paper explores the phenomenon of inapplicability of 
experience, which occurs when we make mistakes by applying 
past experiences to current problems. The paper aims to create a 
knowledge model to analyze this phenomenon based on the 
concept of “dark-matter,” which represents time-related data. 
This model uses two-dimensional matrixes to represent both 
time-related and non-time-related data. In this paper, the authors 
propose a concept of “parallel spaces” for the expression and 
processing of knowledge based on the concept of “dark-matter.” 
Case studies are used to illustrate how knowledge is generated 
and expressed in this model, including examples of the 
phenomenon of inapplicability of experience. The contribution 
of this paper is the presentation of a new concept of “parallel 
spaces” based on the concept of “dark-matter,” and the 
exploration of the relationship between the parallel spaces and 
knowledge and experience. Based on the case studies, the reason 
for the phenomenon of inapplicability of experience is revealed, 
providing insight into how we can more effectively use our past 
experiences to solve current problems. 
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1 Introduction 
 
People make judgments and decisions based on experience and knowledge to solve 
problems. However, it often happens that wrong judgments and decisions are made 
based on experience and knowledge. For example, in the stock trading process, 
people will determine the current trade based on the stock’s past ups and downs and 
trading experience. However, decisions based on experience are not always correct. 
After you decide to buy, the stock may fall, or after you decide to sell, the stock may 
rise. This phenomenon is referred to as “the phenomenon of inapplicability of 
experiences” in this paper. The aim of this paper is to create a knowledge model to 
analyze this phenomenon. It is known that knowledge and experience build up over 
time. In other words, if we want to express knowledge and experience in computers, 
we need to create a time related knowledge model. In our previous research, we 
proposed a knowledge model based on a concept of “dark-matter” [1]. 
 
The concept of “dark-matter” stems from existing research on semantic computing 
models [2-5]. These models use semantic spaces to represent the meaning of data. 
By mapping data into target semantic spaces and presenting them as points, these 
models calculate Euclidean distances between them to perform semantic 
calculations. For instance, to conduct semantic queries, query data or keywords are 
mapped to a semantic space and summarized as a point. The same applies to retrieval 
candidate data, before computing Euclidean distance between the point of the query 
and the points of the retrieval candidates to determine which relative retrieval 
candidate should be a retrieval result. 
 
In our previous researches, two methods, Mathematical Model of Meaning (MMM) 
[4, 5], and Semantic Feature Extracting Model (SFEM) [2, 3] are used in creating 
semantic spaces. In MMM, a semantic dataset such as the English-English dictionary 
is used to create the semantic space. On the other hand, SFEM creates semantic 
spaces based on defined data sets relevant to specific applications. Mapping matrixes 
are required to map input data to the semantic space. SFEM mapping matrixes are 
defined according to the model's application [6, 7]. Various techniques have been 
developed to construct mapping matrixes of MMM for semantic information 
retrieval, classification, extraction, and analysis on cause and effect [8-14]. Moreover, 
a technique has been developed to construct the mapping matrixes through deep-
learning [15]. In MMM and SFEM, the elements of the matrixes that represent 
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semantic spaces are predefined, which distinguishes them from other models, such 
as the artificial neural network model and deep-learning artificial neural network 
model [16-19]. 
 
A mechanism based on the semantic space model is developed to implement basic 
logic computation to determine true and false judgments [20], which is a 
fundamental mechanism required for machine learning. This mechanism is applied 
to simulate unmanned ground vehicle control [21]. Case studies are used to illustrate 
why the phenomenon of inapplicability occurred. A model is presented for temporal 
data processing, with the word “matter” used to represent non-temporal elements 
and “dark-matter” for temporally changing elements [1]. An exploratory research is 
presented on knowledge expression and generation processes based on the concept 
of “dark-matter” [22]. 
 
This research creates a new knowledge model to analyze the phenomenon of 
inapplicability and introduces the concept of “parallel spaces” based on previous 
studies. The concept of “dark-matter” which is used in the analysis of the 
phenomenon of inapplicability is discussed in Section 2. Section 3 describes the 
relationship between knowledge and dark-matter, and Section 4 analyzes the 
phenomenon of inapplicability, and provides case studies to illustrate the issue. In 
section 4, the paper goes on to present the concept of “parallel spaces” and its 
applications in examples before concluding the study. 
 
