

DOI https://doi.org/10.18690/um.fov.3.2023.44
ISBN 978-961-286-722-5

ALPHAS OF LOW CODE DEVELOPMENT

PROJECT: BEEAPEX CASE

Keywords:
essence,
software
engineering,
BeeAPEX,
low-code
programing

ROBERT LESKOVAR,1 WIELAND SCHWINGER,2 WERNER

RETSCHITZEGGER,2 ALKIVIADIS TSIMPIRIS,3 ATHANASIS

ANGEIOPLASTIS,3 DIJANA OREŠKI,4 VJERAN STRAHONJA,4
MICHAL KVET,5 KAROL MATIAŠKO,5 MONIKA SOŃTA,6
JACEK MAŃKO,6 ALENKA BAGGIA1

1 University of Maribor, Faculty of Organizational Sciences, Kranj, Slovenia
robert.leskovar@um.si, alenka.baggia@um.si
2 Joannes Keppler University, Johannes Kepler University, Institute for telecooperation,
Department of Cooperative Information Systems, Linz, Austria
wieland.schwinger@jku.at, werner@ifs.uni-linz.ac.at
3 International Hellenic University, Department of Computer, Informatics
Telecommunications Engineering, Serres, Greece
atsimpiris@ihu.gr, aagiop@gmail.com
4 University of Zagreb, Faculty of Organization and informatics, Varaždin, Croatia
dijana.oreski@foi.unizg.hr, vjeran.strahonja@foi.hr
5 University of Žilina, Faculty of Management Science and Informatics, Žilina; Slovakia
michal.kvet@uniza.sk, karol.matiasko@uniza.sk
6 Kozminski University, Department of Management in the Networked & Digital
Societies, Warsaw, Poland
msonta@kozminski.edu.pl, jmanko@kozminski.edu.pl

Abstract Software projects of all kinds should deliver results according
to agreed term and conditions. However, they are prone to de-rail and
be terminated without satisfactory and in-time outputs. According to
the literature review most failures in software project occurs before
producing a source code. The first part of the paper gives a short
overview of Essence – a generalized and novel approach to construct a
tailored software development methodologies and the abstract levels of
project health attributes - alphas. The ultimate goal for project team is
to provide high quality software under the given constraints.
Examination of the alphas which present the kernel of Essence is
performed on specific low-code development Erasmus+ project
BeeAPEX. Then we present BeeAPEX project alphas. Finally, the
states of the alphas in observed project are estimated to get an overview
of the project progress and to identify the gaps between plan and
realization.

570 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

1 Introduction

Evaluation of the success of software development projects is most often limited to
the three aspects: time, costs, scope. The literature in software quality often
addresses a project diamond that include: time, quality, scope and cost (e.g., Akbar
et al., 2017). But project diamond can be evaluated when the project is finished.
Software, as defined by ISO, IEC and IEEE (see ISO/IEC/IEEE Std. 90003:2014
(ISO/IEC/IEEE, 2014) is a »collection of components necessary to ensure proper
operation, and efficient maintenance during its life cycle. The components are: 1)
computer programs (code), 2) documentation, 3) data necessary for its operation
and maintenance (including standard tests), and 4) procedures« (Galin, 2018).

The issue of the success of software development projects has been known in the
discipline of software engineering for decades. In the famous article "Critical Success
Factors in Software Projects", Reel (1999) states that majority of failed projects fall
into ten categories: project managers do not understand the user's needs, the scope
of the project is inadequately defined, project changes are poorly managed, the
chosen technology changes during the course of the project changes, business needs
change, production deadlines are unrealistic, users resist the solution, the project
sponsor disappears, lack of competence in the development team and project
managers ignore good practices. Among these ten reasons, there are seven of them,
which are noticeable at the moment when not a single line of code is written. More
than two decades later top reasons for failed projects did not disappear. So we are
wandering if there is a mean to detect project derailment during the project and not
only post-mortem.

An article by Dendere (Dendere et al., 2021)⁠, citing media reports and professional
literature, finds a global trend of failed healthcare projects related to digital
transformation. The main cause is supposed to be project management, more
precisely the choice of a suitable project management approach ("Adopting a
suitable project management approach is a major factor for achieving success
because managing a project using an unsuitable methodology can severely damage
the chances of success."). The article implicitly favors agile approaches over
traditional ones, but without empirical evidence.

