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Abstract Defining the borders of agricultural fields is 
fundamental for precision agriculture and one of the key parts of 
the new European Agricultural Policy. The agricultural fields’ 
boundaries are basic building blocks for monitoring agricultural 
land in the context of climate change, food production and 
security. The aim of the field delineation process is to 
automatically determine the borders of agricultural fields from 
satellite images. It is based on the similarity of spatial, spectral, 
and temporal properties of pixels belonging to the same field. 
The basic method was developed within the NIVA project on 
data from the Sentinel-2 satellite constellation of the European 
Space Agency. The u-net based deep neural network predicts 
three image variables from the satellite image: the segmentation 
of the field, its boundary, and the distance of the segmented 
image points to the boundary. From these an image of the 
boundaries of the fields is constructed, either from a single image 
or from a time series of images. In the post-processing phase, the 
image prediction is transformed into vector format, which 
represents the result of the field delineation process. 
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Sinopsis Določitev meja kmetijskih poljin je osnovni proces na 
področju preciznega kmetijstva ter eden ključnih členov nove 
Evropske kmetijske politike. Prav tako so meje kmetijskih poljin 
osnovni gradnik za spremljanje kmetijskih zemljišč v okviru 
klimatskih sprememb ter prehranske varnosti. Cilj procesa je 
avtomatska določitev meja kmetijskih poljin iz satelitskih 
posnetkov. Temelji na podobnosti prostorskih, spektralnih in 
časovnih lastnostih slikovnih pik, ki pripadajo isti poljini. 
Osnovno metodo smo razvili v okviru projekta NIVA na 
podatkih konstelacije satelitov Sentinel-2 Evropske Vesoljske 
Agencije. Globoka nevronska mreža temelji na u-net arhitekturi 
in iz satelitskega posnetka napove tri slikovne spremenljivke: 
segmentacijo poljine, mejo poljine, ter razdaljo segmentiranih 
slikovnih točk do meje. Iz teh treh napovedi nato sestavimo sliko 
meja poljin bodisi iz enega posnetka ali pa iz (daljše) časovne 
vrste posnetkov. V fazi naknadne obdelave slikovno napoved 
predelamo v vektorski format, ki predstavlja končni rezultat 
procesa. 
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1 Introduction 
 
Defining the borders of agricultural fields is fundamental for precision agriculture 
and one of the key parts of the new European Agricultural Policy (CAP), which 
dictates automatic control of agricultural land. The agricultural fields’ boundaries are 
basic building blocks for monitoring agricultural land in the context of climate 
change, food production and security.  
 
The aim of the field delineation process is to automatically determine the boundaries 
of agricultural fields from satellite imagery to update existing but outdated datasets 
of fields, fill in gaps where such data is non-existent, and finally to get a view of how 
the agricultural landscapes are evolving through time due to anthropogenic activities, 
climate changes and agricultural practices. 
 
Determination of agricultural fields’ boundaries is based on the similarity of spatial, 
spectral, and temporal properties of pixels belonging to the same field (agricultural 
land with a single crop). The initial method was developed within the NIVA project1 
on data from the Sentinel-2 satellite constellation of the European Space Agency 
(ESA). We have since improved the methodology, model, and processing chains. 
We trained a deep neural network based on AI4Boundaries dataset. The u-net 
architecture uses satellite imagery to predict three outputs: field segmentation, field 
boundary, and distance of the segmented pixels to the field border. From these three 
predictions, we then construct an image of the boundaries of the fields, either from 
a single image or from a (longer) time series of images. In the post-processing phase, 
the image prediction is transformed into vector format, which represents the result 
of the field delineation process. 
 
In the following sections, we will dive-in into a more detailed description of each of 
these steps and share some of the things we have learned. In 2 Data we will 
describe the satellite data and ground truth dataset used. The last part of the section 
will present how we normalize the satellite imagery to facilitate generalizability of the 
model both through time as well as over larger geographical regions. In 3 Model 
we will outline the model, its architecture and loss functions. 4 Postprocessing 
(merging / vectorization) will illustrate the postprocessing of predictions, which 
allow us to produce results over larger areas (e.g., on continental scale). Lastly,  

 
1 https://www.niva4cap.eu 
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5    Field delineation as a service will present our field delineation service running on 
EuroDataCube (EDC), which was used by European Commission Joint Research 
Centre (JRC) to delineate agricultural fields over the whole Ukraine. 
 