2 The machine learning model created based on the concept “dark-

matter”  
 
This section offers a brief review of a machine learning model known as the dark-
matter learning model, which is based on the concept of dark-matter. In this model, 
matrix multiplication is referred to as mapping or space mapping. If a two-
dimensional matrix X represents a space, matrix X can be decomposed into matter 
and dark-matter matrix. The former refers to the first column of X that correlates 
with sensor data and is referred to as visible data, while the latter refers to the 
matrix’s second to the last column that is randomly filled and defined as chaotic 
space. Figure 1 shows an example of the space matrix X. According to the paper [1], 
knowledge expression and knowledge generation are linked to dark-matter. 
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Figure 1: An example of a space matrix X 

Source: own. 
 
The learning process in the dark-matter learning model is concerned with 
transforming chaotic space into ordered space. The learning model resembles a state 
machine where states transition from one to another. A state transition diagram is 
employed to illustrate this process. Antimatter space is defined as the inverse of the 
matrix X, and it is used to create a new matrix C from E that represents actions 
taken by agents. Mass and energy equivalent equation explain that mass is visible and 
correlates with sensor data and refers to the amount of matter an object contains. 
Energy is represented by a vector E and is measurable. Equation (1) shows the 
relationship of these three matrixes. Figure 1 shows an example of matrix X. 
 

E = X*C              (1) 
 
As mentioned in the paper [22], the creation and development of knowledge is linked 
with what is called “dark-matter.” A “dark-matter learning model” grounded on this 
concept is also presented in the paper. The goal of the learning process is to shift 
from a chaotic space to an ordered space wherein the learning model is viewed as a 
state machine. The state machine's state changes from one to another, referred to as 
state transition, as illustrated by state transition diagrams such as Figure 2. In Figure 
2, A circle and a number identify a state, while an arrow signifies the state’s transition 
from one to the next. Numbers beside arrows indicate the condition needed for the 
transition, like for state “0.0” to transition to state “0.1” when the input data is “0.0.” 
 
Figure 3 displays the creation of an “ordered space” from the original “chaotic 
space” through state transitions using the example of the state transition diagram in 
Figure 2. The start state is “0.0” and the first step is the transition from “0.0” to 
“0.1”. The chaotic space is shown in Figure 3 (a) and the first step is shown in Figure 
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3 (b), with the transition from “0.1” to “0.3” shown in Figure 3 (c). The full state 
transition diagram is represented in Figure 3 (d), creating an “ordered space” from 
the original “chaotic space.” The “matter” refers to the first column of the matrix 
and the grey-painted second, third, and fourth columns represent the “dark-matter” 
matrix. 
 

 
Figure 2: An example of state transition 

Source: own. 
 

    
(a)              (b)      (c)          (d) 

 
Figure 3: Creating an “ordered space” from a “chaotic space” 

Source: own. 
 

If X-1 is an inverse matrix of the matrix X, the matrix X-1 is referred to as an 
“antimatter space.” By applying antimatter space to a matrix E, which represents 
actions of agents, a new matrix C is created as shown in equation (2). The calculation 
presented by the equation (2) is referred to as “learning” or “training” calculation. 

 
C = X-1*E              (2) 

 
In physics, “mass” is the measure of the amount of matter an object contains and 
can be sensed by sensors. “Matter” is defined as a vector that correlates with sensor 
data and is similar to the concept of “mass”. Energy in physics is a vector E, and the 
elements of the vector E and the mass in matrix X are measurable. Thus, the 
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0.0 8.0 1.0 1.0
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0.2 0.1 0.3 0.0
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measurable values of E correspond to energy in physics and the measurable values 
of mass in physics correspond to “matter”. 
 
To analyze the relationship between equation (1) and the “energy mass equivalent 
equation”, we will take an example. Suppose that space X is a five-by-five matrix, as 
shown in Figure 4 (a). This means that there are five different types of matter in 
space. The elements in the first column of the matrix are the mass of matter. In the 
example, the values of the “matter” and “dark-matter”, which are the elements of 
the matrix X, are shown in Figure 4 (a). The elements of the vector E are shown in 
Figure 4 (b). The inverse matrix of X, X-1, is shown in Figure 4 (c). 
 

                           
    (a) Space X: created with five types of matter         (b) Energy vector             (c) Inverse matrix of X 

 
Figure 4: An example of a space with five different types of matter 

Source: own. 
 

