

DOI https://doi.org/10.18690/um.fov.3.2023.74
ISBN 978-961-286-722-5

GETTING STARTED WITH LOW-CODE – A

DATA-CENTRIC PRIMER FOR ORACLE APEX1

Keywords:
low-code
platforms,
citizen
developers,
web apps,
database
systems,
Oracle
APEX,
reuse-driven
development

WIELAND SCHWINGER, WERNER RETSCHITZEGGER,
ELISABETH KAPSAMMER, BIRGIT PRÖLL
Johannes Kepler University Linz (JKU), Linz, Austria
wieland.schwinger@jku.at, werner.retschitzegger@jku.at, elisabeth.kapsammer@jku.at,
birgit.proell@jku.at

Abstract The demand for personnel being able to develop Web
apps has grown tremendously. Not least to cope with this need,
a plethora of “Low-Code Platforms” (LCPs) emerged, empowering
“citizen developers” to build up Web apps without programming
skills while enhancing productivity by removing repetitive and
boring programming tasks. The comprehensive functionality of full-
fledged LCPs allowing to specify every nitty gritty detail of a Web
app, however, hampers their adoption. This has sparked research
projects like our EU Erasmus+-project BeeAPEX, cutting a path
through the feature jungle of LCPs and lowering the entry barrier
for citizen developers. Based on these findings and by focusing
on Oracle APEX as representative example, this paper puts
forward (i) a systematic overview of low-code features to develop the
main building blocks of Web apps, (ii) shade light on nature and
determining characteristics of their development process and (iii)
emphasize on reuse potential exploited by LCPs.

1 The authors would like to acknowledge the support given by the European Commission through the Action
Erasmus + Better Employability for Everyone with APEX (project ID 2021-1-SI01-KA220-HED-000032218), co-
funded by the Erasmus+ program of the European Union. The European Commission support for the
production of this publication does not constitute endorsement of the contents which reflects the views only
of the authors, and the Commission cannot be held responsible for any use which may be made of the
information contained therein.

1004 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

1 Introduction

Demand for Web App Developers Increases. The IT sector is one of the fastest
growing ones, being key to a green, digital and resilient economy. According to
McKinsey, digital adoption in Europe has jumped from 81% to 95% because of the
Covid-19 crisis (Fernandez, 2020). Thus, the demand for staff with IT skills, e.g., for
developing Web apps, has also grown tremendously.

Low-Code Platforms for Citizen Developers Emerged. Reflecting on this
unmatched demand and the growing complexity of Web apps, a plethora of low-code
platforms (LCPs) have emerged partly stemming from prominent players like
Microsoft, Google and Oracle (Bock et al., 2021). Thereby, LCPs substantially draw
on model-driven development principles, a topic of software engineering researchers for
decades (Di Ruscio et al. 2022, Kapsammer et al. 2017, Retschitzegger et al., 2015,
Schwinger et al. 2021). “Low-code” means that only few or even no programming
skills are required. Thus, LCPs empower non-IT-experts, i.e., “citizen developers”, making
Web app development attractive to a large number of people (Luo et al., 2021) and
enhance productivity by removing repetitive programming tasks (Bock et al., 2021).
Gartner forecasts that LCPs will account for 65% of all Web app developments by
non-experts in 2024 (Mehta, 2022).

Feature Overload Hampers Adoption by Citizen Developers. Despite these
benefits, the comprehensive functionality of full-fledged LCPs like Oracle APEX
providing sophisticated tooling to specify every nitty gritty detail of a Web app might
actually hamper their adoption by citizen developers (Mussbacher et al., 2021).

There are already efforts to pin down the essence of LCPs (Bock et al., 2021, Farshidi et
al., 2021, Lichthentäler et al., 2022, Sahay et al., 2020) mostly targeting, however, IT
experts only. At the same time, research projects have been sparked like our EU
Erasmus+-project BeeAPEX, cutting a path through the feature jungle of LCPs for
non-IT-experts, thus lowering the barrier for citizen developers.

Paper Contribution and Structure. Based on the findings in BeeAPEX, the overall
contribution herein is a primer for getting started with LCPs from a non-IT-expert
perspective. Focusing on Oracle APEX as representative example, observations are
generalizable across DB-centric LCPs (Bock et al., 2021) as we (i) put forward a

W. Schwinger, W. Retschitzegger, E. Kapsammer, B. Pröll:
Getting Started with Low-Code – A Data-Centric Primer for Oracle APEX 1005

systematic overview of low-code features to develop the main building blocks of Web apps,
(ii) shade light on the nature and the determining characteristics of their overall development
process and (iii) emphasize on reuse potential exploited by such LCPs based on existing
data and Web apps. For this, Section 2 discusses Oracle APEX from a bird eyes view,
Sections 3, 4 and 5 deal with DB layer, Web layer and data exchange and finally Section
6 focuses on future work.

