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The successful operation of industrial plants like the European 
X-Ray Free Electron Laser relies on the correct functioning of 
many dynamic systems that operate in a closed loop with 
controllers. In this paper, we present how data-based machine 
learning methods can monitor and detect disturbances of such 
dynamic systems based on the controller output signal. We 
implement four feature extrtion methods based on statistics from 
the time domain, statistics from the frequency domain, 
characteristics of spectral peaks, and the autoencoder latent 
space representation of the frequency domain. These extracted 
features require no system understanding and can easily be 
transferred to other dynamic systems. We systematically compare 
the performance of 19 state-of-the-art fault detection methods 
to decide which combination of feature extraction and fault 
detection is most appropriate to model the condition of an 
actively controlled phase-locked laser oscillator. Our 
experimental evaluation shows that especially clustering 
algorithms are very well suited for detecting disturbed system 
conditions. 
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1 Introduction and Motivation 
 
The European X-ray Free-Electron Laser (EuXFEL) [1] is a large-scale linear 
particle accelerator located in Hamburg, Germany. A 1.3 GHz Radio Frequency (RF) 
Master Oscillator (MO) is used to synchronize various components of the accelerator 
by distributing the RF signal as a timing reference source. Since this electrical 
distribution via coaxial cables is heavily influenced by the environment (e.g. humidity, 
temperature, electromagnetic fields), an optical synchronization system is installed 
that is less vulnerable to these environmental condition changes [2]. This optical 
synchronization system provides ultra-stable reference timing information to the 
accelerator components and the experimental setups with an integrated timing jitter 
in the range of a few femtoseconds. The main component of this optical 
synchronization system is a mode-locked pulsed laser oscillator that is phase-locked 
to the MO delivering an ultra-stable optical reference used to locally resynchronize 
RF sources, to lock optical laser systems, and to diagnose the arrival time of the 
electron beam along various locations for fast beam based feedbacks. Not only does 
the laser not produce a completely noise-free signal, but the emitted signal is also 
influenced by environmental disturbances (i.e., electrical, acoustical, mechanical, and 
optical) resulting in amplitude and phase fluctuations. To synchronize the laser 
oscillator to the MO, the relative phase error between a harmonic of the laser pulse 
repetition rate and the MO reference is determined and fed to a Proportional-Integral 
(PI) controller in a feedback loop. This controller acts on the laser oscillator cavity 
length to lock the laser oscillator repetition rate to the 1.3 GHz MO frequency with a 
loop bandwidth in the order of 1 kHz to 10 kHz [3]. Since the controller compensates 
for disturbances, the controller output signal is an ideal data source to detect 
potential disturbances that increase the integrated timing jitter and therefore 
decrease the synchronization performance. 
 
The aim of this work is to detect changes in the controller output signal which may 
indicate environmental disturbances, disturbances in the MO reference or 
disturbances in the internal detection chain. This goal is achieved by realizing the 
fault detection pipeline depicted in Figure 1. In the data preparation step, we extract 
the power spectral density (PSD) from the controller output signal using Welch’s 
method [4] such that the fault detection can be based on both, data from the time 
domain and data from the frequency domain. In the feature engineering step, we 



A. Grünhagen et al.: Condition Monitoring and Fault Detection of a Laser Oscillator 
Feedback System 125. 

 
implemented three different methods to extract meaningful features to fit several 
fault detection models. The phases will be explained in detail in Sections 3 and 4. 
 
In the following, we summarize related work in Section 2. Then we describe the data 
preparation and feature engineering steps in Section 3. Section 4 gives a brief 
overview on the methods selected for fault detection and Section 5 gives a detailed 
overview on the experimental validation of the proposed fault detection pipeline. We 
conclude this work highlighting specific findings and giving plans on future work in 
Section 6. 
 

 
 

Figure 1: Fault detection pipeline 
Source own. 

 
2 Related Work 
 
Despite extensive literature about fault detection and anomaly detection in the area 
of manufacturing systems [5,6,7,8,9] only a few publications address fault detection 
of dynamic systems in closed-loop control. Especially, literature on data-based fault 
detection is very rare. 
 