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

571

Rasheed (Rasheed et. al., 2021) considers the greater success of software projects
that used the agile development method not be the direct result of agility. The
authors claim that the high proportion of successful software development projects
using agile methods is more the result of the size of the projects (or rather small
size). There are also few examples of successful use of the agile approach in large,
complex projects. Authors highlight the use of the SAFe (Scaled Agile Framework)
agile methodology. In their opinion, requirements engineering is a key part of the
project life cycle, although they state, that they failed to identify the cause of as many
as 50% of unsuccessful projects. Among identified causes of failed software projects
are: lack of technical competence (13%), incomplete requirements (12%), changing
requirements (12%), poor user engagement (7%) and poor project initiation (6%).

In the past decades, the supremacy battle of development methodologies has always
been fought between the traditional methodologies based on the life cycle and
"novelties" such as agile development, SCRUM, XP, FDD, TDD and SAFe. But
many studies have shown that the practice, the way the developers work, is the most
important for the success of the project. Organizations that reach a higher level of
maturity of the development process (Chaudhary & Chopra, 2017) are more likely
to complete the project and satisfy customers’ needs within the estimated time and
with the estimated resources. Good practices also include software engineering
standards. Examples are: requirements specification in the standard ISO/IEC
29148:2018 (ISO/IEC/IEEE, 2018) or software quality attributes and quality in use
in ISO/IEC 25010:2017 (ISO/IEC, 2017). The discipline of software engineering
needs a general, flexible and accepted methodology, which should not tie developers,
but should enable them to work efficiently and effectively. We will therefore
consider one such approach – Essence that enables the construction of a software
development methodology, which is: tailored to development team, free of ties to
any methodology and free to utilize any efficient method or practice and enables the
assessment of the software development progress during the course of the project.

2 Essence

Essence originates from the SEMAT initiative (Software Engineering Method and
Theory), which brought together a group of experts with the aim to establish the
field of software engineering as a rigorous scientific discipline. Based on their work,

572 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

the international non-profit consortium OMG (Object Management Group)
produced a standard that defined common elements, a language and a framework
for creating methods in software engineering (Park et al., 2018).

Jacobson et al. (2019) consider Essence as a real milestone in the field of software
engineering. The most recent version 1.2 was released in 2018 by OMG (Object
Management Group, 2018). Both SEMAT and Essence originate from the issues of
the software engineering discipline – the search for mature software development
practices that result in successful projects and a high-quality product. The source
estimates that there are around 20 million developers worldwide and over 100
thousand different methods. Almost every group of developers works in their own
way. New methods are constantly appearing. One such example is the A-Z Model -
the improvement of the development process and consequently the quality of the
software, (Akbar et al., 2017). It is based on the SDLC (traditional) approach. The
authors claim that more accurate time-boxing of activities in each phase of the life
cycle increase the probability of a successful project and a quality product. The most
important features of the Essence – kernel and language are independent of the
approach, methodology or methods. In Chapter 4 of Essence (Object Management
Group, 2018) alpha is defined as: An essential element of the software
engineering endeavor that is relevant to an assessment of the progress and
health of the endeavor. Alpha is an acronym for an Abstract-Level Progress
Health Attribute. The associations between seven alphas are depicted on Figure 1.

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

573

Figure 1: The associations between kernel alphas (source: Object Management Group, 2018)

Essence (Object Management Group, 2018) define alphas states and conditions for
transition as follows:

Stakeholders: Recognized (Stakeholder groups identified; Key stakeholder groups
represented; Responsibilities defined), Represented (Responsibilities agreed;
Representatives authorized; Collaboration approach agreed; Way of working
supported & respected), Involved (Representatives assist the team; Timely feedback
and decisions provided; Changes promptly communicated), Agreement (Minimal
expectations agreed; Rep's happy with their involvement; Rep's input valued; Team's
input valued; Priorities clear & perspectives balanced), Satisfied for Deployment
(Stakeholder feedback provided; System ready for deployment) and Satisfied in Use
(Feedback on system use available; System meets expectations)