Another matrix, vector C is also used to analyze the relationship between the energy 
and “mass equivalent equation”. The values of the element of the vector C are 
calculated based on equation (2), multiplying X-1 by E. if the value of the first 
element of vector C is a non-zero value, and all other elements in vector C are zero, 
as that shown in Figure 5, the elements of vector E can be calculated by multiplying 
vector mass and only the first value of vector C, that is the dark-matter is not utilized 
in this computation process, equation e=mc2 is appropriate for this scenario where 
the first value of vector C is presented as c2. 
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Figure 5: Multiplying X-1 by E to calculate the rule vector C  
Source: own. 

 
The vector E can be calculated from C using equation (1), as shown in Figure 6 (a). 
Let c2 represent the first value of C. Then, the vector E can be calculated by 
multiplying the first column of X by c2, as shown in Figure 6 (b). 

 

 
         (a) Calculating E with vector C2                    (b) Calculating E with the scalar value c2 

 
Figure 6: The calculated result of E with the vector C2 and the scalar value c2 

Source: own. 
 
In this example, if e is the i-th element of the vector E and m is also the i-th element 
of the vector mass, it can be found that e = mc2.  For example, for the first element 
of E and the first element of mass, 
 

  E = 600; 
  m = 6; 
  c2 = 100, where, c = 10; 
  600 = 6 * 102. 

  

100.00 -0.09 -0.07 0.11 -0.15 0.16 600.00

0.00 -0.02 0.01 0.01 0.00 0.00 300.00

0.00 = 0.02 0.00 -0.01 -0.01 0.00 * 900.00

0.00 0.01 0.01 0.01 0.02 -0.03 200.00

0.00 -0.01 -0.01 0.00 0.01 0.01 700.00

C EX-1

600.00 6.00 14.16 72.84 49.42 26.72 100.00 600.00 6.00

300.00 3.00 83.37 75.00 36.21 28.21 0.00 300.00 3.00

900.00 = 9.00 27.55 32.70 59.96 20.56 * 0.00 900.00 = 9.00 * 100.00

200.00 2.00 28.83 34.27 35.39 74.98 0.00 200.00 2.00

700.00 7.00 55.43 86.68 38.21 87.91 0.00 700.00 7.00

E mass C E mass c2dark-matter
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That is, 
 
  e = mc2. 

 
To summarize, the dark-matter learning model employs matrix multiplication and 
defines dark-matter as chaotic space. It uses a state machine to transform chaotic 
space into ordered space. The concept of antimatter space is introduced, and the 
mass and energy equivalent equation explains the relationship between mass and 
visible object and measurable energy. A comprehensive example illustrates how 
vector C and vector E are computed. The relationship between mass and energy is 
described by the equation e = mc2. 
 
3 A knowledge representation method with “dark-matter” 
 
The relationship between dark-matter and knowledge is explained in [22]. In the 
example shown in Figure 7, an agent’s state is defined as its position in the maze. 
There are 16 possible positions, so the state space is represented by a 16-element 
vector. The agent’s actions are defined as the four cardinal directions: up, down, left, 
and right. The start position is marked with the character “S” and the goal position 
is marked with the character “G”. The agent will go along the path shown by the 
arrow-mark “→”. The agent will go through the points (2,1), (2, 2), (3, 2), (4, 2), (4, 
3), (4, 4) and (3, 4) and reach the goal position (2, 4), as shown in Figure 7 (a).  
 
A space matrix can be defined by representing the agent’s states as its positions on 
the maze matrix. There are 16 possible positions for the agent on the maze matrix, 
so the state space is represented by a 16-element matrix as shown in Figure 7 (b). 
There are 16 values from 0.0 to 1.5 which are used as the index of positions. 
 

  
 

(a) A maze matrix 
 

(b) The position index 
values of the maze matrix 

 

Figure 7: A maze matrix shown for an agent moving from “S” to “G” 
Source: own. 

1 2 3 4 1 2 3 4
1 0 0 0 0 1 0.0 0.4 0.8 1.2
2 S 1 0 G 2 0.1 0.5 0.9 1.3
3 0 1 0 1 3 0.2 0.6 1.0 1.4
4 0 1 1 1 4 0.3 0.7 1.1 1.5
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If the agent does not have a position sensor, but it has a laser sensor, the output of 
the sensor shows which direction the agent can move. The states of the agent can 
be calculated through the output values of the laser sensor. However, the states of 
the agent cannot always be calculated without dark-matter. Let’s take an example to 
explain it. The output values of the sensor are defined as follows: 
 

− “1000” - Up  
− “0100” - Down 
− “0010” - Left 
− “0001” – Right 

 
The direction in which the agent can move at each position is shown in Figure 8 (a). 
The sensor’s output values for each direction are shown in Figure 8 (b) and the 
sensor’s output values when the agent is in different positions are shown in Figure 
8 (c). For example, at the position (3, 2), the agent can move to “Up” direction to 
go back from the current position to its previous position., and “Down” directions 
to a new position, therefore, the output value of the sensor is “1100”. If the agent is 
at the point (2, 2), the agent can move to two different positions, the agent can move 
back to the start position (2, 1) when it moves “Left”. It can also move “Down” to 
the next position (3, 2). The output value of the sensor at the position (2, 2) is 
“0110”, which is the sum of the two directions "0010", "Left" and "0100", "Down".  
 