The authors of [10] use linear transfer functions to represent the actively controlled 
system under review and its controller. These models build the core of their fault 
diagnosis since they evaluate the discrepancy between the physical system output 
and the model output and the discrepancy between the physical controller output 
and the model output. These discrepancy measures are used as an anomaly score. 
Also, the authors of [11] use mathematical models to describe a physical system and 
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compare the model behavior with the behavior of the controlled system. Based on 
the difference between the system output and model output, faulty system 
conditions are identified. In [12], the authors address control-loop data from a real 
system. They implement different fault detection mechanisms for different fault 
types, namely an oscillation detection based on an autocorrelation function, the 
detection of sluggish-tuned loops using the so-called idle index, quantization 
detection, and a saturation detection method. Again their approach requires a deep 
system understanding. 
 
Feature extraction for different industrial sectors is addressed by many publications. 
The authors of [13,14,15] each extract different basic statistics from the time domain, 
like the mean, the maximum, the minimum, the root mean square, or the entropy. In 
[16,17], the authors analyze frequency-domain vibration signals and decide on the 
system’s health condition based on the values of domain-relevant frequency 
components. In [18] the authors calculate both, statistics from the time domain and 
statistics from the frequency domain as features for standard fault detection 
methods. 
 
The authors of [19] developed a bi-directional long short-term memory neural 
network that works directly on time series data as a fault diagnosis mechanism. They 
compare the results of the bi-directional long short-term memory neural network 
with standard models that are fitted on time and frequency-related statistics. Also, 
the authors of [20] use neural networks in the form of a relational autoencoder to 
extract high-level features. We conclude that most of the related work addressing 
dynamic systems uses control theory models and therefore requires a deep 
understanding of the control theory behind the system. Existing publications using 
data-based fault detection methods do not address controller data. 
 
3 Data Engineering 
 
In this section, we describe what kind of data is used and how the data is processed 
for building meaningful models that can describe the condition of laser oscillators. 
 
Figure 2 shows a simplified version of the laser oscillator control loop. The input e(t) 
to the PI controller is the difference between the reference signal r(t), which in the 
case of the laser oscillator is the phase of the reference signal provided by the 
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electrical timing information coming from the MO, and the phase of the signal 
generated by the laser oscillator y(t), affected by environmental disturbances d(t). The 
output u(t) of the PI controller feeding into the laser oscillator is a voltage that affects 
the cavity length of the laser oscillator and therbey adjusting the phase of the laser 
signal. This outgoing signal, also called feedback signal, contains information about 
disturbances that the PI controller is processing and is therefore a valuable source of 
information for fault detection. 
 

 
 

Figure 2: Overview of the laser oscillator control scheme 
Source: own. 

 
K(s) is the controller at state s  
G(s) is the laser oscillator at state s 
r(t) is the reference signal which the system output should follow 
y(t) is the laser oscilator output 
n(t) is the noise added by the measurement 
ym(t) is the laser oscilator output with the added measurement noise 
e(t) is the difference between ym(t) and r(t) and the input to the controller 
u(t) is the controller output 
d(t) is the disturbance acting on the laser oscillator output 
 

3.1 Time and Frequency Domain 
 
The controller’s output signal contains values in the range from 0 to 1 and is 
measured with a sampling rate of 0.32 MHz. To check what kind of disturbances 
affect the system, the operators of the optical synchronization system mainly study 
the PSD estimation. 
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Figure 3: Example for time series signal and PSD during normal operation 
Source: own. 

 
Figure 3 shows examples of the feedback signal in time domain and the respective 
PSD in the frequency domain during healthy operation. The time series signal is an 
oscillating signal containing the changes to the cavity length of the laser oscillator. 
Due to the oscillating nature of the feedback signal in the time domain, single data 
points cannot reflect the entire state of the system and therefore it is mandatory to 
look at a series of data points. For our calculations, each series contains 30000 
datapoints, which is equivalent to 0.1 s. 
 
We calculate the PSDs using Welch’s method [4]. Welch’s method divides the time 
series data into overlapping segments, computes a modified periodogram for each 
segment, and averages the periodograms to the resulting PSD. Our PSD calculation 
uses Hanning windows containing 10000 data points with an overlap of 5000 
datapoints. As a result, each PSD consists of 5000 datapoints. The shape of the PSD 
and its peaks at certain frequencies are characteristic of the current state of the 
system. For example, the increased power at 400 Hz comes from a mechanical 
disturbance of the laser oscillator and the peak at 60000 Hz originates from the piezo 
resonant frequency (see Figure 3). 
 