Opportunity: Solution Needed (Solution identified; Stakeholders' needs established;
Problems and root causes identified; Need for a solution confirmed; At least one
solution proposed), Value Established (Opportunity value quantified; Solution impact
understood; System value understood; Success criteria clear; Outcomes clear and
quantified). Viable (Solution outlined; Solution possible within constraints; Risks
acceptable & manageable; Solution profitable; Reasons to develop solution
understood; Pursuit viable), Addressed (Opportunity addressed; Solution worth

574 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

deploying; Stakeholders satisfied), Benefit Accrued (Solution accrues benefits; ROI
acceptable)

Requirements: Conceived (Stakeholders agree system is to be produced; Users
identified; Funding stakeholders identified; Opportunity clear), Bounded
(Development stakeholders identified; System purpose agreed; System success clear;
Shared solution understanding exists; Requirements format agreed; Requirements
management in place; Prioritization scheme clear; Constraints identified &
considered; Assumptions clear), Coherent (Requirements shared; Requirements'
origin clear; Rationale clear; Conflicts addressed; Essential characteristics clear; Key
usage scenarios explained; Priorities clear; Impact understood; Team knows & agrees
on what to deliver), Acceptable (Acceptable solution described; Change under control;
Value to be realized clear; Clear how opportunity addressed; Testable), Addressed
(Enough addressed to be acceptable; Requirements and system match; Value
realized clear; System worth making operational), Fulfilled (Stakeholders accept
requirements; No hindering requirements; Requirements fully satisfied)
Software System: Architecture Selected (Architecture selection criteria agreed; HW
platforms identified; Technologies selected; System boundary known; Decisions on
system organization made; Buy, build, reuse decisions made; Key technical risks
agreed), Demonstrable (Key architectural characteristics demonstrated; System
exercised & performance measured; Critical HW configurations demonstrated;
Critical interfaces demonstrated; Integration with environment demonstrated;
Architecture accepted as fit-for-purpose), Usable (System can be operated; System
functionality tested; System performance acceptable; Defect levels acceptable;
System fully documented; Release content known; Added value clear), Ready (User
documentation available; System accepted as fit-for-purpose; Stakeholders want the
system; Operational support in place), Operational (System available for use; System
live; Agreed service levels supported), Retired (Replaced or discontinued; No longer
supported; No authorized users; Updates stopped)

Team: Seeded (Mission defined; Constraints known and defined; Growth
mechanisms in place; Composition defined; Responsibilities outlined Required
commitment level clear; Required competencies identified; Size determined;
Governance rules defined; Leadership model selected), Formed (Enough members
recruited; Roles understood; How to work understood; Members introduced;

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

575

Individual responsibilities accepted and aligned to competencies; Members
accepting work; External collaborators identified; Communication mechanisms
defined; Members commit to team), Collaborating (Works as one unit;
Communication open and honest; Focused on mission; Members know each other),
Performing (Consistently meeting commitments; Continuously adapting to change;
Addresses problems; Rework and backtracking minimized; Waste continuously
eliminated), Adjourned (Responsibilities fulfilled; Members available to other teams;
Mission concluded)

Work: Initiated (Required result clear; Constraints clear; Funding stakeholders
known; Initiator identified; Accepting stakeholders known; Source of funding clear;
Priority clear), Prepared (Commitment made; Cost and effort estimated; Resource
availability understood; Risk exposure understood; Acceptance criteria established;
Sufficiently broken down to start; Tasks identified and prioritized; Credible plan in
place; Funding in place; At least one team member ready; Integration points
defined), Started (Development started; Progress monitored; Definition of done in
place; Tasks being progressed), Under Control (Tasks being completed; Unplanned
work under control; Risks under control; Estimates revised to reflect performance;
Progress measured; Re-work under control; Commitments consistently met),
Concluded (Only admin tasks left; Results achieved; Resulting system accepted), Closed
(Lessons learned; Metrics available; Everything archived; Budget reconciled &
closed; Team released; No outstanding, uncompleted tasks)