2 Oracle APEX from a Bird Eyes View

Broad Application Domains and Business Needs – Reuse Crucial. Oracle APEX
(Application Express) is a LCP for Web apps based on an Oracle Database
Management System (DBMS) (Sciore, 2020). It is employed by large and small
customers alike, across a broad number of application domains, coping with a wide spectrum
of business needs (Baggia, 2018). These may range from simple transformations of local
spreadsheets into Web-based ones, to full-fledged Web apps storing, retrieving,
processing and visualizing business transactions (Baggia, 2019). Independent of
complexity, domain or business needs targeted by LCPs in general and Oracle APEX
in particular, reuse of already existing artifacts is crucial.

Reuse-Driven DB Layer and Web Layer. For this, APEX offers Web browser-based
tools along with “wizards” assisting to build complete Web apps comprising DB
layer and Web layer (Retschitzegger et al., 2009), (cf. Figure 1).

Figure 1: Reuse-Driven Development of DB Layer and Web Layer

1006 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

For the DB layer, first, the DB schema to be specified, in case of relational DBs in terms
of tables and second, the actual data needed for the Web app has to be provided (cf.
Section 2). Both can be done either manually from scratch or ideally, by reusing existing
schemata and/or data in terms of offline import/export or online data exchange (cf. Section
4). Generally speaking, tools like APEX "SQL Workshop" address these tasks.
Regarding the Web layer which builds upon the DB layer, citizen developers are faced
with the specification of Web pages and the automatic creation and execution of the final
Web app (cf. Section 3). This process can be again either start from scratch or by reusing
an existing Web app or parts thereof. These tasks are supported by APEX's "App Builder".
Finally, it has to be noted that not only data and their schema are stored within the
DB layer, but also all the artifacts making up the Web app (e.g., pages, logics and
data access).

Cyclic and Incremental Low-Code Development Process. While APEX
provides a set of tools coming with a series of wizards to assist the developer in
specifying both, DB layer and Web layer, it does not imply, however, a single linear
development process, being rather cyclic and incremental. This is in line with
predominance of agile processes in Web app development, making it, however, getting
started for citizen developers even harder (Bucchiarone et al., 2021). Thus, in the
following, we elaborate the overall Web app development options focusing on processes
from a navigation perspective through the APEX tooling as well as from a reuse-driven
and data-centric perspective.

3 Getting Started with the DB Layer

DB Layer Development Steps. Getting started with the DB layer, roughly
speaking, at the very end, it’s all about creating appropriate DB tables in terms of a
DB schema (cf. Step 1 in Figure 2), storing and manipulating data (cf. Step 2) and querying
data (cf. Step 3). In the following, the main focus will be on Step 1, not least since
being the most complex task which is therefore appropriately supported by APEX
through different low-code development options.

W. Schwinger, W. Retschitzegger, E. Kapsammer, B. Pröll:
Getting Started with Low-Code – A Data-Centric Primer for Oracle APEX 1007

Figure 2: Overall Process for Creating the DB Layer.

3.1 DB Schema Creation – Step 1

DB Schema Creation From Scratch or Reuse-Driven. For DB schema creation,
different options exist as depicted on the left-hand side of Figure 2. Overall, these
options can be distinguished whether they support schema creation from scratch along
different low-code abstraction levels or if they allow for reuse. No matter, which option is
chosen, ultimately, a so-called DDL (Data Definition Language)-script containing
programmatic "CREATE TABLE"-commands is needed for the actual creation
of empty DB tables (cf. #1 in Figure 2).

Reuse-Driven Schema Creation. When developing a DB schema, maximizing reuse
should have, of course, priority whereby in the simplest case the DDL-script could be
already available (cf. #2 in Figure 2). This script can be simply imported via Oracle SQL
Workshop and executed, leading to the ultimate goal of empty DB tables. The second
reuse option is that existing data within external files (e.g., XLSX files) can be used as
basis for automatic DB table generation (cf. #3 in Figure 2). Thereby, schema
information (e.g., attributes) is automatically inferred and can be augmented by user

1008 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

information provided through a wizard, which is, however, limited to quite simple
tables only (cf. Section 4).