In either case, considering the time-domain signals or the PSD in frequency domain, 
we work with a series of data points, also called frames. Depending on the frame 
size, the fault detection algorithms may have to work with high dimensional data, 
which can lead to poor fault detection performance. For this reason, we use several 
feature engineering techniques to reduce the dimensionality of the input data. In the 
following, we describe three feature engineering techniques applied to the data. 
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3.2 Statistical Feature Extraction 
 
We use the tsfresh Python package [21] to calculate a bunch of statistics from the data 
frames. Table 1 gives an overview of the extracted statistics, a short description, and, 
if applicable, the corresponding parameter choices. This statistical feature extraction 
is applied to the time frames and to the PSDs. In both cases, the resulting dataset 
contains 34 values for the time-domain frame or PSD, respectively. 

 
Table 1: Summary of extracted statistics from data series x 

 
Statistic Description Parameter values 

maximum maximum of x - 
minimum minimum of x - 
mean mean µ of x - 
standard 
deviation standard deviation of x - 

variation 
coefficient 

standard deviation  
mean - 

variance variance σ of x - 

skewness skewness of x, determined with the adjusted Fisher-
Pearson standardized moment coefficient G1 - 

kurtosis kurtosis of x, determined with the adjusted Fisher-Pearson 
standardized moment coefficient G2 - 

root mean 
square root mean square of x - 

quantile The quantile is the value that is greater than the q-th 
proportion of the values in x 

q ∈ [0.1, 0.2, 0.3, 0.4, 
0.6, 0.7, 0.8, 0.9] 

autocorrelati
on for lags 

R(l) = 1  2 ∑n−l(xt − µ)(xt+l − µ), (n−l)σ t=1 
where n denotes the length of x l ∈ [0,1,2,3,4,5,6,7,8,9] 

linear trend 
attributes different attributes of the linear regression from x 

pvalue, rvalue, 
intercept, slope, 
stderr 

absolute 
energy sum over squared values of x - 

 
3.3 Peak Feature Extraction 
 
The peak feature extraction addresses spectral data from the frequency domain. 
Peaks within a power spectrum are special characteristics since they show how much 
the PI controller was correcting and at which frequency. This behavior provides 
insights about possible disturbances. We define a potential peak as every point in a 
series of data points which has a value higher than both of its neighboring data 
points. We filter out the irrelevant peaks, i.e. peaks due to noise, by specifying that a 
peak should have a minimum prominence of 45 dbm and a minimum value of −105 
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observed PSDs 

dbm. The prominence of a peak is defined as the vertical distance to the highest 
valley. The minimum height and the minimum prominence are specific to the 
controller output signal and learned from experimental evaluations. Based on this 
peak detection we implemented three feature extraction algorithms that identify 
peak related characteristics. 

 
3.3.1 Number of Peaks per Area 
 
We divided the frequency range in smaller regions, each covering 5000 Hz, and count 
the number of peaks. With a maximum frequency of 160000 Hz we have a total 
number of 32 features. 

 
3.3.2 Characteristics of the Most Prominent Peaks 
 
We identified the five most prominent peaks, from which we extract the prominence, 
the height, the width, and the frequency. While the prominence, the height, and the 
width are numerical values, the frequency is a categorical value because a higher 
frequency does not imply a worse or better system condition. Therefore, we again 
divided the frequency range into regions of 5000 Hz, and for each region we count 
the number of prominent peaks. 

 
3.3.3 Peak Healthyness 
 
This feature extraction method gives each extracted peaks following our set of 
constraints a score between 0 and 1 that determines whether the peak belongs to a 
healthy or unhealthy operation. For that we acquired controller output data during 
healthy operation and extracted all peaks following our criteria from the PSDS. 
Based on these peaks we assigned each frequency f a healthyness score  

healthyness( f ) = # 
# peaksat f  . The re- sulting distribution of healthy peaks is 

depicted in Figure 4. 
 
In the feature extraction step, we identify the ten most prominent peaks and for each 
peak we take the healthyness score from the previously determined distribution as a 
feature. 
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Figure 4: Probability distribution of frequencies having a healthy peak 
Source: own. 

