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Much knowledge about the real world is recorded in plain text, 
e.g., as messages on social networks. These messages contain, 
among others, also spatial information, and it can be distilled 
from these messages by natural language processing. The 
extracted information can be represented as a plain topological 
graph stored as tuples describing individual edges. This paper 
presents an outline of an algorithm that uses these tuples for 
creating a sketch map. 
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1 Introduction 
 
Much knowledge about the real world is recorded in plain text, e.g., messages on 
social networks. These texts contain, among other things, spatial data. Our research 
aims to extract these spatial data from plain text, compile a topological graph of the 
described area, and then visualize it as a sketch map. A sketch map is defined as ’an 
outline map drawn from observation rather than from exact survey measurements and showing only 
the main features of the area’.1 It is usually a hand drawing of an area drawn without 
scale, and it usually shows the main characteristics of an area and is not cluttered 
with unnecessary detail. The sketch map has a low degree of positional accuracy and 
therefore does not correctly represent the distances, dimensions, and shapes of 
objects. On the other hand, it can have a high degree of logical accuracy, meaning 
that the spatial relationships (topology, spatial order) between objects are correctly 
represented2. 
 
The process of creating a sketch map from plain text data consists of three steps [1]:  
 
(i) identification of spatial entities and their spatial relations by natural language 
processing, 
 
(ii) creation of a plain topological graph that captures identified spatial entities and 
their spatial relations, and (iii) conversion of this graph into a sketch map. This paper 
deals with the first results related to the third step. 
 
Converting a topological graph into a sketch map involves, in principle, the dynamic 
placing of spatial entities on the canvas in a way that all the known spatial relations 
between them are kept. Some authors dealt with this process. The authors [1] 
represented each entity as a rectangle, the size and position of which are adjusted 
stepwise to fit all spatial relations. They mainly dealt with data that describe the 
urbanized area. On the other hand, the authors [2] focused on creating a sketch map 
of an open landscape using descriptions of individual routes created by orienteers. 
The resulting sketch map captured the relative position of each spatial entity in relation 
to other entities. Their approach was based on a genetic algorithm. 

 
1 See https://www.merriam-webster.com/dictionary/sketch%20map 
2 See https://www.tariffnumber.com/info/abbreviations/12485 

https://www.merriam-webster.com/dictionary/sketch%20map
https://www.tariffnumber.com/info/abbreviations/12485
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The described approach is different. We use TIL constructions to represent captured 
spatial data and create a plain topological graph of the described area. Mathematical 
logic tools are used to process this graph to compile individual circles in the graph, 
and these circles are then concatenated to create the final sketch map. 
 
The following chapters are organized as follows. Chapter 2 provides a detailed 
description of the input data format utilized by the algorithm, along with essential 
definitions. In Chapter 3, we focus on the numbering of directions and the 
identification of the bounding circle in our dataset. The modification of data required 
for the application of the algorithm is discussed in Chapter 4, while Chapter 5 
presents a thorough description of the algorithm itself. Chapter 6 is dedicated to a 
case study that showcases the application of the algorithm. Finally, Chapter 7 
concludes the paper. 
 
2 How We Obtain Our Data 
 
We start with descriptions of the agents’ journeys, which we consider coherent both 
in space and time. 
 
In [3], we have introduced heuristic functions that manipulate these descriptions of 
journeys. These functions incrementally build a TIL construction describing spatial 
data. 
 
TIL is a typed hyperintensional λ -calculus of partial functions found by Pavel Tichý 
in the early 1970s. TIL exploits procedural semantics, i.e., natural language 
expressions encode algorithmically structured procedures as their meaning. Tichý defined 
six kinds of such meaning procedures that he coined TIL constructions as the 
centerpiece of his system; see [4]. Constructions produce extensional or intensional 
entities, or even lower-order procedures, as their products or, in well-defined cases, 
fail to produce anything. TIL has been introduced and thoroughly described in 
numerous papers, such as [4], [5], [6], [7]. 
 