 
(a) The maze 

matrix  

(b) The output of 
the laser sensor 

 (c) The output of the 
laser sensor in the maze 

 
Figure 8: The output of the laser sensor of the agent 

Source: own. 
 
As shown in Figure 8 (c), the sensor output values for the agent’s positions (3, 2) 
and (3, 4) are both "1100". This means that the agent can move “Up” or “Down”. 
If a function with the sensor value as the input of the function is used to retrieve the 
agent’s action, two different actions, “Moving Down” and “Moving Up”, will be 

1 2 3 4 1 2 3 4
1 0 0 0 0 1 0 0 0 0
2 S 1 0 G Up Down Left Right 2 0001 0110 0 0100
3 0 1 0 1 1000 0100 0010 0001 3 0 1100 0 1100
4 0 1 1 1 4 0 1001 0011 1010
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returned. Therefore, without dark-matter, it is impossible to find a unique action for 
the agent. Dark-matter is used to calculate the best action to take. 
 
The path from the start position to the goal position is not always known at the start 
position. For example, when reinforcement learning is used to find the path, the 
path is unknown at the start position. The path is found after many trials. Rewards 
are assigned to the found paths. The path with the shortest length is assigned the 
highest reward. The agent is trained to obtain the maximum reward during 
reinforcement learning. In this way, the optimal path from the start position to the 
goal position can be found. At the same time, the agent’s actions at the positions on 
the path are determined. 
 
When the path is unknown at the start position, it is impossible to create a space 
matrix as shown in Figure 8 (a). Here, a new method is proposed for generating the 
space matrix. This method records passed positions instead of the next positions. 
For example, when the agent moves from the start position (2, 1) to the position (2, 
2), the passed position (2, 1) is recorded. This means that the dark-matter matrix can 
be created based on events that have occurred, rather than events that will occur in 
the future. 
 
In the following, an example is used to illustrate the method in detail. In the example, 
the agent has a laser sensor. 
 
The agent starts at the position (2, 1). It uses its laser sensor to scan the environment 
and detects that there are obstacles at the position (1, 1) and (3, 1). The agent then 
moves to the position (2, 2). It again uses its laser sensor to scan the environment 
and detects that there are obstacles at the position (1, 2) and (2, 4). Then, the agent 
moves to the position (3, 2). The agent continues to move in this way, recording the 
passed positions as it goes. 
 
After a while, the agent has created a space matrix that shows all of the positions 
that it has passed. This matrix can be used to plan the agent’s next move. For 
example, if the agent wants to move to the position (3, 4), it can use the space matrix 
to find the shortest path. 
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The new method for generating the space matrix is more efficient than the previous 
method. This is because the new method only records the passed positions, while 
the previous method had to record all of the possible positions. The new method is 
also more accurate, because it is based on events that have occurred, rather than 
events that will occur in the future. 
 
The maze is represented by a matrix as shown in Figure 9(a), where the agent can be 
in any position marked with a “1” and cannot be in any position marked with a “0”. 
The output of the sensor at each position is shown in Figure 9(b), and the index 
values of the sensor outputs are shown in Figure 9(c). For example, when the agent 
is at the position (2, 2), the output of the sensor is “1110”, which indicates that the 
agent can move up, down, and left. The agent cannot be in the position where it is 
marked as “0” shown in Figure 9(a), so the outputs of the sensor at those positions 
are marked with an “X”. 
 

 
(a) The maze matrix 

 

(b) The output of the 
laser sensor 

 (c) The index of the 
laser sensor 

 
Figure 9: The output of the laser sensor of the agent 

Source: own. 
 

