
 

 

DOI https://doi.org/10.18690/um.feri.5.2023.2 
ISBN 978-961-286-745-4 

 

 
 

TOWARDS A DEFINITION OF A 

RESPONSIBLE ARTIFICIAL 

INTELLIGENCE 

Keywords: 
structured 
literature review, 
artificial 
intelligence, 
responsible AI, 
privacy-preserving 
AI,  
explainable AI, 
ethical AI, 
trustworthy AI 

 
SABRINA GÖLLNER,1 MARINA TROPMANN-FRICK,1 
BOŠTJAN BRUMEN2 
1 Hamburg University of Applied Sciences, Department of Computer Science, 
Hamburg, Germany. 
sabrina.goellner@haw-hamburg.de, marina.tropmann-frick@haw-hamburg.de 
2 University of Maribor, Faculty of Electrical Engineering and Computer Science, 
Maribor, Slovenia.  
bostjan.brumen@um.si 
 
Our research aims to contribute to the concept of responsible 
artificial intelligence (AI), a topic under significant discussion in 
EU politics, further emphasized by recent EU publications. 
Primarily, AI, while beneficial, can be a potential weapon, 
necessitating responsible use and prevention against misuse or 
misalignment. In recognizing the critical role of AI research in 
aiding legislators and machine learning practitioners, our work 
aims to help prepare for future AI advancements. To the best of 
our knowledge, we establish the first unified definition of 
responsible AI. As part of a structured literature review, we 
clarify the current state of the art in the context of responsible 
AI. Based on the knowledge of the analysis part we also have 
discussed an approach for developing a future framework for 
responsible AI. The results demonstrate that responsible AI 
should be a human-centered approach, encompassing ethical 
considerations, explainability of models, privacy, security, and 
trust. 
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1 Introduction 
 
Over the years, significant research has been conducted to enhance Artificial 
Intelligence (AI), which is already widely used in various life and industry sectors. In 
2020 and 2021, the European Commission published a series of papers [1,2,3] 
outlining their strategy for AI. The white paper "A European Approach to 
Excellence and Trust" from 2020 outlines political strategies to encourage the use 
of AI while reducing the potential risks associated with certain applications of this 
technology. This proposal aims to establish a legal framework for trustworthy AI in 
Europe so that the second objective of building an ecosystem for trust can be 
implemented. The framework should fully respect the values and rights of EU 
citizens. It is repeatedly emphasized that AI should be human-centered and that 
European values have a high priority. The papers also address challenging issues 
such as ethical issues, privacy, explainability, safety, and sustainability. It is pointed 
out how important security is in the context of AI, and they also present a risk 
framework in five risk groups for AI systems in short form. The document authors 
recognize that ”[EU] Member States are pointing at the current absence of a common European 
framework.” This indicates that a common EU framework is missing, and it is an 
important political issue. 

 
The document ”Communication on Fostering a European Approach to AI“ 
represents a plan of the EU Commission, where numerous efforts are presented that 
are intended to advance AI in the EU or have already been undertaken. In the 
beginning, it is stated that the EU wants to promote the development of ”human-
centric, sustainable, secure, inclusive and trustworthy artificial intelligence (AI) [which] depends on 
the ability of the European Union“. 
 
The Commission’s goal is to ensure that excellence in the field of AI is promoted. 
Collaborations with stakeholders, building research capacity, environment for 
developers, and funding opportunities are talked about as well as bringing AI into 
the play for climate and environment. Part of the discussion on trust led to the 
question of how to create innovation. It was pointed out that the EU approach 
should be ”human-centered, risk-based, proportionate, and dynamic.“ The plan also says they 
want to develop ”cutting-edge, ethical and secure AI, (and) promoting a human-centric approach 
in the global context“. At the end of the document, there is an important statement: ”The 
revised plan, therefore, provides a valuable opportunity to strengthen competitiveness, the capacity for 
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innovation, and the responsible use of AI in the EU“. The EC has also published the 
”Proposal for a Regulation laying down harmonized rules on artificial intelligence“ 
which contains, for example, a list of prohibited AI practices and specific regulations 
for AI systems that pose a high risk to health and safety as well as some transparency 
requirements. 
 