 
3.4 Autoencoder Latent Space 
 
We use a feedforward AutoEncoder (AE) [22] trained on PSDs from healthy and 
disturbed operations. Using the AE’s encoder, we transform a complete PSD into 
the AE latent space vector, which is used as a feature vector for fault detection 
methods. The basic structure of the AE is shown in Table 2. The AE consists only of 
fully connected layers and each layer, except for the output layer, is followed by the 
leakyRELU activation function. 

 
Table 2: Overview Autoencoder 

 

Layer input 1. 
encoding 

2. 
encoding 

latent 
space 

1. 
decoding 

2. 
decoding output 

Dimension 5000 500 100 10 100 500 5000 

 
4 Selected Models 
 
In this section, we describe what kind of algorithms we use to model the behavior of 
the laser oscillator based on the controller’s output signal. The purpose of these 
algorithms is to automatically decide whether the laser oscillator is currently 
disturbed or not. We divided the fault detection algorithms into the classes: 
clustering algorithms, outlier detection algorithms, and other algorithms that are 
neither based on clustering nor outlier detection. 
  



132 PROCEEDINGS OF THE 33RD INTERNATIONAL CONFERENCE ON 
INFORMATION MODELLING AND KNOWLEDGE BASES EJC 2023 

 
4.1 Clustering Algorithms 
 
Clustering algorithms aim to group data samples into classes with similar elements. 
Clustering requires the concept of a metric, which may differ from algorithm to 
algorithm [23]. For the purpose of fault detection, we assume that similar data 
samples belong to the same class. We use the following clustering algorithms: 

 

− Clustering based local outlier factor (CBLOF) [24] 
− K-means clustering [25] 
− Balanced iterative reducing and clustering using hierarchies (BIRCH) [26] 
− Gaussian mixture model (GMM) [27] 

 

4.2 Outlier Detection Algorithms 
 
Outlier detection algorithms aim to identify rare items or events that differ 
significantly from the rest of the dataset [28]. Assuming that faulty data samples 
can be classified as outliers compared to healthy data samples, we use the following 
outlier detection algorithms: 

 

− Local outlier factor (LOF) [29] 
− Angle-based outlier detection (ABOD) [30] 
− Connectivity-based outlier detection (COF) [31] 
− Isolation-based outlier detection (IOF) [32] 
− K-nearest neighbor detection (KNN) [33] 
− Copula-based outlier detector (COPOD) [34] 
− Empirical cumulative distribution outlier detection (ECOD) [35] 
− Linear model deviation-based outlier detection (LMDD) [36] 
− One-class support vector machine (OCSVM) [37] 
− Stochastic outlier selection (SOS) [38] 

 

4.3 Other algorithms 
 
In addition to the clustering algorithms and outlier detection algorithms, we use the 
following algorithms to detect a disturbed system: 

 
− Kernel density estimation (KDE) [39] 
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− Kernel principal component analysis (KPCA) [40] 
− Minimum covariance determinant (MCD) [41] 
− Principal component analysis (PCA) [42] 
− Sampling [43] 

 
In addition to the algorithms fitted on the feature dataset, we trained an AE with the 
structure shown in Figure 2 on PSDs belonging to healthy system operation. 
Therefore, the AE only learns to reconstruct PSDs belonging to a healthy operation. 
The AE fault detector uses a threshold on the reconstruction loss, which is realized 
using the mean squared error (MSE) between the input PSD and the reconstructed 
PSD at the output layer. The fault detection is based on the assumption that PSDs 
belonging to healthy system operation have a low MSE, while PSDs belonging to 
poor system conditions have a high MSE. 
 
5 Experimental Evaluation 
 
The experiments were performed using the Python libraries tsfresh [21], PyOD [44], 
and Scikit-learn [45]. The runtimes were measured on a Windows 11 operating 
system running Python 3.9 with a processor Intel(R) Core(TM) i7-1185G7 @ 3.00 
GHz and 16 GB of RAM. 