In Figure 9(a), the agent starts at position (2, 1) and can move to two different 
directions: up and right. The probability of moving up is 0.5 and the probability of 
moving right is 0.5. When the agent moves to position (2, 2), it can move up, down, 
or left. The probability of moving in each direction is 0.33. The target position is (2, 
4). The agent receives a reward of 1 for each step it takes to reach the target position. 
The agent learns to move in the direction that leads to the highest reward. For 
example, if the agent moves to the right from position (2, 1), it will receive a reward 
of 1. This will increase the probability of the agent moving right in the future. After 
2000 trials, the agent has learned to move from position (2, 1) to position (2, 4) in 7 
steps. The probability of the agent moving in the direction that leads to the target 
position is 0.99. 

1 2 3 4 1 2 3 4 1 2 3 4
1 1 1 1 0 1 0101 0111 0111 X 1 0.5 0.7 0.7 X
2 1 1 0 1 2 1001 1110 X 0100 2 0.9 1.4 X 0.4
3 0 1 0 1 3 X 1100 X 1100 3 X 1.2 X 1.2
4 0 1 1 1 4 X 1001 0011 1010 4 X 0.9 0.3 1.0
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To record sensor values, a working memory mechanism is used. The mechanism 
creates a vector with the same number of elements as the number of steps required 
for the agent to reach the goal position. For example, if the agent starts at position 
(2, 1) and moves through positions (2, 2), (3, 2), (4, 2), (4, 3), (4, 4), and (3, 4) to 
reach the goal position (2, 4), the vector will have 7 elements. The initial values of 
the elements are randomly assigned. 
 
The current sensor value is then added to the vector, creating a new vector with 8 
elements. The background of the element containing the current sensor value is 
white as shown in Figure 10(a), and the backgrounds of the elements containing the 
past sensor values are grey. For example, at the start position (2, 1), the current 
sensor value is 0.9, which is recorded in the first element of the vector. The 
background of the first element is white, and the backgrounds of the other elements 
are grey. The values of the elements from the second to the eighth are random 
because no sensor data has been recorded yet. 
 
When the agent moves to position (2, 2), the index value of the sensor at that 
position, 1.4, is recorded in the first element of the vector. The previously recorded 
value, 0.9, is moved to the second element as shown in Figure 10(b). The 
backgrounds of the first and second elements are white, and the backgrounds of the 
other elements are grey. 
 
This process continues as the agent moves through the maze as shown in Figure 
10(c). When the agent reaches the goal position, all of the index values of the sensor 
outputs are recorded in the vector. The index value of the sensor output at the goal 
position is recorded in the first element, and the index value of the sensor output at 
the start position is recorded in the eighth element, as shown in Figure 10(d). 
 
The working memory mechanism allows the agent to store a history of its sensor 
values. This information can be used to help the agent make decisions about where 
to move next. For example, if the agent has previously encountered a wall at a 
particular location, it is less likely to move in that direction in the future. 
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(a) At position (2,1)  (b) At position (2,2) 

 
(c) At position (3,2)  (d) At position (2,4) 

 
Figure 10: Working-memory and recorded index value of the sensor output 

Source: own. 
 
The agent’s actions are recorded by an action index value. For example, if the agent 
moves to the right at the start position, the index value 0.1, which is the index value 
of moving to the right, is recorded. A vector E is used to record all the action index 
values from the start position to the end position, as shown in Figure 11(c). 
 
As shown in Figure 11(a), the space X is a collection of the working memory of the 
agent moved from the start position to the goal position. Its inverse matrix X-1 is 
shown in Figure 11(b). By multiplying X-1 by E, a vector C is generated, as shown 
in Figure 11(d). 
 

 
(a) X  (b) X-1 (c) E (d) C 

 
Figure 11: Working-memory and recorded index value of the sensor output 

Source: own. 
 
When the vector C is generated, the agent can calculate its actions at each relative 
position by multiplying the vector of the working-memory by C. This is expressed 
by equation (1) in Section 2. 
 
The dark-matter matrix can be used to calculate a unique action index value even if 
the output values of the sensor are the same. For example, at the position (3, 2) and 
(3, 4), the index values of the sensor output value are both 1.2, as shown in Figure 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
0.9 94.0 84.0 12.0 78.0 58.0 84.0 23.0 1.4 0.9 84.0 12.0 78.0 58.0 84.0 23.0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1.2 1.4 0.9 12.0 78.0 58.0 84.0 23.0 0.4 1.2 1.0 0.3 0.9 1.2 1.4 0.9

0.3 0.9 1.2 1.4 0.9 58.0 84.0 23.0 -0.03 2.77 -0.03 0.03 0.01 -0.03 -0.06 0.00 0.1 -0.06