It becomes noticeable that terms in the mentioned political documents that are used 
to describe the goal of trustworthy AI, however, keep changing (are inconsistent), 
and remain largely undefined. The documents all reflect, on the one hand, the 
benefits and on the other hand the risks of AI from a political perspective. It 
becomes clear that AI can improve our lives, solves problems in many ways, and is 
bringing added value but also can be a deadly weapon. But on the other hand, the 
papers do not exactly define what trustworthy AI even means in concrete terms. 
Topics and subtopics are somehow addressed but there is no clear definition of 
(excellence and) trustworthiness, but more indirectly mentions some aspects which 
are important, e.g., ethical values, transparency, risks for safety as well as 
sustainability goals. 
 
Furthermore, we believe that trust as a goal (as defined vaguely in the documents) is 
also not sufficient to deploy AI. Rather, we need approaches for ”responsible AI”, 
which reflect the EU values. This should of course also be trustworthy, but that 
concept covers just a part of the responsibility. Therefore, in this paper, our goal is to 
find out the state-of-the-art from the scientific perspective and whether there is a 
general definition for ”trustworthy AI”. Furthermore, we want to clarify whether or 
not there is a definition for ”responsible AI”. The latter should actually be at the core 
of the political focus if we want to go towards ”excellence“ in AI. 
 
As a step towards responsible AI, we conduct a structured literature review that aims 
to provide a clear answer to what it means to develop responsible AI. 
 
During our initial analysis, we found that there is a lot of inconsistency in the 
terminology overall, not only in the political texts. There is also a lot of overlap in 
the definitions and principles for responsible AI. In addition, similar/content-wise 
similar expressions exist that further complicate the understanding of responsible 
AI as a whole. There are already many approaches in the analyzed fields, namely 
trustworthy, ethical, explainable, privacy-preserving, and secure AI, but there are still 
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many open problems that need to be addressed in the future. Best to our knowledge 
this is the first detailed and structured review regarding responsible AI. 
 
The paper is organized as follows: First, we explain our research methodology, 
including our research aims and objectives, and the databases and research queries 
we used for searching. Next, we analyze the existing definitions for responsible AI 
in the literature, along with related expressions and their definitions. We compare 
these definitions to determine the essence of responsible AI. We then summarize 
our key findings within the previously defined scopes of responsible AI, conducting 
both qualitative and quantitative analyses. In the discussion section, we outline the 
key points and pillars for developing responsible AI. Finally, we conclude by 
mentioning the limitations of our work and discussing future research. 
 
2 Research Methodology 
 
In order to address the research questions, we conducted a systematic literature 
review (SLR) using the guidelines outlined in [4]. The process of performing the 
structured literature review for our study is explained in detail in the following 
subsections. 
 
2.1 Research Aims and Objectives 
 
Our research focuses on exploring the different aspects of "Responsible AI" 
including privacy, explainability, trust, and ethics. Our objectives are to define the 
term "responsible AI", examine the current state of research in this field, and 
identify areas that require further investigation. Ultimately, we aim to uncover any 
challenges, opportunities, and open problems that exist in this area. 
 
In summary, we provide the following contributions: 
 

1. Specify a concise Definition of ”Responsible AI” 
2. Analyze the state of the art in the field of ”Responsible AI” 
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2.2 Research Questions Formulation 
 
Based on the aims of the research, we state the following research questions: 

 
− RQ1: What is a general or agreed on definition of ”Responsible AI” and 

what are the associated terms defining it? 
− RQ2: What does ”Responsible AI” encompass? 

 
2.3 Databases 
 
In order to get the best results when searching for the relevant studies, we used the 
indexing data sources. These sources enabled us a wide search of publications that 
would otherwise be overlooked. The following databases were searched: 

 
− ACM Digital Library (ACM) 
− IEEE Explore (IEEE) 
− SpringerLink (SL) 
− Elsevier ScienceDirect (SD) 

 
The reason for selecting these databases was to limit our search to peer-reviewed 
research papers only. 
2.4 Studies Selection 
 
To search for documents, the following search query was used in the different 
databases: 

 
("Artificial Intelligence" OR "Machine Learning" OR "Deep 
Learning" 
OR "Neural Network" OR "AI" OR "ML") AND (Ethic* OR Explain* 
OR Trust*) AND (Privacy*). 