Way of Working: Principles Established (Team actively support principles;
Stakeholders agree with principles; Tool needs agreed; Approach recommended;
Operational context understood; Practice & tool constraints known), Foundation
Established (Key practices & tools selected; Practices needed to start work agreed;
Non-negotiable practices & tools identified; Gaps between available and needed way
of working understood; Gaps in capability understood; Integrated way of working
available), In Use (Practices & tools in use; Regularly inspected; Adapted to context;
Supported by team; Feedback mechanisms in place; Practices & tools support
collaboration), In Place (Used by whole team; Accessible to whole team; Inspected
and adapted by whole team), Working Well (Predictable progress being made;
Practices naturally applied; Tools naturally support way-of-working; Continually
tuned), Retired (No longer in use; Lessons learned shared)

576 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

3 BeeAPEX project

BeeAPEX is an acronym for the BEE with APEX (Better Employability for
Everyone with APEX) Erasmus+ project which aims to support the digital
transformation of higher education institutions through the development of the
digital readiness, resilience and capacity of educators and students. Modernization
of IT curricula and courses in the areas of front-end and back-end design of
applications and databases can build up higher education institutions’ capacities and
adopting a more inclusive approach to digital literacy. Duration of the project is from
01. 11. 2021 to 31. 10. 2023. Expected results are: an advanced, open access, extra-
curricular bachelor-level course on low-code development of front- and back-end
applications and databases (lectures, practical exercises, assessments, exams, and
independent learning for a total effort of 75 hours); documentation needed to get
the course recognized and awarded with 3 ECTS; an e-book on low-code
programming with APEX, a short course for independent learning on low-code
development of front- and back-end applications and database; a 5-day training for
professors, lecturers and postdoctoral teaching assistants; pre-recorded webinars on
industry and employment trends; case studies created jointly with local SMEs on
low-code programming; academic articles; a project website with all relevant
information about the project activities, outputs and results,; a showcase of selected
students’ project work; dissemination and multiplier activities; more inclusive and
student-centered IT education. Let’s make and overview of Alphas.

3.1 Stakeholders

Essence definition: The people, groups, or organizations who affect or are affected
by a software system.

The project consortium comprises six academic partners which are actively involved
in project implementation. Oracle Academy is associate partner which supports the
project through the provision of free services, consultations and dissemination of
results. IT sector is consumer of graduates. It’s role as reviewer and adviser makes
feedback loop between development team and economy. Teachers and students as
the target audiences have a tester role by using learning material and providing
qualitative and quantitative feedback to the developers. Developers also use the

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

577

project results. One important stakeholder is national agency (CMEPIUS) which
represents European Commission as a financer of the Erasmus+ program and this
particular project.

3.2 Opportunity

Essence definition: The set of circumstances that makes it appropriate to develop or
change a software system.

According to the European Commission's Higher Education Modernization
Agenda, higher education should enhance individual potential and should equip
graduates with the knowledge and core transferable competences they need to
succeed in high-skill occupations. The agenda identifies the slow updating of
curricula to the changing needs in the wider economy as one of the challenges higher
education institutions need to resolve. The BeeAPEX project addresses the
discrepancy between graduates' knowledge and the IT skills demanded on the labor
market. In order to reach and educate a higher number of students, the provision of
IT training in higher education should be reconsidered to expand to an increasing
number of students enrolled in non-technical study programs, and the use of digital
and blended learning tools and methodologies enabling self-regulated and
collaborative learning activities should be enhanced. The possession of development
and coding skills is traditionally associated with concrete IT professions such as
front-end developer, back-end developer and web developer. Because of the
advancement of the digital economy, however, these skills are increasingly needed
and used in a wide range of other professions in which case they are complementary,
not primary, for the performance of one's job. The project's objective is to
contribute to the digital transformation of six higher education institutions through
the development of the digital capabilities of their educators and students, in
particular through the development of blended learning resources and the
development of novel teaching and collaborative capacities. Firstly, the digital
capabilities of teaching and research staff is to be enhanced through the organizing
of training on and expertise-exchange in the areas of digital course creation, low-
code programming, and front-end and back-end development of applications and
databases. Secondly, the project is to contribute to the more inter-connected
development of curriculum and blended learning in the area of low-code

578 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

programming. The main project result would be the creation of new courses (a short
digital and an advanced extra-curricular course) available for all bachelor-level
students enrolled at the higher education institutions. On business level, it would
enable local businesses to have access to a better educated workforce.