 
5.1 Dataset Summary 
 
To evaluate the feature extraction technique and fault detection algorithms we 
generated disturbances at different frequencies by playing tones of single 
frequencies. The tones were played through a surface speaker mounted directly on 
the optical table next to the laser oscillator one after the other at the same power. 
For evaluating the combination of feature extraction we recorded fitting data and 
validation data under the same conditions as summarized in Table 3. From both, the 
time frames and the PSDs, we extracted the features as described in Section 3 and 
normalized the extracted features using Z-normalization [46]. The number of 
features per data frame depends on the feature extraction method and is shown in 
Table 4. The peak characteristic feature extraction leads to the highest dimension and 
the AE latent space feature extractor to the lowest. 
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Figure 5 shows the four fitting data sets of the four different feature extraction 
methods (AE latent space, statistics from the time domain, statistics from PSDs, 
and peak features). 
 

Table 3: Summary of fitting dataset and validation dataset 
 

Condition Fitting data Validation data 
# Frames Portion # Frames Portion 

no disturbance 4208 60.49 % 231 7.97 % 
0.5 kHz disturbance 305 4.38 % 296 8.97 % 
1.0 kHz disturbance 305 4.38 % 296 8.97 % 
1.5 kHz disturbance 306 4.4 % 296 10.22 % 
2.0 kHz disturbance 305 4.38 % 296 10.22 % 
2.5 kHz disturbance 305 4.38 % 296 10.22 % 
3.0 kHz disturbance 305 4.38 % 231 10.25 % 
3.5 kHz disturbance 306 4.4 % 296 10.22 % 
4.0 kHz disturbance 306 4.4 % 296 10.22 % 
4.5 kHz disturbance 306 4.4 % 296 10.22 % 

 

Table 4: Numer of features per dataframe 
 

Feature Extraction 
Method 

statistics 
(time) 

statistics 
(PSD) 

Peak 
characteristics 

(PSD) 

AE latent 
space 

Number of 
extracted features 34 34 94 10 

 

 
 

Figure 5: Feature vizualization by t-SNE 
Source: own. 
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To represent the multidimensional feature datasets in a two-dimensional space, we 
used t-distributed Stochastic Neighbor Embedding (t-SNE) [47]. The visualization of 
the data is intended to provide a basis for evaluating the algorithms in Section 5.4. 
 
It can be seen that the data points recorded under the same disturbances or no 
disturbance are clustered for all feature extraction methods. However, the clusters 
on the AE latent space dataset are significantly closer, sometimes even with an 
overlap, than the clusters on the other feature datasets. Since we are analyzing fault 
detection methods in this work, it is noteworthy that there is only an overlap between 
disturbed data points and undisturbed data points on the AE latent space dataset. 
In particular, the data from the 1.5 kHz disturbance have a strong overlap with the 
undisturbed data points. Using statistics from time series, statistics from PSDs, or 
peak features there are only overlapping clusters between data points of different 
disturbance types. Furthermore, it is noticeable that the undisturbed datapoints 
based on time statistics form two separate clusters rather than one cluster. 
 
5.2 Algorithms Parameters 
 
Most of the algorithms selected contain controllable parameters that influence 
different aspects of the algorithm. A summary of all the parameters used is given in 
Tables 5, 6, 7. 

 
Table 5: Clustering algorithms’ parameters 

 
Algorithm Parameter Values 
BIRCH threshold 0.2, 0.4, ..., 3.8, 4.0 

branching factor 20, 40, 60, 80, 100 
 
CBLOF 

# clusters 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 
alpha 0.5, 0.6, 0.7, 0.9 
beta 1.5, 2, 5, 7, 10, 15 

GMM # components 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 
K-means # clusters 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 

 
Table 6: Outlier detection algorithms’ parameters 

 
Algorithm Parameter Values 
ABOD # nearest neighbors 5, 10, ..., 95, 100 
COF # nearest neighbors 5, 10, ..., 95, 100 
COPOD - - 
ECOD - - 
IOF - - 
KNN # nearest neighbors 5, 10, ..., 95, 100 
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Algorithm Parameter Values 
LMDD - - 
LOF # nearest neighbors 5, 10, ..., 95, 100 
OCSVM - - 
SOS perplexity 5, 10, ..., 95, 100 