2 Data 
 
2.1  Satellite data 
 
For the source of satellite imagery, we use the openly available Copernicus Sentinel-
2 data, accessed through Sentinel Hub services. Sentinel-2 is a land monitoring 
constellation of two satellites that provide optical imagery with high spatial 
resolution and high temporal revisit frequency, providing global coverage of the 
Earth's land surface every 5 days. For delineating fields, we make use of the Level-
1C Top of the atmosphere (TOA) reflectance data for all the bands at 10m per pixel 
resolution (B02, B03, B04, B08).  
 
2.2.  Ground truth data 
 
AI4Boundaries (d'Andrimont, 2023), a data set of images and labels readily usable 
to train and compare field boundary detection models has recently been released by 
JRC. To train the model, described in next section, we have used the AI4Boundaries 
ground-truth parcel vectors (2.5 M parcels covering 47105 km2), which have been 
sourced from openly available Geospatial Aid Application (GSAA) datasets from 
Austria, Catalonia, France, Luxembourg, the Netherlands, Slovenia, and Sweden for 
2019. The data in AI4Boundaries were selected using a stratified random sampling 
drawn based on two landscape fragmentation metrics, the perimeter/area ratio and 
the area covered by parcels, thus considering the diversity of the agricultural 
landscapes across Europe. Training samples of size 256 x 256 were created from 
Sentinel-2 imagery and ground truth data, as shown in Figure 1.  
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Figure 1: True color Sentinel-2 image (left), overlaid with vector training data from 
AI4Boundaries (right). 

Source: own. 
 
2.3  Normalization  
 
As we want our model to perform well over timestamps taken over the whole year, 
it is important how the data is normalized. Normalization of the band values can 
have a significant impact on the network performance and the quality of the field 
delineation results. The input values for satellite bands are zero-bounded digital 
numbers and the main characteristics of the band histograms are wide value range, 
long-tail, and the presence of outlier values. When choosing a normalization method 
most suited to the properties of the satellite imagery, the aim is to center the 
distributions and reduce the impact of outliers. In addition, for the normalization 
procedure to be valid across a wide range of use cases, the training dataset must 
include imagery from a large geographical region and a long time interval (whole 
year) to capture both geographical and seasonal variability. We performed an 
investigation and tested several linear and non-linear normalization schemes on our 
field delineation model (Oman-Kadunc, 2022). A linear transformation with clipping 
to 1st and 99th percentile performed best. An example of various normalizations is 
seen in Figure 2. The observed results of our experiments indicate that mapping the 
main part of histogram data into the interval [0, 1], but moving outlier values out of 
this interval (using 1st and 99th percentile) has a large positive effect on the network 
convergence and performance. 
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Figure 2: True color Sentinel-2 image before and after various transformations. The last 

image shows the transformation resulting in best model performance. 
Source: own. 

 
3 Model  
 
Reviewing the state-of-the-art in semantic segmentation of temporal images, two 
main approaches can be considered: 
 

− apply semantic segmentation on each single scene separately and combine 
predictions temporally at a later stage. A model trained this way should learn 
to be invariant to the time-period of interest. 

− apply semantic segmentation to a temporal stack of images, letting the 
model extract relevant spatio-temporal features for the task at hand. This 
approach tends to generate larger and slower models, as the input images 
contain temporal as well as spatial information (and spectral of course), but 
implicitly considers temporal dependencies. 
 

The aim of the parcel delineation in CAP practices is generally to monitor 
agricultural land cover throughout the growing season, but the beginning of the 
season is of particular interest as it is typically the time when the farmers fill in their 
applications. A model that can generalize to different time periods seemed therefore 
useful in this perspective, and that justifies our choice of training a single-scene 
model and combining temporally the predictions in a subsequent stage. The paper 
from (Waldner, 2020) represents the state-of-the-art for this approach, and is what 
we aimed for. 
 
In the initial implementation of the model, we implemented a model architecture as 
proposed in the above-mentioned paper, which utilizes a u-net backbone 
(Ronneberger, 2020) with added residual blocks, pyramidal pooling, and conditioned 
multitasking. While the model performed well on the validation set, we observed 
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occasional strange behavior of the model when applying it on slightly out-of-
distribution data, such as a new region that was not included in the training set. To 
mitigate such issues, we have decided to revert to a simpler architecture which had 
only slightly lower scores on the validation set but exhibited a more stable behavior 
across a variety of real-world datasets. 
 