 
Considering that inconsistent terminology is used for ”Artificial Intelligence”, the 
terms ”Machine Learning”, ”Deep Learning” and ”Neural Network” were added, 
which should be considered synonyms. Because there are already many papers using 
the abbreviations AI and ML, these were included to the set of synonyms. 
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The phrases ”Ethic”, ”Trust” and ”Explain” as well as ”Privacy” was included with 
an asterisk (*), for all combinations of the terms following the asterisk, are included 
in the results (e.g. explain*ability). The search strings were combined using the 
Boolean operator OR for inclusiveness and the operator AND for the intersection 
of all sets of search strings. These sets of search strings were put within parentheses. 
 
To ensure that all state-of-the-art papers were included, the search was limited to a 
three-year period from 2020 to 2022, with the search conducted in December 2022. 
The search results were sorted by relevance to eliminate non-relevant papers, as 
some search engines lack advanced options. During the screening stage, the authors 
followed specific guidelines to exclude irrelevant papers. Papers did not pass the 
screening if: 
 

1. They mention AI in the context of cyber-security, embedded systems, 
robotics, autonomous driving or internet of things, or alike. 

2. They are not related to the defined terms of responsible AI. 
3. They belong to general AI studies. 
4. They only consist of an abstract. 
5. They are published as posters. 

 
These defined guidelines were used to greatly decrease the number of full-text papers 
to be evaluated in subsequent stages, allowing the examiners to focus only on 
potentially relevant papers. 
 
The initial search produced 10.313 papers of which 4.121 were retrieved from ACM, 
1064 from IEEE, 1.487 from Elsevier Science Direct, and 3.641 from Springer Link. 
The screening using the title, abstract, and keywords removed 6.507 papers. During 
the check of the remaining papers for eligibility, we excluded 77 irrelevant studies 
and 9 inaccessible papers. We ended up with 254 papers that we included for the 
qualitative and quantitative analysis (see Figure 1). 
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Figure 1: Structured review flow chart: the Preferred Reporting Items for Systematic Reviews 
and Meta– Analyses (PRISMA) flow chart detailing the records identified and screened, the 
number of full-text articles retrieved and assessed for eligibility, and the number of studies 

included in the review. 
Source: own. 

3 Analysis 
 
In this section, we analyze existing definitions of “responsible AI” in literature. We 
also examine content-wise-similar expressions and their definitions, comparing and 
searching for any overlaps. As a result, we extract the essence of the analysis to 
formulate our definition of responsible AI. 

 
3.1 Responsible AI 
 
In this subsection, we answer the first research question: What is a general or agreed 
on definition of ’Responsible AI’, and what are the associated terms defining it? 
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3.1.1 Terms defining Responsible AI 
 
Upon careful examination of 254 papers, it was found that a mere 5 of them 
specifically address the definition of "responsible" AI. The papers use the following 
terms in connection with ’responsible AI’: 

 
− Fairness, Privacy, Accountability, Transparency and Soundness [5] 
− Fairness, Privacy, Accountability, Transparency, Ethics, Security & Safety 

[6] 
− Fairness, Privacy, Accountability, Transparency, Explainability [7] 
− Fairness, Accountability, Transparency, and Explainability [8] 
− Fairness, Privacy, Sustainability, Inclusiveness, Safety, Social Good, Dignity, 

Performance, Accountability, Transparency, Human Autonomy, Solidarity 
[9] 

 
However, after reading all 254 analyzed papers we strongly believe, that the terms 
that are included in those definitions can be mostly treated as subterms or ambiguous 
terms. 
 

− ’Fairness’[5] and ’Accountability’ [5,6,7], as well as the terms ’Inclusiveness, 
Sustainability, Social Good, Dignity, Human Autonomy, Solidarity’ [9] 
according to our definition, are subterms of Ethics. 

− ’Soundness’[5], interpreted as ’Reliability’ or ’Stability’, is included within 
Security and Safety. 

− Transparency [5,6,7] is often used as a synonym for explainability in the 
whole literature. 