Low-Code-Driven Schema Creation. In case that reuse is not possible, there are
again different options for developing the DB tables from scratch, either using the
traditional programmatic way via SQL commands (cf. #4 in Figure 2) or employing a more
low-code development style, where the DDL-scripts are automatically generated out of
other more abstract artifacts, manually specified by citizen developers. Here we can
distinguish three different options, depending on the abstraction level where the
development takes place, ranging from graphical model-driven schema creation (cf. #5 in
Figure 2), to wizard-driven schema creation (cf. #6 in Figure 2) and finally, at a more
concrete level, to a short-hand SQL-like schema creation (cf. #7 in Figure 2). Depending
on the abstraction level to start off, different concepts need to be understood and
different tools are employable. In the following, these options are discussed, ordered
along their abstraction level.

(1) Model-driven Schema Creation. Ideally, development shall start in a low-code
fashion by graphically modelling the DB schema thus being "more distant" from code.
For this, tools like the "Oracle Developer Modeler (ODM)" can be employed, being
however, not part of Oracle APEX.

Thereby, in a first development step, a so-called logical (data) model can be defined (cf.
#8 in Figure 2) to describe “things” of the real world (i.e., the problem domain) in
practice often in terms of so-called Entity-Relationship (ER)-diagrams (Sciore 2020),
focusing on entities (i.e., the "things") with their attributes (i.e., properties of "things")
and relationships (i.e., how "things" relate to each other) without considering specifics
of a certain DBS. This facilitates understanding and communication within a
development team as well as with customers, being of particular benefit for non-IT-
experts.

In a second step, this DB-independent ER-model, can be automatically transformed
into a DB-specific schema which is also graphically visualized by ODM, called Relational
DB (RDB)-schema, using the Relational Model (RM) as formalism (cf. #9 in Figure 2)
to describe the structure of data as a collection of relations aka. tables, thus resembling
entities of the ER-diagram. This RM has to be manually detailed by defining datatypes
for attributes and by expressing relationships through so-called foreign-keys, being in

W. Schwinger, W. Retschitzegger, E. Kapsammer, B. Pröll:
Getting Started with Low-Code – A Data-Centric Primer for Oracle APEX 1009

fact designated attributes acting as pointers to the identifying (primary key) attribute of
other tables. Finally, out of the RM, ODM allows to automatically generate
according DDL-scripts which can be imported into APEX using Oracle SQL
Workshop and executed to automatically generate the DB tables.

(2) Wizard-driven Schema Creation. Besides the model-driven option, Oracle
provides a simple form-based option (cf. #6 in Figure 2) to create new tables and modify
them if necessary, in a wizard-driven manner. This is ideal for those users having no
modelling knowledge, but limits one to the options provided which need to be
understood, to capitalize on the full functionality.

(3) Textual, Shortcut-Driven Schema Creation. Being most concrete and already
close to the programmatic option is to use a simple textual “shortcut-notation” for
SQL, provided by Oracle’s "Quick SQL" (cf. #7 in Figure 2). This is a good choice if
new tables are needed, e.g., for quick testing purposes, not least since also random
data can be inserted. Quick SQL is, however, a non-standard notation, offering
limited expressiveness. Therefore, for more detailed specifications, altering the
generated DDL-scripts is necessary.

(4) Programmatic Schema Creation. Finally, there is of course also the possibility
of using SQL-DDL in terms of "CREATE TABLE"-commands (cf. #4 in Figure
2), providing the benefits that every single table specification detail can be defined as
needed and being not dependent on, sometimes sub-optimal automatic generation
processes. However, it naturally entails the burden to deal with code and to be
familiar with the necessary syntax.

3.2 Data Manipulation and Querying – Steps 2 and 3

Based on the created DB schema, data can be manipulated, i.e., inserted, updated or
deleted as well as queried. Depending on the business needs, data will be managed
directly by the Web app (cf. Section 3) or prior to the deployment of the Web app
during development of the DB layer. Regarding the latter, for manipulating data,
there are again different options, ranging from low-code wizard-driven through Oracle’s
Object Browser, allowing data inserts updates and deletes (cf. #10 in Figure 2), over an
auto-generation of random (test)data through Quick-SQL as already mentioned (cf. #11 in

1010 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

Figure 2), to the exchange of existing data (cf. #3 in Figure 2 and Section 4), the latter
two, however, allowing for data insertions only.