0.4 1.2 1.0 0.3 0.9 1.2 1.4 0.9 0.00 0.01 0.01 0.00 0.00 0.00 0.00 -0.01 0.0 0.00
0.9 94.0 84.0 12.0 78.0 58.0 84.0 23.0 0.00 -0.01 0.00 0.00 0.00 -0.01 0.00 0.01 0.1 0.00
0.9 1.2 1.4 0.9 78.0 58.0 84.0 23.0 0.00 -0.08 0.00 -0.09 0.00 0.09 0.00 0.00 0.1 0.03
1.0 0.3 0.9 1.2 1.4 0.9 84.0 23.0 -0.01 -0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.8 0.00
1.2 1.4 0.9 12.0 78.0 58.0 84.0 23.0 0.02 0.03 0.00 0.00 -0.02 0.00 0.00 0.00 0.4 -0.01

1.2 1.0 0.3 0.9 1.2 1.4 0.9 23.0 0.00 0.01 0.00 0.00 0.01 0.00 -0.01 0.00 0.8 0.00
1.4 0.9 84.0 12.0 78.0 58.0 84.0 23.0 0.00 -0.14 0.00 0.00 0.00 0.00 0.05 0.00 0.4 0.04



376 PROCEEDINGS OF THE 33RD INTERNATIONAL CONFERENCE ON 
INFORMATION MODELLING AND KNOWLEDGE BASES EJC 2023 

 
12 (a) and (b). The index values are recorded at the first elements of the two vectors. 
In the working-memory, the values of the dark-matter values in the second to the 
eighth elements of the two vectors are different, as shown in Figure 12 (a) and (b). 
 

 
(a) Values of the working-memory 

at position (3,2) 
(b) Values of the working-memory at 

position (3,4) 
 

Figure 12: Working-memory and recorded index value of the sensor output 
Source: own. 

 
The working-memory vectors are multiplied by the energy vector E to produce two 
action index values: 0.4 and 0.8, as shown in equation (3) and (4). The index value 
0.4 indicates that the agent should move down to the position (3, 2), and the index 
value 0.8 indicates that the agent should move up to the position (3, 4). 
 

[1.2, 1.4, 0.9, 12.0, 78.0, 58.0, 84.0, 23.0] ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.06
 0.00
0.00
0.03
0.00
−0.01
0.00
0.04 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0.4           (4) 

 

[1.2, 1.0, 0.3, 0.9, 1.2, 1.4, 0.9, 23.0] ×

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−0.06
0.00
0.00
0.03
0.00
−0.01
0.00
0.04 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0.8          (5) 

 
The agent learns to take appropriate actions at different positions to move from the 
start position to the goal positions. This is done through experience, which is a form 
of knowledge. In conclusion, knowledge can be expressed in the dark-matter matrix 
of the space matrix. This is because knowledge is a form of information, and 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
1.2 1.4 0.9 12.0 78.0 58.0 84.0 23.0 1.2 1.0 0.3 0.9 1.2 1.4 0.9 23.0
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information can be encoded in the dark-matter matrix. The dark-matter matrix is 
possible to contains all of the knowledge that has ever been known. 
 
4 The phenomenon of inapplicability of experience and the parallel 

spaces 
 
The phenomenon of inapplicability of experiences often happened when we use our 
experiences to make judgements. When we made judgements, it often happened that 
wrong judgments and decisions are made based on experiences. For example, in the 
stock trading process, we will determine the current trade based on the stock's past 
ups and downs and our trading experience. However, it always happened that when 
we decided to buy, the stock fell, or when we decided to sell, the stock rose.  

 
Figure 13 shows an example of the phenomenon of inapplicability of experience. In 
the figure, the circles are the states of an agent and arrows indicate state migration. 
As shown in Figure 13 (a), at the beginning, the agent is in state 1, then the it will 
move to the next state, state 2. Once it reaches state 3, it migrates to the next state, 
state 4. If an agent is trained and got the experienced as shown in Figure 13 (a), the 
agent will always move from the state 3 to state 4. However, if the next state of state 
3 is state 5, the phenomenon of inapplicability of experiences happens as shown in 
Figure 13 (b). 
 

 
 

(a) The next state of state 3 
should be state based on the 

experience 

  
 
 

(b) If the next state of state 3 is 
not state 4 but state 5, then the 
experience of (a) is inapplicable. 

 
Figure 13: An example of the phenomenon of inapplicability of experience 

 
When the phenomenon of inapplicability of the experience occurs, it is impossible 
to decide which state will be the next in the current state, as shown in Figure 14. In 
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Figure 14, both state 4 and state 5 are the next states after state 3. In this case, it's 
impossible to empirically decide which state will be the next state of state 3.  
 