 
Therefore we summarize these terms of the above definitions to: ”Ethics, 
Trustworthiness, Security, Privacy, and Explainability”. However, only the terms 
alone are not enough to get a picture of responsible AI. Therefore, we will analyze 
and discuss what the meaning of the five terms ”Ethics, Trustworthiness, Security, 
Privacy, and Explainability” in the context of AI is, and how they depend on each 
other. During the analysis, we found also content-wise similar expressions to the 
concept of ”responsible AI” which we want to include in the findings. This topic will 
be dealt with in the next section. 
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3.1.2 Content-wise similar expressions for Responsible AI 
 
Our analysis uncovered that the terms "Responsible AI," "Ethical AI," and 
"Trustworthy AI" are frequently utilized interchangeably. Furthermore, we 
determined that "Human-Centered AI" holds a similar significance. 
 
Therefore, we treat the terms: 
 

− ”Trustworthy AI”, found in [10,11,12,13,14,15,16], and [17] as cited in [18] 
− ”Ethical AI”, found in [19,20,21,22,23], and [24] as cited in [25] 
− ”Human-Centered AI”, found in [26] as cited in [23] 

 
as the content-wise similar expressions for ”Responsible AI” hereinafter. 
 
3.2 Collection of definitions 
 
The resulting collection of definitions from ’responsible AI’ and ’content-wise 
similar expressions for responsible AI’ from the papers results in the following Venn 
diagram: 
 
We compared the definitions in the Venn diagram and determine the following 
findings: 
 

− From all four sets there is an overlap of 24% of the terms: Explainability, 
Safety, Fairness, Accountability, Ethics, Security Privacy, Transparency. 

− The terms occurring in the set of the definition for ’trust’ only occurred in 
these, which is why this makes up the second largest set in the diagram. This 
is since most of the terms actually come from definitions for trustworthy 
AI. 

− There are also 6 null sets. 
 
To tie in with the summary from the previous section, it should be pointed out once 
again that the terms ’Explainability, Safety, Fairness, Accountability, Ethics, Security 
Privacy, Transparency’ can be grouped into generic terms as follows: Ethics, 
Security, Privacy, and Explainability. 
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Set Terms 

A 
Solidarity, Performance, 
Sustainability, Soundness, 

Inclusiveness 
B - 
C - 

D 

Equality, Usability, 
Accuracy under Uncertainty, 

Assessment, Reliability, 
Data Control, Data Minimization 
Reproducibility, Generalization 

User Acceptance 
E Social Good 

F Human-Centered, Human Control, 
Human Agency 

G - 
H Autonomy, Non-Maleficience, Trust 
I - 
J Human Values, Non-Discrimination 
K - 

L Compliant with Rules and Laws, 
Social Robustness 

M Human Autonomy, Dignity 
N - 

O 
Explainability, Safety, Fairness, 
Accountability, Ethics, Security 

Privacy, Transparency 
 

Figure 2: Venn diagram 
Source: own. 

 
We also strongly claim that ’trust/trustworthiness’ should be seen as an outcome of 
a responsible AI system, and therefore we determine, that it belongs to the set of 
requirements. And each responsible AI should be built in a ’human-centered’ 
manner, which makes it therefore another important subterm. 
 
On top of these findings, we specify our definition of Responsible AI in order to 
answer the first research question: 
 

 
 

Figure 3: Definition of responsible AI 
Source: own. 

DEFINITION OF RESPONSIBLE AI 
Responsible AI is human-centered and ensures users’ trust through ethical ways of 
decision making. The decision-making must be fair, accountable, not biased, with 
good intentions, non-discriminating, and consistent with societal laws and norms. 
Responsible AI ensures, that automated decisions are explainable to users while 
always preserving users privacy through a secure implementation. 
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As mentioned in the sections before, the terms defining ”responsible AI” result from 
the analysis of the terms in sections 3.1.1 and 3.1.2. We presented a figure depicting 
the overlapping of the terms of content-wise similar expressions of Responsible AI, 
namely ”Ethical AI, Trustworthy AI, and Human-Centered AI”, and extracted the 
main terms of it. Also by summarizing the terms Fairness and Accountability into 
Ethics, and clarifying the synonyms (e.g., explainability instead of transparency), we 
finally redefined the terms defining ”responsible AI” as ”Human-centered, 
Trustworthy, Ethical, Explainable, Privacy(-preserving) and Secure AI”. 
 