Regarding the task of data querying, there is again a low-code, wizard-driven option via
Oracle’s Query Builder available (cf. #12 in Figure 2). For both data management tasks,
i.e., manipulation and querying, there exists, of course, also the programmatic option
in terms of SQL commands (cf. #13 in Figure 2).

4 Getting Started with the Web Layer

Web Layer Development Steps. Getting started with the Web layer, it is similar to
the DB layer all about reusing existing artifacts, comprising, specific to the Web layer,
(parts of) existing Web apps, DB tables and data (cf. Step 1 in Figure 3) specifying
(additional) Web pages, mostly on top of existing DB tables together with the navigation in-
between (cf. Step 2) and finally, automatically creating and running the Web app by some
simple button clicks (cf. Steps 3 and 4). These steps are organized in a multi-step, partly
cyclic manner allowing for incremental development, i.e., a stepwise refinement of the Web
app and eventually the DB layer, supported in a low-code fashion by APEX's "App
Builder". In the following, an overview of the low-code support provided for the
aforementioned steps is given.

Figure 3: Overall Process for Creating the Web Layer

W. Schwinger, W. Retschitzegger, E. Kapsammer, B. Pröll:
Getting Started with Low-Code – A Data-Centric Primer for Oracle APEX 1011

4.1 Reuse App | Tables | Data – Step 1

Web Layer – From Scratch or Reuse-Driven. First of all, no matter if reuse is
possible or not, as APEX focuses on DB-driven Web apps, it is advisable to always
start by developing the DB layer first (cf. Section 3). Reuse potential is taken into
account by APEX supporting several use cases during low-code development of the
Web layer, i.e., (i) reuse of data: as already mentioned in Section 3, if data exists in
external files, the DB layer can be automatically generated (cf. #1 in Figure 3), (ii)
reuse of DB tables: if the DB layer (or parts of it) already exists the Web layer can be
built directly thereupon (cf. #2 and #3 in Figure 3), (iii) reuse of Web apps: if reuse and
further modification of an already existing Web app together with its DB-layer is
reasonable (cf. #4 in Figure 3).

4.2 Specify Pages – Step 2

Wizard-Driven Page Specification – Selecting Page Types. After the DB layer
exists, the main task of Web layer development is to incrementally add new Web pages
forming its basic building blocks, using the APEX “Create Page Wizard” (cf. #5 in
Figure 3). Each page can be based on one or more DB table(s), allowing to visualize
and manipulate their data. Although these pages are naturally internally specified in
terms of code (e.g., HTML), LCPs like APEX initially hide this programmatic layer in
that citizen developers can simply choose out of different page types, coming with
predefined functionality. The provision of such predefined functionality recurrently
found in Web apps like lists, reports and charts for data visualization as well as reports and
forms for data manipulation allows LCPs to capitalize thereupon by generating the
necessary code for those Web pages along with code for DB data retrieval and
manipulation. Finally, the Web pages can be linked together using navigation menus,
tabs, buttons, or hypertext links.

Wizard-Driven Page Modification – “Page Designer”. Once a page is created, it
can be, at any time during low-code development, further maintained and enhanced
using APEX’s “Page Designer” (cf. #6 in Figure 3). By a combination of forms,
wizards, and extension points to specify code (e.g., PL/SQL or JavaScript), the
composition/layout of pages can be fully modified.

1012 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

4.3 Create and Run Web App – Steps 3 and 4

Create the Web App. As soon as one or more pages have been created, it is ultimately
necessary to initially create the necessary artefacts for the Web app. Thereby, some
overall properties of the whole Web app (e.g., appearance of the app) can be selected
which automatically leads to generation of additional functionality of the Web app
in a low-code fashion. Incremental development is again supported since after creation,
additional pages can be added or existing ones modified.

Run the Web App. Finally, the resulting app and/or each of the specified pages can
be interactively tested, as the resulting HTML-pages are rendered allowing to further
refine the Web app. Again, incremental development is possible since it can be navigated
back to Page Designer after running and testing the Web app.

4 Getting Started with Data Exchange

Data Exchange Development Steps. Getting started with data exchange, it’s all about
the import and export of data which can be done offline (cf. Step 1 and Step 2 in Figure
4) and complementary to that, online access to data for external clients like other
Web/mobile/legacy apps or cloud-based services (cf. Step 3). It has to be noted that
overall, data exchange is a cross-cutting concern, again emphasizing on the reuse aspect
when developing Web apps on basis of LCPs. In the following, an overview of the
APEX low-code support for these three steps will be given.