 
 

Figure 14: Both the state 4 and the state 5 will be the next state of state 3 
Source: own. 

 
A reason for the phenomenon of inapplicability of experiences is due to the sensor's 
lack of detection accuracy. When the sensor's detection accuracy is insufficient, it is 
impossible to detect whether the current state should be state 3.1 or state 3.2, as 
shown in Figure 15 (a). Since it could only detect the current state as state 3, it is 
impossible to determine whether the next state should be state 4 or state 5. When 
the sensor has enough detection accuracy to detect whether the current state is state 
3.1 or state 3.2, it can be determined whether the next state should be state 4 or state 
5, as shown in Figure 15 (b). 
 

 
 

(a) Sensor’s lack of detection 
accuracy 

  
 

(b) The sensor has enough 
detection accuracy 

 
Figure 15: Sensor's lack of detection accuracy causes the phenomenon of inapplicability of 

experiences. 
Source: own. 
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The parallel space model proposed in this paper is a model to illustrate the 
phenomenon of inapplicability of experience. Figure 16 is an example. In figure 16, 
there are an observation space and two parallel spaces, Space1 and Space2. The 
observation space is a projection space of the parallel spaces. That is, the observation 
space is a space the sensor can detect. In Figure 16, the sensor can only detect x and 
y direction. It cannot detect z direction. 
 
If two agents are trained in Space1 and Space2, respectively, they will move from 
state 3 to state 4 and state 5, respectively. The phenomenon of inapplicability of 
experience will not happen. But in the observation space, as shown in Figure 16, the 
phenomenon of inapplicability of experience will happen. If the agent moves in 
Space2 based on the experience obtained from Space1, from state 3, it will move to 
the wrong sate, state 4, which is not existed in Space2. If the agent moves in Space1 
based on the experience obtained from Space2, from state 3, it will move to the 
wrong sate, state 5, which is not existed in Space1. From the point view in the 
observation space, from state 3, sometimes the agent moves to state 4 but sometime 
it moves state 5. In the observation space, we cannot predict what state the agent 
will move to from state 3 until it has moved. 
 

 
 

Figure 16: An example of parallel spaces 
Source: own. 

 
Suppose an agent is used to control an automated cleaning robot and it will clean 

two floors. The two floors are represented by Space1 and Space2, respectively. The 
robot's position on the floor plane is represented by x and y coordinates. The floor 
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where the robot is located is represented by z-coordinates. The robot’s sensors can 
detect positions of the robot in the x and y directions, but not the z direction. The 
positions of the robot are represented as 1, 2, 3 and 4 when the robot is on the 
Space1 floor plan. If the robot is on the Space2 floor plan, the positions of the robot 
are represented as 1, 2, 3 and 5. When the robot is on the floor plan Space1, as 
shown in Figure 17 (a), the matrix X is constructed with the elements of the first 
column are the position of the robot and the other columns are experiences and 
dark-matter.  The inverse matrix of the matrix X, X-1 is represented in Figure 17 (b). 
The elements of vector E are the next positions of the current positions. As shown 
in Fugure 17 (c), the next positions are 2, 3 and when the current positions are 1, 2 
and 3, respectively. When the robot reached to the position 4, its next position is 
also 4.  The rule vector C, shown in Figure 17 (d), is calculated multiplying X-1 by C. 
 

 
 

(a) X  (b) X-1 (c) E (d) C 
 

Figure 17: Space1 
Source: own. 

 
Figure 18 shows the matrices when the robot is on the floor plan Space2. Same as 
those of in Figure 17, the space X, its inverse matrix X-1, the next position vector E 
and the rule vector C are represented in Figure 18 (a), (b), (c) and (d), respectively. 

 

 
 

(a) X  (b) X-1 (c) E (d) C 
 

Figure 18: Space2 
Source: own. 