 
Table 7: Other algorithms’ parameters 

 
Algorithm Parameter Values 
KDE bandwith 0.4, 0.6, ..., 2.0, 2.2 
KPCA # components 1, 2, ..., 10 
MCD - - 
PCA # components 1, 2, ..., 10 
Sampling - - 

 
5.3 Performance Criteria 
 
We repeated the experiment under similar environmental conditions to verify the 
quality of the algorithms (see Table 3). The validation data consists of 2896 data 
frames, each covering 0.1 s. Therefore, a live fault detection requires a maximum 
inference duration of 289.6 s on the whole validation dataset. To evaluate the 
system state at each point in time, it is necessary that the fault detection algorithms 
also operate at such a high speed. We evaluate this criterion by measuring the time it 
takes each algorithm to classify the validation data samples and determine the 
inference speed by dividing the measured duration by the number of frames. 
Additionally, we measured the time each algorithm needs to be fitted. 
 
To evaluate the feature extraction methods and algorithms qualitatively we are using 
the area under the receiver operating characteristic (AUROC) [48] as a performance 
metric. The AUROC score is defined as the area underneath the ROC curve and 
ranges between 0 and 1, where a score of 1 implies a perfect predictor, an AUROC 
score of 0 implies that the predictor gives always wrong predictions, and an AUROC 
score of 0.5 indicates that the predictor makes random guesses. We calculate the 
AUROC scores of both, the fitting dataset and the validation dataset. 
 
The AUROC metric does not provide information on which of the disturbances are 
classified correctly and which of them are misclassified. Therefore, we also calculate 
the classification accuracy TruePredictions(condition) for each condition, either a 
disturbed frequency or undisturbed respectively. 
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We repeated the process of fitting and evaluation ten times with different random 
seeds and determined the mean value for each metric. In summary, we determined 
the mean values of the following metrics for each combination of feature extraction 
method and fault detection algorithm: 
 

− Fitting duration (fitting dataset) 
− Inference duration (validation dataset) 
− AUROC score (fitting dataset) 
− AUROC score (validation dataset) 
− Condition specific accuracies (validation dataset) 

 
5.4 Results 
 
In this section, we describe the results of the algorithms applied to the experimental 
data. Combining the feature extraction methods and the different parameter choices, 
we built 3084 models on the different feature datasets (AE latent space, statistics from 
time series signals, statistics from PSDs, peak characteristics). 
 
The fitting durations of all algorithms related to the feature extraction method and 
the choice of parameters are depicted in Figure 6. The fitting durations only include 
the fitting of the algorithms and not the transformation of the recorded data into the 
features. All clustering algorithms require very little time to be fitted for all feature 
extraction methods and all parameter choices. Among the outlier detection 
algorithms, the LMDD algorithm and ABOD have by far the longest fitting 
durations. Among the other algorithms, KPCA needs the longest time to be fitted 
for all feature extraction methods. It is noticeable that KPCA using the AE latent 
space features takes more than 100 seconds longer to be fitted than the other feature 
extraction methods. 
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Figure 6: Fitting durations 
Source: own. 

 
Figure 7 shows the duration needed by the algorithms to classify the validation data 
samples. The inference duration consists of both the feature extraction part and the 
algorithmic classification part. The feature extraction methods are based on very 
efficient signal processing algorithms, such as fast Fourier transforms or basic 
statistical calculations. Therefore, feature extraction has a small impact on the overall 
inference duration. The maximum allowed inference duration is 289.6 s. This 
criterion is fulfilled by all algorithms for all feature extraction methods and all 
parameter settings. All clustering algorithms perform particularly well, followed by 
the other algorithms and the outlier detection algorithms. For all feature extraction 
methods, ABOD has the worst inference duration when many nearest neighbors are 
used. The LMDD algorithm has the second highest inference duration. 
 
In the following, we describe the ability of the algorithms to classify disturbed data 
samples as disturbed and non disturbed data samples as normal. For both the fitting 
dataset and the validation dataset, we manually assigned a label to each data sample, 
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either undisturbed or disturbed. The AUROC score is based on the manually assigned 
reference and the labels assigned by the fault detection algorithms. 

 

 
 

Figure 7: Inference durations 
Source: own. 

 
5.4.1 Clustering Algorithms 
 
The AUROC results and the condition specific accuracies of the clustering 
algorithms with respect to the feature extraction methods are depicted in Figure 8. 
 