3.3 Requirements

Essence definition: What the software system must do to address the opportunity
and satisfy the stakeholders.

It is necessary to provide high quality education material on low-code programming
(in Oracle Application Express – APEX), which include textbook, software, data
and videos. Textbook must provide student of any discipline clear guides to:

• get started with APEX low-code environments, prepare a database, navigate
through APEX, exchange data, generate web and mobile application,
manage reports, forms and menus, facilitate teamwork in APEX, find the
benefit of sample and starter applications and to manage packaged and
multilingual web applications in APEX

• develop own application inspired by twelve cases from real life of different
sectors of economy. Each case must include: business view, problem
definition, use case textual, semi-structured and graphical presentation, data
model development process (narrative description, logical, relational,
physical) via forward and possibly reverse engineering and finally interface
design. Each business case must have developed supplementary learning
material: exported application and video guides. Exported application must
enable teachers and students to easy install and study the code and the data.

All textbook chapters must include at least three questions and answers which could
be easy modified into questions for quizzes. Twelve business cases provide the
foundation for flexible design of short courses on low-code web application
development depending on the user (teacher, student) background, competences
and available time. The most common form of short course would involve 25 hours
of student effort while in marginal situation only 1 hour could be practiced.

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

579

Other project deliverables are less software dependent as they are means of
dissemination of main project results.

3.4 Software system

Essence definition: A system made up of software, hardware, and data that provides
its primary value by the execution of the software.

Twelve business cases included as textbook chapters result in low-code web
applications. Development environment is Oracle APEX as one of the most viable
and capable tools. The constraint is that application can’t run on other databases,
however the argument of always free availability to anyone, resolves the risk of
locking to one vendor. Primary value of each application is that principles of data
driven web application development in different contexts can be transferred thus
enabling students to reuse and enhance the competences in the real business
environment. Applications are focused on: internet news for employees, catalogue
of local plants, user authorization and management, small innovation system,
business process management, exchange of plants and seeds, book review
management system, calculation of bill of material, nutrition and diet management,
office hours scheduling, telecommunication services billing and car rental. Each
application uses distinct database tables to prevent the data mess.

3.5 Team

Essence definition: A group of people actively engaged in the development,
maintenance, delivery or support of a specific software system.

The team members are affiliated in six countries and universities. Each project
partner organized sub teams of two to five web developers, reviewers, testers,
documentation writers, designers, database administrators. Due to physical distance
are rare live meetings, the heavy use of videoconferencing and team collaboration
systems is a must. BeeAPEX web site is founded on Moodle LMS with integrated
BBB videoconferencing system. Currently there are 44 registered users, grouped by
participating institutions and stakeholders.

https://beeapex.eu/

580 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

3.6 Work

Essence definition: Activity involving mental or physical effort done in order to
achieve a result.

The main BeeAPEX project activities are:

1. low-code web application development involves designing, database
modelling, database administration, database programming, application
testing (own)

2. application documentation, reviews and application testing (others)
3. reviewing of textbook chapters, supplementary materials, videos
4. project administration, coordination among members, task progress

monitoring etc.

3.7 Way of working

Essence definition: The tailored set of practices and tools used by a team to guide
and support their work.
Development environment include the following set of practices and tools:

1. Oracle APEX as a primary tool for development. Besides the Oracle
Academy development workspace can be obtained: a) free workspace on
apex.oracle.com, b) free instance within OCI, Oracle Cloud Infrastructure,
c) on-premise APEX d) developer virtual machine or e) docker. The
advantage of apex.oracle.com and OCI is that the latest version (at the time
of writing the version was 22.2) is on disposal. No backward compatibility
is assured.

2. Oracle JDeveloper Studio Edition 12.2 and higher to draw use-case
diagrams.

3. SQL Developer Data Modeler 21.4.2 and higher develop logical and
relational data models. Since it allows forward and reverse engineering,
developer can generate diagrams from SQL scripts.