A journey can be informally described as a sequence of natural language sentences, 
and each sentence contains information about part of an agent’s journey. To 
formalize the sentences, we exploit a class of motion verbs (e.g., to go, to walk, to cross, 
to turn) that bind other sentences’ constituents to them via valency. The valence of 
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the verb is described in valency frames using functors. Functors define the semantic-
syntactic relationship between the verb and its complement. Details are given, for 
example, in [8], [9], [10], [1]. 
 
For example, the sentence ”John walks swiftly 15 minutes from the gym to home.” can be 
analyzed by exploiting the valency frame of the verb to walk as follows: 
 

− ACT (who): John 
− DIR1 (from where): gym 
− DIR3 (to where): home 
− EXT (for how long/ how far): 15 minutes 
− MANN (manner): swiftly 

 
Using valency frames and the information that follows from them, we might obtain 
a formal description of one’s journey by formalizing it in the natural language 
formalized in the expressive language of TIL. 3 
 

λwλt [[′ACTwt ′John ′walk] ∧[′DIR1wt ′gym ′walk] ∧[′DIR3wt 
′home ′walk]  (1) 

∧[′EXTwt ′15 ′walk] ∧[′MANNwt ′quickly ′walk]] 

 
Types: 
 
DIR1, DIR3/(oπν)τω ; ACT/ (oιν)τω ; MANN/ (oαν)τω ; EXT/; Tom/ ι; home, school /π; 
walk/ν, where π is a type of places; ν is a type of the activity denoted by a verb. 
 
This approach is based on our previous research. In that, we introduced an algorithm 
of symbolic supervised machine learning that incrementally builds an explication of 
vague or inaccurate expressions into an adequately accurate one. For more 
information, see [11], [7]. 
  

 
3 For the sake of readability, we will use just TIL language to display examples. Our computations are 
executed over TIL-Script constructions. 



M. Mensik, P. Rapant, A. Albert: Algorithm Outline for Sketch Map Drawing from Spatial 
Data Distilled from Natural Language Descriptions 321. 

 
In this paper, we process the data obtained from the TIL constructions. These data 
contain information about the places the agents visited and the directions of 
movement between pairs of these places they took. In [3], we introduced several 
definitions that identify spatial data in TIL constructions. The following two ones 
help us identify the places visited by agents. 

 
Definition 1 (node, edge). Let V be a motion verb, let S = {B|(′DIR1 or ′DIR3) and V 
are constituents of B } and let DV = {C|V is a constituent of C }\ S then DV is 
a set of edges and S is a set of nodes. 

 
Definition 2 (place, functor, value). Let [α x v] be a node and let [β y v1] be the edge 
description. Then x is a place, α, β are functors, and y, v, v1 is values. 
 
A simple sentence might connect two places by verb valency with additional 
information. In the case of construction 1, by definition 1, [′DIR1wt ′gym ′walk] 
and [′DIR3wt ′home ′walk] are nodes. The rest, [′ACTwt ′John ′walk],[′EXTwt ′15 ′walk], 
[′MANNwt ′quickly ′walk], is an edge. By definition 2, home, and gym are places; they are 
constituents of nodes. 
 
Definition 3 (relative direction RD). Let [′MANN x v] be an edge description, and the 
value x be one of the following ′straight, ′slightly–left, ′left, ′sharp–left, ′back, ′sharp–right, 
′right and ′slightly–right. Then x is the relative direction. 
 
Using definitions 1, 2 and 3, we extract the spatial information used for map 
sketching, namely, a place that is the origin of the agent’s movement, his direction of 
movement, and the place to which the agent is heading. We obtain input data as a 
tuple [DIR1, direction, DIR3]. 
 
3 Numbering 
 
Directions are essential elements in map sketching. We encode the relative directions 
from the input data using numbers. The mapping of relative directions into natural 
numbers is shown in table 1. 
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The data in table 1 represent the basic eight directions that we obtain, i.e. Straight 
(F), slightly left (FL), left (L), sharp left (BL), back (B), sharp right (BR), right (R) 
and slightly right (FR). TIL constructions which are 
 

Table 1: TIL representations (TIL), relative directions (RD) and their numerical 
representation. 