3.3 Aspects of Responsible AI 
 
After analyzing the literature, we have identified six categories related to responsible 
AI in section 3. These categories are Human-centered, Trustworthy, Ethical, 
Explainable, Privacy-preserving, and Secure AI. Adhering to these categories will 
ensure the responsible development and use of AI. 
 
To answer the second research question (RQ2), we analyze the state-of-the-art of 
topics ”Trustworthy, Ethical, Explainable, Privacy-preserving and Secure AI” in the 
following subsections. We have decided to deal with the topic of ’Human-Centered 
AI’ in a separate paper so as not to go beyond the scope of this work. To find out the 
state of the art of the mentioned topics in AI, all 254 papers were assigned to one of 
the categories ”Trustworthy AI, Ethical AI, Explainable AI, Privacy-preserving AI, 
and Secure AI”, based on the prevailing content of the paper compared to each of 
the topics. The detailed analysis of these papers is beyond the scope of the present 
work and will be presented in our future work. Nevertheless, we highlight their most 
important features in the following subsections. 
 
3.3.1 Trustworthy AI 
 
A concise statement for trust in AI is as follows: 
 
”Trust is an attitude that an agent will behave as expected and can be relied upon to reach its goal. 
Trust breaks down after an error or a misunderstanding between the agent and the trusting 
individual. The psychological state of trust in AI is an emergent property of a complex system, usually 
involving many cycles of design, training, deployment, measurement of performance, regulation, 
redesign, and retraining.”[27] 
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In summary, Trustworthy AI aims to provide the benefits of AI while addressing 
scenarios that have significant implications for people and society. To be accepted 
in society, it is crucial for AI applications to prioritize trust as a key goal and make 
every effort to maintain and measure it throughout all stages of development. 
Despite this importance, achieving trustworthy AI remains a significant challenge as 
it has not yet been comprehensively addressed. 
 
3.3.2 Ethical AI 
 
In this section, we will outline the discoveries made in the realm of ethical AI. The 
most fitting explanation of ethics in relation to AI is the one provided in source [28]: 
 
”AI ethics is the attempt to guide human conduct in the design and use of artificial automata or 
artificial machines, aka computers, in particular, by rationally formulating and following principles 
or rules that reflect our basic individual and social commitments and our leading ideals and values 
[28].” 
 
During our analysis, we noticed that Ethical AI deals often with fairness. Fair AI can 
be understood as  
 
”AI systems [which] should not lead to any kind of discrimination against individuals or collectives 
in relation to race, religion, gender, sexual orientation, disability, ethnicity, origin or any other 
personal condition. Thus, fundamental criteria to consider while optimizing the results of an AI 
system is not only their outputs in terms of error optimization but also how the system deals with 
those groups.”[6] 
 
In any case, the development of ethical artificial intelligence should be also subject 
to proper oversight within the framework of robust laws and regulations. It is also 
stated, that transparency is widely considered also as one of the central AI ethical 
principles [29]. In the state-of-the-art overview of [30] the authors deal with the 
relations between explanation and AI fairness and examine, that fair decision-
making requires extensive contextual understanding, and AI explanations help 
identify potential variables that are driving the unfair outcomes. 
 
Mostly, transparency and explainability are achieved using so-called explainability 
(XAI) methods. Therefore, it is discussed separately in the following subsection. 
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3.3.3 Explainable AI 
 
The choices made by AI systems or humans utilizing AI can greatly affect the 
welfare, liberties, and prospects of those influenced by those choices. That's why the 
issue of AI explainability is a crucial ethical concern. This subsection deals with the 
analysis of the literature in the field of explainable AI (XAI). 
 
We found an interesting definition in [6] which is quite suitable for defining 
explainable AI: 
 
Given a certain audience, explainability refers to the details and reasons a model gives to make its 
functioning clear or easy to understand.[6] 
 
Numerous XAI techniques have been extensively discussed in literature. The 
authors of [6] as well as [31] give a detailed overview of the known techniques and 
their strengths and weaknesses, therefore we will only cover this topic in short. First, 
the models can be distinguished into two different approaches to XAI, the 
intrinsically transparent models and the Post-hoc explainability target models that 
are not readily interpretable by design. These so-called ”black-box models” are the 
more problematic ones, because they are way more difficult to understand. The post-
hoc explainability methods can then be distinguished further into model-specific and 
model-agnostic techniques. 
 