The architecture that is used in the production model has the u-net backbone with 
added conditioned multi-tasking outputs as seen on the figure below. Additionally, 
the max pooling layers within the u-net are replaced with 2D Convolutions with 
stride 2.  
 

 
 

Figure 3: Architecture of the field delineation model. The model outputs three images, 
showing distance, boundary, and extent of the fields. The loss is computed for each output 

separately and averaged out. 
Source: own. 

 
The model is trained to solve for three conditioned tasks, shown in Figure 3. Its 
three outputs correspond to the boundaries of the fields, the extent of the fields and 
the distance from each pixel to the border. The Tanimoto loss, introduced in the 
ResUNet-a paper (Diakogiannis, 2019), is computed for each of the outputs and 
averaged to get one loss used for updating the model parameters. During the 
development we have observed that conditioning of the output had a large positive 
effect on the quality of the predictions when compared to a version of the model 
where the outputs were not conditioned.  
 
While the distance is in our case not used when converting the predictions into the 
final output, it still serves to stabilize the outputs of the model and helps with the 
training. The model was trained using the Adam optimizer with a fixed learning rate 
across the duration of training.  
 
The base model is trained to predict images of the same resolution as the input. For 
example, if we input a 256x256xN image, the model will return extent, distance and 
boundary masks of the same width and height. When constructing the training data, 
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we rasterize the reference vectors to the same spatial resolution as the satellite 
imagery. We wanted to see if we could extract sub-pixel information by training the 
model to extract information of a higher resolution than the input. This is done by 
adding one or multiple pixel shuffle layers to the model architecture and training the 
model by rasterizing the reference vectors to the target resolution, shown in Figure 
4.  
 

  
 

Figure 4: Architecture of the model when we want the model to upscale the output to a 
higher resolution. Each pixel shuffle block corresponds to a 2x upscaling. 

Source: own. 
 
While adding the super-resolution blocks helps the output vectors be more aligned 
with the actual boundaries, seen in dotted green on Figure 5 below, we also increase 
the number of parameters and thus the training and prediction time.  
 

Prediction of model 
without pixel shuffle 
blocks.  

Prediction of model 
trained with 1 pixel 
shuffle block 

Prediction of model 
trained with 2 pixel 
shuffle blocks.  

   
 

Figure 5: Predictions over the same polygon of a model trained without pixel shuffle blocks 
(left), model trained with 1 pixel shuffle block (center) and model trained with 2 pixel shuffle 

blocks (right). We observe that the predicted boundaries are closer to the reference 
boundaries. 
Source: own. 
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4 Postprocessing (merging / vectorization) 
 
The postprocessing of the single-scene model predictions (i.e., output of the final 
softmax layer or pseudo-probabilities) is split into two main parts: 
 

− Temporal merging of predictions  
− Vectorization of predictions and merging of vectors across EOPatches 

 
4.1 Temporal merging 
 
The model is applied to each available scene during the period of interest. We have 
observed that each single observation is subject to some degree of noise due to cloud 
shadows, atmospheric effects or agricultural activity that distorts the real boundaries 
of the fields. In addition, when running over large areas, it is not possible to choose 
a single cloudless timestamp that covers the whole area. We tackle these issues by 
temporally merging the predictions across multiple timestamps. The problem is that 
the fields themselves are not static through time and can undergo significant changes 
during only a short period of time, thus the choice of temporal merging method can 
have a big influence on the results, as can be seen in Figure 6.  
 

 
 

Figure 6: Temporal changes of an agricultural parcel observed for one month (June) 
Source: own. 

 
We temporally merge the extent and boundary predictions which we later combine 
into the final raster mask. The temporal merging is done on pixel level, where the 
pixels at the same position in each temporal prediction are merged using percentile 
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statistics. As the optimal temporal merging depends on the use-case at hand, we 
parametrize the percentile value for both the extent and boundary.  For example, for 
use-cases where the goal is to detect the most representative state over a period, we 
can choose the 50th percentile (median) for both the extent and boundary. If the goal 
is to detect the most fields possible (i.e., if a certain field is split in two for only a 
small amount of time, this split should be detected), we can choose a high percentile 
value for the boundary and a low percentile value for the extent, as illustrated in 
Figure 7.    
 