W. Schwinger, W. Retschitzegger, E. Kapsammer, B. Pröll:
Getting Started with Low-Code – A Data-Centric Primer for Oracle APEX 1013

Figure 4: Overall Process for Data Exchange

5.1 Offline Data Import and Export – Steps 1 and 2

Two Import|Export Alternatives – “Object Browser”|“Data Workshop”. The
simplest low-code option for data reuse in terms of data import/export from/to
files is using SQL Workshop’s “Object Browser”, being limited, however, to a table-wise
processing (cf. #1 in Figure 4). In contrast, Oracle’s “Data Workshop”, allows
imports/exports based on several tables, being especially suited for data of a moderate
size (fewer than 10 tables) having standard datatypes only, i.e., no multi-valued fields
or nested structures. For importing/exporting huge and complex data, other tooling,
such as “SQL*Loader Utility” is more suitable, requiring, however programming
skills. Data Workshop can be accessed for import and export via SQL Workshop (cf.
#2 in Figure 4) and additionally, for import only, via App Builder when intertwinedly
creating Web apps (cf. #3 in Figure 4).

Supported File Formats. Regarding possible file formats for data reuse, for both,
import and export, any standard delimited format (e.g., CSV – Comma Separated Values)
as well as XML files (eXtended Markup Language) are allowed. Just for imports, two
additional formats are supported, comprising XLSX files (i.e., Excel workbooks) and
JSON files (Java Script Object Notation).

1014 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

Wizard-Driven Importing Steps. For importing data for the sake of reuse, Data
Workshop provides a “Load Wizard”, guiding citizen developers through all
necessary import steps. The two main steps comprise (1) provision of the data source via
drag and drop or a load-file dialogue and (2) configuration of the Data-to-Table mapping.
The latter allows to decide if data should be loaded into a new table (which can be
automatically created based on the structure of the file to be imported) or into an
existing one and to define the mapping between the columns of the source file and those
of the table. After activating the load process via a “Load Data”-button, the data is
actually loaded whereby the loading dialog informs how many rows have been loaded.
The resulting table can now be viewed via Object Browser.

Wizard-Driven Exporting Steps. For exporting data for reuse, file format, table and
columns have to be selected whose data should be exported. In case of a delimited
format, additionally (i) the delimiter between rows has to be defined, (ii) if row names
should be included in the output and (iii) if the data format should be DOS or UNIX,
before finally "Unload Data" to save the export (cf. Figure 4).

5.2 Online Data Access – Step 3

The Theory Behind – “REST Architectural Pattern”. Exchanging data by
enabling external clients (e.g., Web/mobile/legacy apps) to reuse data by online
access, can be easily realized using RESTful services, again in a low-code fashion.
REST (Representational State Transfer) is an architectural pattern for interoperability between
arbitrary systems over the Internet (Fielding et al, 2010). It enabling data
querying/manipulation without the need for direct access to the underlying tables.
Realizing Indirect Access via “RESTful Services”. For realizing data reuse
according to the REST pattern, RESTful services have to be created on top of DB
tables, i.e., “REST-resources”. These are identified by URLs and accessed over HTTP
or HTTPS, requesting one of four different kinds of operations – POST, GET, PUT
and DELETE provided by the REST API (Application Programming Interface) – thereby
resembling the well-known CRUD-operations (Create, Read, Update, Delete) and thus
detailing in which way data reuse is possible through indirect access. Such requests
to a RESTful service always elicit a response in the form of XML, JSON, HTML, or
some other standard format (cf. Figure 5).

W. Schwinger, W. Retschitzegger, E. Kapsammer, B. Pröll:
Getting Started with Low-Code – A Data-Centric Primer for Oracle APEX 1015

Figure 5: RESTful Services for Online Data Access – Basic Architecture

Low-Code based Definition of RESTful-services – “AutoREST”. For each DB
operation being offered to external clients as RESTful service for indirectly accessing
a DB table, several steps would be necessary, being beyond the scope of this article.
There is, however, for the simplest form of a query, i.e., a full table scan having a fixed
output format in terms of JSON, a low-code option provided in terms of APEX’s
“AutoREST”-feature. There are only two simple steps necessary, (1) Enabling
the DB Schema for RESTful access via SQL Workshop’s RESTful services tool and
(2) Defining a table as RESTful resource using Object Browser. After that, REST
has been activated for the table and the automatically generated access URL appears
allowing the service to be simply tested in a Web browser.