We can also distinguish generally between data-dependent and data-independent 
mechanisms for gaining interpretability as well as global and local interpretability 
methods. 
 
The general public needs more transparency about how ML/AI systems can fail and 
what is at stake if they fail. Ideally, they should clearly communicate the outcomes 
and focus on the downsides to help people think about the trade-offs and risks of 
different choices (for example, the costs associated with different outcomes). But in 
addition to the general public also Data Scientists and ML Practitioners represent 
another key stakeholder group. In the study by [32] the effectiveness and 
interpretability of two existing tools were investigated; the results indicate that data 
scientists over-trust and misuse interpretability tools. 
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There is a “right to explanation” in the context of AI systems that directly affect 
individuals through their decisions, especially in legal and financial terms, which is 
one of the themes of the General Data Protection Regulation (GDPR) [33,34]. 
Therefore, we need to protect data through secure and privacy-preserving AI-
methods, which are analyzed in the following section. 
 
3.3.4 Privacy-preserving and Secure AI 
 
As previously mentioned, trust in AI is dependent on privacy and security. However, 
the success of ML models relies heavily on data, including sensitive information. 
This has resulted in increasing worries about privacy violations, such as the unlawful 
use and exposure of private data [35,36]. To ensure complete privacy protection, we 
require holistic methods that consider the usage of data and user activities and 
transactions.[37]. 
 
Privacy-preserving and Secure AI methods can help mitigate those risks. We define 
”Secure AI” as protecting data from malicious threats, which means protecting 
personal data from any unauthorized third-party access or malicious attacks and 
exploitation of data. It is set up to protect personal data using different methods and 
techniques to ensure data privacy. Data privacy is about using data responsibly. This 
means proper handling, processing, storage, and usage of personal information. It is 
all about the rights of individuals with respect to their personal information. 
Therefore, data security is a prerequisite for data privacy. 
 
Although the AI field is undergoing extensive research into privacy and security, 
achieving flawless privacy preservation and security in AI is currently not possible. 
Nonetheless, several challenges require addressing to further advance in this area. 
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Table 1: Quantitative Analysis 

 
Feature of a study Representation Percentage Sources 
    

Trustworthy AI (28/254, 11% ) * 
Reviews and 
Surveys 9/28 32% [11,17,38,13,39,14,40,41,42] 

Perceptions of 
trust 4/28 14% [43,44,45,27] 

Frameworks 9/28 32% [26,46,47,48,49,15,50,51,52] 
Miscellaneous 6/28 28% [53,54,55,56,16,57] 

Ethical AI (85/254,34%) * 
Frameworks 19/85 22% [35,58,59,7,20,60,29,24,61,62] 
   [63,64,65,66,67,68,69,70,71] 
Ethical issues 22/85 26% [72,20,73,74,75,76,77,78] 
   [79,80,81,28,82,36,83,84] 
   [85,86,87,88,89,90] 
Miscellaneous 33/85 39% [91,19,92,93,94,95,96,22,21,97,98] 
   [99,100,101,102,9,103,104] 
   [105,106,107,108,109,110,111] 
   [112,113,114,115,116,117,118,8] 
Reviews and 
Surveys 10/85 12% [119,120,121,122,123,124,125,126,127,30] 

Tools 1/85 1% [128] 
Explainable AI (46/254 , 18%) * 

Reviews and 
Surveys 10/46 22% [6,31,33,12,129,34] 

   [130,131,132,133] 
Stakeholders 7/46 15% [134,135,136,137] 
   [32,138,139] 
XAI Approaches 14/46 30% [140,5,141,142,143,144] 
   [145,146,147,148,149,150,151,152] 
Frameworks 4/46 9% [153,154,155,156] 
Miscellaneous 11/46 24% [157,158,159,160,161] 
   [162,163,164,165,166,167] 

 
Privacy-preserving and Secure AI (95/254 , 38%) * 

Reviews and 
Surveys 10/95 10% [168,169,170,171,172,37] 

   [173,174,175,176] 
Differential Privacy 12/95 13% [177,178,179,180,181,182] 
   [183,184,185,186,187,188] 
Secure Multi-Party 
Computation 2/95 2% [189,190] 