 
TIL RD Encoding  TIL RD Encoding 

′straight F 0  ′back B 4 
′slightly–left FL 1  ′sharp–right BR 5 

′left L 2  ′right R 6 
′sharp–left BL 3  ′slightly–right FR 7 

 
Let [′MANN x v] be an edge description, and the value x be one of the following , 
′slightly–left, , ′sharp–left, ′back, ′sharp–right, ′right and ′slightly–right. Then x is the relative 
direction. 

 
Based on Table 1, we define the relative direction number (RDN): 

 
Definition 4 (relative direction number RDN). Let C be a graph circle. RDN is the value 
assigned to the edge in C based on algorithm 1. 

 
RDNs are together with the relevant relative direction visually represented in Figure 
1. 
 

 
 

Figure 1: Absolute [RDN/ASDN] and ⊕ function for computation of individual nodes 
coordinates 
Source: own. 
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In the first step of the map sketching algorithm, we assign RDNs to edges according 
to Algorithm 1. 
 

Algorithm 1. Relative direction number (RDN) assignment 
Require: ◦ - numbering function (Table 2), 

G - set of tuples [α DIR1 RD DIR3] representing the graph, 
C ⊆ G represents the circle, 
S - starting node, where RD1 = front 

 
RDN1 ← 0 
for i := 2 to |C| do 

RDNi = RDNi−1 ◦ RDi 
end for 

 
Table 2: Computation of RDN: Application of the ◦ function3 

 
◦ F FL L BL B BR R FR 
F 0 1 2 3 4 5 6 7 
0 0 1 2 3 4 5 6 7 
1 1 2 3 4 5 6 7 0 
2 2 3 4 5 6 7 0 1 
3 3 4 5 6 7 0 1 2 
4 4 5 6 7 0 1 2 3 
5 5 6 7 0 1 2 3 4 
6 6 7 0 1 2 3 4 5 
7 7 0 1 2 3 4 5 6 

 
Afterward, we identify all bounding circles defined by definition 5 in our input data. 
 
Definition 5 (bounding circle BC). Let G be a plane graph and C be a graph circle. If 
each edge of the circle C has the maximal number Cn calculated by the equation: 
 

Cn = ((RDNout − RDNin + 8) mod 8) (2) 
 

Then C is called the bounding circle.4  
 

 
4 ASDNout is ASDN of outgoing incident edge and ASDNin represents ASDN of the edge entering into the node. 
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There may be an edge in multiple circles with different RDNs. To deal with this 
situation, we need to run the rotation algorithm (see Section 4.1) to obtain ASDN 
(further definition) to unify all RNDs. 
 
For example, assume that we have a segment of a description of some bounding circle 
in which an agent went right from A to B and assume that the agent came to node A 
from relative direction 0. Our input data would be in the form [A, right, B]. Therefore, 
we can assign the edge from A to B with RND 6. 
 
4.1 Bounding Circle Adjustment 
 
Before we can join two bounding circles in their common sections, it is often 
necessary to modify them. In general, there are two situations that we need to 
consider. In the first one, the same sections of the bounding circles are described by 
agents from different directions. Therefore, it is necessary to rotate one bounding 
circle so that their common sections lead in the same direction. The second occurs 
when the distances between nodes in the common sections are unequal. In this case, 
the nodes of one bounding circle must be moved so that the distances of the nodes 
in the common sections are the same, but the directions of edges in the modified 
bounding circle remain the same. 

 
4.1 Rotation 
 
The common edges of two bounding circles can be described in different directions. 
One agent can turn on a street from the left, and another can turn on the same street 
from the right. Therefore, the unification of the RDNs of two bounding circles 
with common edges is necessary for the merging of those two bounding circles. The 
unification is done by rotation, and rotation is achieved by recalculating all RDNs 
using the equation 3.5  

 
RDNi+1 = (RDNi + 1) mod 8    (3) 

 
Definition 6 (absolute sketch direction number ASDN). Let e be an edge, then the RDN 
of the edge e is called ASDN if for every circle where the edge e is part of it, the e 
has the same RDN. 

 
5 The rotation is used as many times as it is necessary to unify the RDN. 
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Remark: If all the data are consistent, then rotation gives ASDNs. If some RDN is not 
possible to transform into ASDN, then the data are not consistent and the user can 
be notified which edge is not consistent. 
 