6 Future Work

In this paper, a first step has been taken towards pinning down the essence of full-
fledged DB-centric LCPs for non-IT-experts. Based on this foundation, we are
currently conceptualizing in the course of our Erasmus+ project “BeeAPEX” twelve
different business use cases, ranging from a simple Web shop to systems for course
scheduling, team appointment, car rental and diet management. Each of these use
cases is described in detail comprising business view, problem definition, use case
diagram, data model and a step-by-step guide for the realization on basis of Oracle
APEX. Thus, by combining our guide how to get started with LCPs with these
practical use cases, we intend to further lower the barrier for non-IT-experts to get
engaged in low-code development.

1016 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

Acknowledgements

We owe a big debt of gratitude for the in-depth discussions about Oracle APEX to the partners in our
Erasmus+-project “BeeAPEX”, comprising University of Zagreb, University of Maribor, University
of Žilina Slovakia, International Hellenic University and Kosminsky University Warsaw.

References

Baggia, A., Mali, A., Grlica, A., Leskovar, R. (2018). Oracle APEX in Higher Education. 37th Int. Conf.

on Organizational Science Development, Portorož, Slovenia.
Baggia, A., Leskovar, R., Blaž Rodič, (2019). Low-code Programming with Oracle APEX offers new

Opportunities in Higher Education. 3rd Int. Scientific Conf. Recent Advances in IT, Tourism,
Economics, Management and Agriculture (ITEMA), Bratislava, Slovakia.

Baggia, A., Leskovar, R., Rajkovič, U., Motušić, A. (2022). Low-code programming and web application
development. Information Society, Ljubljana, Slovenia.

Bock, A., Frank, U. (2021). In Search of the Essence of Low-Code: An Exploratory Study of 7 LCPs.
ACM Int. Conf. on MDE Languages and Systems (MODELS), Fukuoka, Japan.

Bucchiarone, A. et al. (2021). What Is the Future of Modeling? IEEE Software, vol. 38, no. 2.
Di Ruscio, D., Kolovos, D., de Lara, J. et al. (2022). Low-code development and model-driven

engineering: Two sides of the same coin?. Software System Modeling (SoSyM 21), Springer.
Farshidi, S., Jansen, S. & Fortuin, S. (2021). Model-driven development platform selection: four

industry case studies. Software System Modeling (SoSyM 20), Springer.
Fernandez, S., Jenkins, P., Vieira, B. (2020). Europe’s digital migration during COVID-19: Getting past

the broad trends and averages, Mc Kinsey Digital.
Fielding, R., Taylor, R. (2010). Principled design of the modern Web architecture. Edited by Mehdi

Jazayeri and Alexander L. Wolf Carlo Ghezzi. ACM, ISBN: 978-1-58113-206-9.
Kapsammer, E., et. al. (2017). On the Evolution of Modeling Ecosystems: An Evaluation of Co-

Evolution Approaches. Proc. of the 5th Int. Conf on Model-Driven Engineering and Software
Development (MODELSWARD), Porto, Portugal.

Lichtenthäler, R., et. al. (2022). A Use Case-based Investigation of LCPs. Proc. of the 14th ZEUS
Workshop on Services and their Composition, Bamberg, Germany, CEUR-WS.

Luo, Y., et al. (2021). Characteristics and Challenges of LCD: The Practitioners' Perspective. In Proc.
of the 15th ACM Int. Symp. on Empirical SWE and Measurement (ESEM).

Mehta, V. (2022). Forecast Analysis: Low-Code Development Technologies Worldwide. Gartner.
Mussbacher, G., et al. (2021). A Hitchhiker's Guide to Model-Driven Engineering for Data-Centric

Systems, in IEEE Software (38, 4).
Retschitzegger, W., et al. (2015). Model-Driven Co-evolution for Agile Development. 48th Hawaii Int.

Conf. on System Sciences (HICSS), Kauai, Hawaii, USA.
Retschitzegger W., et al. (2009). Web Engineering: The Discipline of Systematic Development of Web

Applications, Wiley. ISBN: 978-8-1265-2162-3
Sahay, A., et al. (2020). Supporting the understanding and comparison of LCPs. 46th Euromicro Conf.

on SWE & Advanced Applications (SEAA), Portoroz, Slovenia.
Schwinger, W, et al. (2021). Behavioral Interfaces for Executable DSLs. In: Koziolek, A., Schaefer, I.

& Seidl, C. (Hrsg.), Software Engineering, Bonn: GI e.V.
Sciore, E. (2020). Understanding Oracle APEX 20 application development. 3nd ed. Apress. ISBN:

978-1-4842-6165-1