Homomorphic 
Encryption 4/95 4% [142,191,192,193] 

Federated learning 35/95 37% [194,195,196,197,198,199,200,201] 
   [202,203,204,205,206] 
   [207,208,209,210,211,212,213,214,215] 
   [216,217,218,219,220,221,222] 
   [223,224,225,226,227,228,229] 
Hybrid Approaches 8/95 xx% [230,231,232,233,234,235,236,237] 
Security Threats 7/95 8% [238,239,240,241,242,243,244] 
Miscellaneous 16/95 17% [245,246,247,248,249,250,251,252,253,254] 
   [255,256,257,258,259,260] 

*percentage does not add up to 100 due to rounding. 
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Within the topic ”Privacy-Preserving and Secure AI”, most papers belong to 
”Federated learning”, obviously being a very emerging research field in the time 
frame. 
 
There were also many different papers that were not assigned to any specific 
category (see ”Miscellaneous)” since the topic is very multifaceted. 
 
In the topic area of ”Ethical AI”, the most common category was ’Miscellaneous’, 
since the authors of the ethical AI field handle very different topics. In addition, 
second most of them could be assigned to the category ’ethical issues’ since this is a 
hot topic in the field of ethics. The rest of the papers dealt with ethical frameworks 
that try to integrate ethical AI in the context of a development process.Most studies 
in the field of XAI deal with coming up with new XAI approaches to solve different 
explainability problems with new AI models. There were also a few that presented 
stakeholder analyses specifically in the context of the explainability of AI models. Few 
of them presented miscellaneous topics that could not be assigned to any specific 
category or framework to integrate explainable AI. 
 
In Trustworthy AI, we saw that most presented a review or survey on the current 
state of Trustworthy AI in research. There were also papers that presented 
frameworks especially for trustworthiness or papers that reported on how Trust is 
perceived and described by different users. 
 
4 Discussion 
 
Several key points have emerged from the analysis. It has become clear that AI will 
have an ever-increasing impact on our daily lives, from delivery robots to e-health, 
smart nutrition and digital assistants, and the list is growing every day. AI should be 
viewed as a tool, not a system that has infinite control over everything. It should 
therefore not replace humans or make them useless, nor should it lead to humans 
no longer using their own intelligence and only letting AI decide. We need a system 
that we can truly call ”responsible” AI. The analysis has clearly shown that the 
elements of ethics, privacy, security and explainability are the true pillars of 
responsible AI, which should lead to a basis of trust. 
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4.1 Pillars of Responsible AI 
 
Here we highlight the most important criteria that a responsible AI should fulfil. 
These are also the points that a developer should consider if she wants to develop 
responsible AI. Therefore, they also form the pillars for the future framework. 

 
Key-requirements for the Ethical AI are as follows: 
 

− fair: non-biased and non-discriminating in every way, 
− accountability: justifying the decisions and actions, 
− sustainable: built with long-term consequences in mind, satisfying the 

Sustainable Development Goals, 
− compliant: with robust laws and regulations. 

 
Key-requirements for the privacy and security techniques are identified as follows: 
 

− need to comply with regulations: HIPAA, COPPA, and more recently the 
GDPR (like, for example, the Federated Learning), 

− need to be complemented by proper organizational processes, 
− must be used depending on tasks to be executed on the data and on specific 

transactions a user is executing, 
− use hybrid PPML-approaches because they can take advantage of each 

component, providing an optimal trade-off between ML task performance 
and privacy overhead, 

− use techniques that reduce communication and computational cost 
(especially in distributed approaches). 

 
Key-requirements for Explainable AI are the following: 
 

− Human-Centered: the user interaction plays a important role and how he 
understands and interacts with the system, 

− Explanations must be tailored to the user needs and target group 
− Intuitive User interface/experience: the results need to be presented in a 

understandable visual language, 
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− Explainable is also feature to say how well the system does its work (non 

functional requirement), 
− Impact of explanations on decision making process,  

 
− Key-Perceptions of trustworthy AI are as follows: 

− ensure user data is protected, 
− probabilistic accuracy under uncertainty, 
− provides an understandable, transparent, explainable reasoning process to the 

user, 
− usability, 
− act ”as intended” when facing a given problem, 
− perception as fair and useful, 
− reliability. 