In general, features from the PSDs (statistics, and peak features) form a good basis 
for clustering algorithms to reliably identify disturbed laser oscillator feedback 
systems, since all clustering algorithms except the GMM achieve very good AUROC 
scores and high accuracies for all conditions. The GMM algorithm does not achieve 
satisfactory results for any combination of parameter setting and feature extraction 
method. It is noticeable that the condition specific accuracies obtained by GMM 
show that the GMM algorithm classifies all data samples as disturbed. From the 
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results of the CBLOF algorithm, it can be seen that the fault detection quality is 
strongly dependent on the choice of input parameter. At an alpha of 0.5, the best 
AUROC scores of 1.0 are obtained on the fitting and validation dataset regardless of 
the choice of cluster number and beta for all feature extraction methods. Birch, and 
the K-Means algorithms achieve perfect results on the validation dataset for features 
from PSDs and the correct parameter choice. 
 
The very good results of the clustering algorithms can be described with the help of 
the structure of the examined data. As the t-SNE embeddings of the data set already 
indicate (see Figure 5), the data measured under similar conditions are positioned in 
cluster-like structures, especially using the PSD statistics and the peak features. 

 

 
Figure 8: Results of clustering algorithms 

Source: own. 
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5.4.2 Outlier Detection Algorithms 
 
The AUROC scores and the condition-dependent accuracies of the outlier detection 
algorithms are shown in Figure 9. 
 
In general, it can be seen that no combination of outlier detection algorithm and 
feature extraction method achieves a perfect AUROC score of 1.0. It is also 
noticeable that the choice of parameters for the outlier detection algorithms has no 
great influence on the result, because the maximum AUROC scores hardly differ 
from the minimum AUROC scores per algorithm. In contrast to the clustering 
algorithms, the outlier detection algorithms achieve very poor AUROC scores on 
the feature datasets that use PSDs as a basis. Among all outlier detection algorithms, 
KNN achieves the highest AUROC score of 0.9148 using the AE latent space as 
features. The corresponding condition specific conditions show that the data 
recorded under no excitation are correctly classified with an accuracy of 0.8788. The 
accuracies that KNN detects an excited system from the controller data are all higher 
than 0.9. 

 
Figure 9: Results of outlier detection algorithms 

Source: own. 
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5.4.3 Other Algorithms 
 
The AUROC scores and the condition-specific accuracies of the other algorithms 
depending on the feature extraction methods used are shown in Figure 10. 
 
It is noticeable that all algorithms that were fitted with PSD statistics are predictors 
that classify all validation data as disturbed. This implies that the algorithms cannot 
generalize the error detection learned on the PSD statistics fitting dataset because 
not all data samples from the fitting data set are classified as disturbed. Furthermore, 
it can be seen that similar to the outlier detection algorithms, none of the other 
algorithms achieve a perfect AUROC score of 1.0 on the validation dataset. 
 

 
Figure 10: Results of other algorithms 

Source: own. 
 
For all feature extraction methods KPCA achieves the highest AUROC scores, with 
the highest value of 0.94 being achieved with the AE latent space as the feature. The 
number of principal components leading to the highest AUROC scores for the 
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respective feature extraction methods differ. Therefore, there exists no correct 
choice of principal components such that KPCA can describe the error detection 
behavior for all feature datasets. The second highest AUROC score on the validation 
dataset is also achieved on the AE latent space by the MCD algorithm. 
 
In addition, the results of the AE trained on non-disturbed PSDs are summarized in 
Table 8. The AE fault detector achieves perfect AUROC scores of 1.0 on both the 
fitting and validation datasets. 
 

Table 8: Autoencoder fault detector results 
 

Training duration Inference duration AUROC (fitting) AUROC (validation) 
220.8 s 0.133498 s 1.0 1.0 

 
5.4.4 Summary 
 
Table 9 gives an overview of the algorithms and their parameter configuration that 
achieve an AUROC score higher than 0.95 on the validation dataset. If an algorithm 
achieves such an AUROC score with multiple parameter combinations, we selected 
the parameter combination that gives the best AUROC score and the lowest 
inference duration. 
 