4.2 Node adjustment 
 
The node adjustment consists of verifying that the node is consistently positioned 
to neighboring nodes with respect to the RDN and moving in the direction of the 
RDN if necessary. If a node is moved, the consistency of neighboring nodes is 
verified. The function ⊕ is used to place the nodes in particular coordinates 
consistently. 
 
For example: If node A has coordinates [0,0] and node B is in direction 7, that is, 
edge (A, B) has RDN = 7. Then according to the function represented by figure 1, 
node B has coordinates [n,n], where n > 0. 
 
5 Algorithm for Computing Coordinates of Nodes 
 

1. Sort all bounding circles (BCs). 
2. Pick the longest one and place any node to coordinate [0,0]. 
3. Go through all the nodes in the circle and according to their ASDN 

calculate the coordinates. Check whether there are no edges 
intersections. If so, make adjustments.6  

4. Withdraw the used circle from the set. 
5. From the rest of the circles find the one with the longest common part 

with the already processed circle. If there are known coordinates, use 
them. Otherwise, recalculate and adjust all affected BCs. 7 

6. Set one common node of the new circle to already known coordinates and 
continue by step [3.] 

 

6 Case Study 
 
In our case study, we will demonstrate the outline of the algorithm functionality. 
First, we will present the input data visualized using the topological graph. We will 
identify bounding circles from input data and from this point we will visualize 

 
6 Move nodes to other coordinates in the same direction as described in chapter 4. 
7 The longest common part means BC with the most common edges. 
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processed data using graph visualization for simplicity. The next step will 
demonstrate the adjustment of bounding circles and subsequently merging them into 
a sketch map. 
 
Table 3 represents our input data. Column Places contain triplets (H, A, F) meaning 
an agent went from place H via place A to place F. Absolute and Relative columns are 
values of absolute directions, and relative direction, respectively. For example, a pair 
(ne, sw) means that an agent came to A from the northeast (place H) and continued 
to the southwest (place F). Therefore, the relative direction is straight. 
 
The absolute directions in Table 3 are generated from the map data and are 
mentioned here only to verify the correctness of our algorithm, they are not required 
for the correct functionality of our algorithm. 

 
Table 3: Input data 

 

Places Abs Rel Street  Places Abs Rel Street 
(H,A,F) ne,sw F ′Bowery  (F,A,H) sw,ne F ′Bowery 
(A,F,G) ne,sw F ′Bowery  (G,F,A) sw,ne F ′Bowery 
(F,G,E) ne,sw F ′ChathamS

Q 
 (E,G,F) sw,ne F ′Bowery 

(G,E,J) ne,sw F ′ChathamS
Q 

 (J,E,G) sw,ne F ′ChathamSQ 

(E,J,D) ne,sw F ′ChathamS
Q 

 (D,J,E) sw,ne F ′ChathamSQ 

(J,D,B) ne,nw R ′MottST  (B,D,J) nw,ne L ′ChathamSQ 
(D,B,M) se,ne R ′MottST  (M,B,D) ne,se L ′MottST 
(B,M,I) sw,se R ′BayardST  (I,M,B) se,sw L ′MottST 
(M,I,H) nw,se F ′BayardST  (H,I,M) se,nw F ′BayardST 
(I,H,A) nw,s

w 
R ′Bowery  (A,H,I) sw,n

w 
L ′BayardST 

(D,B,C) se,e BR ′PellST  (C,B,D) e,se BL ′MottST 
(B,C,O) w,e F ′PellST  (O,C,B) e,w F ′PellST 
(C,O,L) w,e F ′PellST  (L,O,C) e,w F ′PellST 
(O,L,P) w,e F ′PellST  (P,L,O) e,w F ′PellST 
(L,P,A) w,e F ′PellST  (A,P,L) e,w F ′PellST 
(C,B,M) e,ne BR ′MottST  (M,B,C) ne,e BL ′PellST 
(P,A,H) w,ne FL ′Bowery  (H,A,P) ne,w FR ′PellST 
(P,A,F) w,sw BR ′Bowery  (F,A,P) sw,w BL ′PellST 
(K,G,E) nw,s

w 
R ′ChathamS

Q 
 (E,G,K) sw,n

w 
L ′DoyerST 

(K,G,F) nw,ne L ′Bowery  (F,G,K) ne,nw R ′DoyerST 
(L,K,G) n,se FL ′DoyerST  (G,K,L) se,n FR ′DoyerST 
(O,L,K) w,s R ′DoyerST  (K,L,O) s,w L ′PellST 
(P,L,K) e,s L ′DoyerST  (K,L,P) s,e R ′PellST 
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From Table 3, we identify three bounding circles (according to definition 5), namely 
BC 1: L–O–C–B–M–I–H–A–P; BC2: L–O–C–B–D–J–E–G–K and BC 3: L–K–
G–F–A–P. 
 