 
Figure 7: The combined prediction when the percentile value is high for boundary and low 

for extent (left) and when both percentiles are around 50 (right) 
Source: own. 

 
We have also explored alternative merging methods, such as max difference merging 
which uses the assumption that the timestamps where the difference between extent 
and boundary are the highest are the ones where the model is the most confidently 
distinguishing between the extent and the boundary. So given a temporal stack, you 
take the extent and boundary at the position where there is the biggest difference 
between the two. 
 
Another method that we developed is merging with a rolling window, which is 
designed with the goal of detecting all possible stable boundaries within a period. 
The idea behind this method is to perform temporal merging by utilizing a rolling 
temporal window to smooth out outliers and to choose a stable period. The 
procedure computes the mean and standard deviation of extent and boundary for 
values inside each of the temporal windows. The window providing the best estimate 



M. Batič et al.: Agricultural Field Delineation Using Satellite Imagery 41 
 

 

is chosen to be the one with a high boundary value, low extent value and a low 
standard deviation (representing a stable state).  
 
4.2 Vectorization  
 
From the step above, given a time interval, we can aggregate predictions and obtain 
a single pseudo-probability image for extent, boundary, and distance. We now 
combine these and obtain a vector layer for the entire country. To obtain smoother 
vectors, the pseudo-probabilities are combined into a single image as 
 

𝑝𝑝 =  1 + 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,             (1) 
 
as we didn’t use the distance masks in this iteration. This resulting image has 
continuous values in the (0, 2) range, and can be treated as a level set functional that 
can be sectioned to obtain nice and smooth contours. To obtain the contours from 
the raster image, we used the GDAL contour2 utility, using parameters that gave 
best overlaps with the GSAA vectors. 
 
Another very useful feature of GDAL we used is the Virtual Raster Format (VRT), 
which allowed us to build a virtual raster containing the merged functionals of all 
EOPatches. This way the predictions could be blended into a smooth functional 
even at the borders of EOPatches. Using VRT we can run contouring parallelizing 
over smaller and overlapping areas, generating vector shapes that are matching over 
the overlapping area. To obtain a single vector layer, the overlapping geometries 
were merged performing a geometrical union. 
 
 
5 Field delineation as a service 
 
Lastly, we have put all the pieces together using eo-grow, Earth observation 
framework for scaled-up processing in Python3. In a nutshell, the following steps to 
produce boundaries are performed: 
 

 
2 https://gdal.org/programs/gdal_contour.html 
3 http://github.com/sentinel-hub/eo-grow/ 
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− split the area of interest (AOI) into a regular grid to speed up processing 
through massive parallelization; 

− download remote sensing imagery for the time interval of interest using 
Sentinel Hub batch processing API that outputs the imagery directly to our 
AWS S3 bucket; 

− predict and post-process agricultural parcel boundaries on remote sensing 
imagery for the time interval of interest, parallelized over the EOPatches in 
the grid; 

− perform vector merging over the whole area into a single result.  
 
eo-grow splits the AOI into a regular grid of EOPatches, like shown in Figure 8 
below. Sentinel Hub batch processing API delivers available satellite imagery for 
each EOPatch into directly into an AWS S3 bucket. In the next step the data is fed 
to the model to produce predictions, which are then post-processed and temporally 
merged. Vectorization is performed, and the results finally merged into a single file 
that can be used in GIS software. 
 
An algorithm using the approach above is available as a service on EuroDataCube4. 
It was used within the EO4UA initiative to delineate agricultural fields over Ukraine 
for years 2016-2022. The web application showing results can be seen in Figure 9. 
The dataset facilitated further research into how war is affecting the agricultural 
landscape in Ukraine, their local food producing capabilities and, consequently, 
global food supplies.  

 
4 https://collections.eurodatacube.com/field-delineation/ 



M. Batič et al.: Agricultural Field Delineation Using Satellite Imagery 43 
 

 

     

 
 

Figure 8: Ukraine split into tiles of 10km x 10km, tiles are in their own UTM zone. 
Source: own. 

 

 
Figure 9: Web viewer of the EO4UA initiative5, showing Sentinel-2 true color imagery 

overlaid with delineated agricultural fields. 
Source: own.  

 
5 https://www.eo4ua.org/  
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