 
Therefore, we define Responsible AI as an interdisciplinary and dynamic process: it 
goes beyond technology and includes laws (compliance and regulations) and society 
standards such as ethics guidelines and the Sustainable Development Goals. 
 
Figure 3 shows that on the one hand there are social/ethical requirements/pillars and 
on the other hand the technical requirements/pillars. All of them are dependent on 
each other. If the technical and ethical side is satisfied the user trust is maintained. 
Trust can be seen as the perception of the users of AI. 
 
Each pillar of ethics includes "sub-modules" such as accountability, fairness, 
sustainability, and compliance. These are essential to ensure that AI meets ethical 
standards. 
 
Furthermore, the explainability methods must value privacy, meaning they must not 
have that much access to a model so that it results in a privacy breach. Privacy is 
dependent on security because security is a prerequisite for it. 
 
Every "responsible system" requires humans to care for it. These individuals must 
handle the system responsibly, conducting maintenance work and regularly checking 
metrics to ensure that their responsibilities are fulfilled. To achieve this, special 
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metrics are used as a continuous check. This makes responsible AI a joint effort 
between the system-side and the developer-side. 
 

 
Figure 4: Pillars of the Responsible AI framework 

Source: own. 
 
In section 3.3, the concept of Human-Centered AI is highlighted as a crucial aspect 
of responsible AI. It is closely linked to the "Human-in-the-loop" approach, which 
emphasizes the importance of human involvement in the development and use of 
AI. This approach allows for the detection and correction of errors and retraining 
of the system throughout its lifespan, ensuring that AI is designed and utilized for 
the benefit of humans. 
 
Therefore, responsible AI is interdisciplinary, and it is not static but it is a dynamic 
process that needs to be taken care of in the whole system lifecycle. 
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4.2 Trade-offs 
 
To fulfill all aspects comes with tradeoffs as discussed for example in [16] and comes 
for example at the cost of data privacy. For example, the methods that make the 
model more robust against attacks or methods that try to explain a model's behavior 
and could leak some information. Managing AI systems that are accurate, fair, 
private, robust, and explainable simultaneously is a challenging task. To begin, we 
suggest creating a benchmark for each requirement, which will determine the extent 
to which each requirement is met. 

 
5 Research Limitations 
 
Our study aims to provide a thorough and detailed analysis of the available literature 
on responsible AI from various journals. However, we encountered limitations in 
accessing some journals that were not freely available despite extensive access 
provided by our institutions. Despite our best efforts, accessibility remained an issue. 
It is also possible that some relevant research publications were not included in the 
databases we used for our search. Furthermore, our study only included the most 
recent state-of-the-art research, which may have caused us to miss out on some older 
but still relevant developments. 
 
Another limitation of the presented work is the missing in-depth analysis of the 
papers reviewed. Due to paper length constraints, we have omitted a detailed 
overview of each of the reviewed papers’ contributions in each of the subsections 
of section 3.3. 
 
6 Conclusion 
 
The field of AI is rapidly evolving and a legal framework is necessary to ensure 
responsible practices. However, the terms "trustworthy AI" and "responsible AI" 
lack clear definitions, making it difficult to establish efficient regulations. Instead of 
focusing solely on trust, regulations for responsible AI must be defined. As a leading 
authority in setting standards, such as the GDPR, the EU should be informed and 
prepared for upcoming research and legal regulations. This research provides an 
important contribution to the concept of responsible AI, being the first to address 
it comprehensively through a structured literature review and presenting an 
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overarching definition. The review analyzed 254 recent high-quality works on the 
topic, and included a qualitative analysis of the papers covered. 
 
We have defined the concept of "responsible AI" and conducted a thorough analysis 
of its key components. These components include human-centered design, 
trustworthy development, ethical considerations, explainability, privacy 
preservation, and security. By prioritizing these aspects, we can ensure the 
responsible development and use of AI products, and establish legal frameworks to 
regulate their use. In the discussion section, we propose a framework for responsible 
AI based on the insights gained from our analysis. In future research, we plan to 
analyze individual papers to determine their contributions to responsible AI, and 
explore topics such as human-centered AI and "human-in-the-loop" approaches. 
We also aim to develop benchmarking methods for responsible AI and establish a 
holistic framework to guide responsible AI development. 
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