BCs are presented in Table 4, where the edges of bounding circles are in the form 
of [[X,Y ], RDN]. By algorithm 1 we assign RDN to all edges in the bounding circles. 
 

Table 4: Three identified BCs. 
 

BC 1 BC 2 BC 3 
[[a,p],0] [[l,o],2] [[a,p],0] 
[[p,l],0] [[o,c],2] [[p,l],0] 
[[l,o],0] [[c,b],2] [[l,k],2] 
[[o,c],0] [[b,d],5] [[k,g],3] 
[[c,b],0] [[d,j],7] [[g,f],5] 
[[b,m],5] [[j,e],7] [[f,a],5] 
[[m,i],3] [[e,g],7]  
[[i,h],3] [[g,k],1]  
[[h,a],1] [[k,l],0]  

 
The visualization of bounding circles from Table 4 is presented in Figure 2. 
 

 
 

Figure 2: Three unrotated BCs are sketched according to Table 4 
Source: own. 

 
Because there are bounding circles that share some nodes, we can merge them. 
Firstly, we merge BCs that share the most nodes. In this case, we will merge BC 1 and 
BC 2 first (L-O-C-B are shared). To do so, we need to unify RDN of the same edges 
in both BCs. The edge L-O in BC 1 has RDN = 0 and the same edge in BC 2 has 
RDN = 2. Therefore, it is necessary to adjust (rotate) BC 2 until the RDNs are the 
same. Rotation is visualized in figure 3. 
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Figure 3: Three BCs sketched according to Table 4 
Source: own. 

 
Now, all bounding circles are oriented in the same direction. However, as seen from 
the visualizations of BC 1 and BC 2 in Figure 3, the distances between the shared 
nodes L and O are not equal. It is necessary to adjust the nodes of one of the BCs 
to match the nodes of the other BC. In figure 4, we can see that in BC 1, we have 
adjusted the coordinates of node L, so the distance from node L to node O is the 
same in both BCs. The adjustment of the coordinates of node L compromised the 
RND of the other nodes in BC 1. Therefore, the coordinates of the nodes P, A, H, 
I, and node M were adjusted, respectively, so the original RND of the edges 
remained unchanged. 
 

 
Figure 4: Node adjustment of BC 1 

Source: own. 
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Since the sequence L–O–C–B is proportionally the same in both bounding circles 1 
and 2, we can proceed to the merging process. The visualization of the merged BCs 
is presented in Figure 5. 
 

 
 

Figure 5: Merge of BC 1 and 2 
Source: own. 

 
The same process is applied in the case of merging BC 3 to the merged BC 1 and 2. 
In this case, there is no rotation or adjustments needed. Figure 6 presents the merged 
BCs 1, 2, and 3. 
 

 
Figure 6: Merge of BC 1, 2 and 3 

Source: own. 
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The resulting image represents a sketch map, where the nodes are positioned 
according to the direction in which they lie from each other. The distances between 
the nodes, as mentioned in the introduction, are not relevant, what matters is their 
relative position on the sketch map. 
 
7 Conclusion 
 
This paper presents an outline of an algorithm that accepts tuples that describe 
individual edges of a topological graph. The tuples are in the form of [from where 
(place), via what (place), to where (place), change of direction (direction)]. The output 
of the algorithm is a sketch map of the topological graph. From the input data, we 
identify bounding circles that are modified and merged into the sketch map. This 
outline of the algorithm is the first attempt to solve the problem of drawing a sketch 
map, i.e. the computation is costly and not optimized. The algorithm was 
implemented in PROLOG language. 
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