1.0000 94.0000 84.0000 12.0000 -0.0081 0.0020 -0.0158 0.2629 2 0.9781

2.0000 1.0000 84.0000 12.0000 0.0107 -0.0107 -0.0002 0.0028 3 -0.0002

3.0000 2.0000 1.0000 12.0000 0.0000 0.0119 -0.0122 0.0032 4 -0.0003

4.0000 3.0000 2.0000 1.0000 0.0002 0.0003 0.0883 -0.0665 4 0.0889

1.0000 94.0000 84.0000 12.0000 -0.0064 0.0016 -0.0125 0.2082 2 0.9701

2.0000 1.0000 84.0000 12.0000 0.0107 -0.0107 -0.0001 0.0022 3 -0.0003

3.0000 2.0000 1.0000 12.0000 0.0001 0.0119 -0.0122 0.0025 5 -0.0124

5.0000 3.0000 2.0000 1.0000 -0.0002 0.0004 0.0875 -0.0526 5 0.1752
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As shown in Figure 16, on both floor plans, Space1 and Space2, the agent moves in 
the same way from the position 1 to the position 3. Therefore, experiences of the 
agent at the position 3 are the same. The experience stored in the working memory 
is shown in Figure 19. It is a row vector. Its first element 3.0000 represents the 
current robot’s position, the second element 2.0000 presents its previous position 
and the third element 1.0000 is the start position of the robot. The last element 
12.0000 is the dark-matter. 

 

 
 

Figure 19: Experiences stored in the working memory 
Source: own. 

 
Although the same experience is stored the in working memory at position 3, 
different next position is obtained using different rule vectors. The rule vector C of 
Space1 and the rule vector C of Space2 are shown in Figure 17 and 18 (d), 
respectively. Multiplying the row vector stored in the working memory by the rule 
vector C respectively, the next position, 4, in the Space1, and the next position, 5, 
are calculated respectively, as shown in Figure 20 (a) and (b).  
 

 
 

(a) Calculating the next state at state 3 using the rule of Space1 
 

 
 

(b) Calculating the next state at state 3 using he rule of Space2 
 

Figure 20: Calculating the next state at state 
Source: own. 

3.0000 2.0000 1.0000 12.0000

0.9781

3.0000 2.0000 1.0000 12.0000 * -0.0002 = 4
-0.0003

0.0889

0.9701

3.0000 2.0000 1.0000 12.0000 * -0.0003 = 5
-0.0124

0.1752



382 PROCEEDINGS OF THE 33RD INTERNATIONAL CONFERENCE ON 
INFORMATION MODELLING AND KNOWLEDGE BASES EJC 2023 

 
Dimensional expansion is necessary when the phenomenon of inapplicability of 
experience happens. In the example shown in Figure 16, if only the x and y 
dimensions are used, experience is not applicable to decide which state, state 4 or 5 
will be the next state when the current state is state 3. Adding a new sensor is one 
of the methods for dimensional expansion. For example, we can add a color sensor 
to the cleaning robot to detect which floor it is on. Painting the floor of Space1 as 
yellow and the floor of Space2 as green, the output of the color sensor will be 
different on different floors. As a result, it can be found out which floor the robot 
is on and which will be the next position when the robot is at the position 3. 
 
Another way for the dimensional expansion is to use sensors which can detect the 
next possible moving position. For example, if the sensors of the cleaning robot can 
detect whether the it can move to the position 4 or 5 at the position 3, it is possible 
to decide which will be the next position when the robot reached at the position 3. 
 
Trial-and-error is also a dimensional expansion method. Suppose the robot is on the 
floor Space1. If the robot hits an obstacle as it moves from the position 3 to the next 
position, position 4, it can be found that the robot is not on the floor Space1 but on 
the floor Space2. 
 
5 Conclusion and future work 
 
In this paper, the concept of “dark-matter” and its relative concept on experience 
and knowledge are reviewed. The concept of “space” represented as a matrix 
created based on experience is also reviewed. In addition, the characteristic of the 
concept of space’s “rule” is revealed, indicating that it is useful to transform 
experiences into the output of agents according to the inputs of the agents. 
Examples are used to illustrate experience and knowledge expression. The concept 
of the working memory mechanism is reviewed which is used to recorde the agent’s 
experience and create the space matrix X. A new model “parallel spaces” is presented 
which is useful to illustrate the “phenomenon of inapplicability of experience.” This 
model revealed why mistake decisions based on experiences. The most important 
contribution of this paper is that we revealed how the “phenomenon of 
inapplicability of experience” happened and proposed solutions. In the paper, it is 
also proposed that for each space, only one rule vector is required to calucate output 
results for the given input. Therefore, only a two-dimensional matrix, of which each 
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column is a rule vector, is required for the parallel space model. Dimensional 
expansion is also required to decide which rule vector, or in other words, which 
space is used. Solutions for the dimensional expansion is presented. Adding new 
sensors and trial-and-error are the two methods for the dimensional expansion. As 
our future work, application systems based on the proposed methods and the 
mechanism will be developed. 
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