The AE works directly on the PSDs. Therefore, no prior feature extraction is 
required. Among the algorithms that require prior feature extraction, only the 
clustering algorithms K-means clustering and CBLOF achieve very good AUROC 
scores on all validation datasets. Additionally, BIRCH achieves very good AUROC 
scores on the validation dataset using either the AE latent space, PSD statistics, or 
peak characteristics. Furthermore, it stands out that no algorithm which is fitted with 
the AE latent space achieves a perfect AUROC score. The best algorithms that do 
not belong to the clustering algorithms are KPCA having an AUROC score of 
0.9368 and KDE with an AUROC score of 0.9436, both using the AE latent space 
as feature. 
 
As described in Section 5.1, the feature datasets each form clusters according to the 
type of disturbance, which explains why clustering algorithms in particular work so 
well. The overlap of disturbed and undisturbed data on the AE latent space dataset 
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(see Figure 5) also constitutes for the fact that none of the selected algorithms 
achieves a perfect AUROC score when using the AE latent space as feature input. 
 

Table 9: Best fault detection results on the validation dataset 
 

Featue Algoritm Parameter AURC Inference duration in s 
- AE - 1.0 0.1335 

AE latent space 

BIRCH 
threshold: 2.4 

0.9726 0.007 branching factor: 
80 

K-means # clusters: 4 0.9559 0.0014 

CBLOF 
# clusters: 10 

0.9667 0.0018 alpha: 0.5 
beta: 5 

statistics (time) CBLOF 
# clusters: 9 

1.0 0.002 alpha: 0.6 
beta: 1.5 

K-means # clusters: 4 1.0 0.002 

statistics (PSD) 

BIRCH 
threshold: 3.8 

1.0 0.0019 branching factor: 
20 

CBLOF 
# clusters: 2 

1.0 0.0018 alpha: 0.5 
beta: 1.5 

K-means # clusters: 5 1.0 0.0019 

peak characteristics 

BIRCH 
threshold: 4.0 

1.0 0.1606 branching factor: 
40 

CBLOF 
# clusters: 2 

1.0 0.0018 alpha: 0.7 
beta: 1.5 

K-means # clusters: 6 1.0 0.0036 

 
6 Conclusion 
 
In this paper, we investigated the ability of data-based fault detection algorithms in 
combination with four feature extraction methods to model the condition of an 
actively controlled phase-locked laser oscillator and determined the best methods 
and parameters for detecting disturbances that affect the healthy operation of the 
synchronization system. The fault detection methods were validated experimentally 
by disturbing the system acoustically. We evaluated the classification performance for 
each combination of feature extraction, fault detection method, and algorithmic-
specific parameters using the fitting duration, inference duration, and AUROC 
scores as quality measures. 
 



A. Grünhagen et al.: Condition Monitoring and Fault Detection of a Laser Oscillator 
Feedback System 145. 

 
From the classification results, we can conclude that very good prediction results can 
be obtained without deep system expertise. Comparing the prediction results of the 
different types of algorithms, we notice that clustering algorithms achieve the best 
results regardless of the feature extraction methods. Moreover, there is no 
combination of an algorithm not belonging to the clustering algorithms and a feature 
extraction method that achieves a perfect AUROC score on the validation dataset. 
Additionally, there is no combination of a fault detection algorithm and the AE latent 
space as a feature extractor that achieves a perfect AUROC score on the validation 
dataset. With an AUROC score of 1.0 and a inference duration of 0.0018 s when 
applied to the validation dataset, the combination of CBLOF and peak 
characteristics or the combination of CBLOF and statistics from PSDS achieve the 
best results. However, we would like to draw particular attention to the performance 
of the AE fault detector, as it does not require prior feature extraction and can thus 
be applied directly to any dynamic system controlled in a closed loop. In addition, 
the inference time for the validation dataset is below the maximum acceptable 
threshold for real-time fault detection. 
 
The experimental evaluation used in this work is based on the excitation of different 
frequencies at the same level by a surface loudspeaker. For future work, we plan to 
investigate what minimum interference intensity must be present for a fault detection 
algorithm to be effective and to extend the fault detection mechanism by specifying 
the exact type of fault, rather than just a binary classification of healthy or disturbed. 
We also want to extend the fault detection mechanism to a predictive maintenance 
module that can predict when the next faulty operating point will occur. 
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