4. git 2.35 on developers’ computers

https://apex.oracle.com/
https://apex.oracle.com/

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

581

5. dedicated GitLab server as remote repository. Repository contains all
developer branches, which are merged into origin.

6. Texstudio or TexMaker for writing documentation
7. Video capturing program and video editor. Recommended video capture

programs are Free Cam (for Windows) and Kazam (Linux) while video
editor is KDEnlive (Windows and Linux)

8. Each BeeAPEX project member and contributors to the textbook can use
remote desktop accounts where all development tools are installed.

Git remote repository enables accelerated delivery of main project results. Textbook
chapters are assigned to project partners (3-5 each). Each partner is to provide
translation of the textbook in local language.

4 Estimation of BeeAPEX project Alphas

Twelve months after kick-of meeting, three live meetings, a lot of communication
(videoconferences, email, phone, collaboration via Moodle) and developers
endeavor, our estimation of the project alphas can be summarized:

Stakeholders: Agreement (Minimal expectations agreed; Rep's happy with their
involvement; Rep's input valued; Team's input valued; Priorities clear & perspectives
balanced). The project consortium is stable, Oracle Academy continuously support
dissemination of the intermediate results, IT sector is involved through advising and
providing feedback. Teachers and students are included in testing. Developers
exchange knowledge. National agency (CMEPIUS) provides adequate support for
this particular project.

Opportunity: Addressed (Opportunity addressed; Solution worth deploying;
Stakeholders satisfied). Procedure of accreditation of extracurricular course started
by project partners where applicable. Some partners decided to include developed
contents in existing already accredited courses which exceeds initial expectations of
the project. This project already contributes to the digital transformation of six
higher education institutions through the development of the digital capabilities of
their educators and students.

https://swqgit.fov.um.si/

582 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

Requirements: Addressed (Enough addressed to be acceptable; Requirements and
system match; Value realized clear; System worth making operational). At the time
of writing, we approximate that more than half of requirements are already fulfilled.
Most of chapters in the textbook are under peer review. One chapter is not
submitted yet, all twelve applications are submitted. Some reworks and preparation
of supplementary learning material is expected. Provided results already enable
teacher to design short courses.

Software System: Demonstrable (Key architectural characteristics demonstrated;
System exercised & performance measured; Critical HW configurations
demonstrated; Critical interfaces demonstrated; Integration with environment
demonstrated; Architecture accepted as fit-for-purpose).

Twelve applications are ready for demonstration and all agreed areas of the textbook
are covered.

Team: Collaborating (Works as one unit; Communication open and honest; Focused
on mission; Members know each other). The team members are collaborating and
utilizes established environment. Overall, no major changes in team occurs. One
project partner had issue with skilled developer however with the support of other
team members, the progress is noticeable.

Work: Under Control (Tasks being completed; Unplanned work under control; Risks
under control; Estimates revised to reflect performance; Progress measured; Re-
work under control; Commitments consistently met). Low-code web applications
are development and all undelaying activities performed. Application documentation
is in progress. At the time of writing more than 300 pages are submitted in agreed
form. Regular video meetings are held, communication via phone, emails and
collaboration tools in Moodle is appropriate.

Way of Working: Working Well (Predictable progress being made; Practices naturally
applied; Tools naturally support way-of-working; Continually tuned). Working with
git presented new way of working and some team members had no prior experience.
Therefore, some fear at the beginning of the project was present. Also, Latex
environment posed extra effort for some team members. Despite remote desktop

R. Leskovar, W. Schwinger, W. Retschitzegger, A. Tsimpiris, A. Angeioplastis, D. Oreški,
V. Strahonja, M. Kvet, K. Matiaško, M. Sońta, J. Mańko, A. Baggia:
Alphas of Low Code Development Project: BeeAPEX Case

583

environment is available, but the utilization is low because developers prefer working
on their equipment. Git remote repository integrates all software artefacts
satisfactory. Current size of the repository is 238 MB in 9 branches of English
version has 109 directories and 806 files.

5 Conclusions

Essence as a generalized and novel approach to construct a tailored software
development methodologies and toolset for monitoring the project progress was
applied for this research. Alphas of Essence were easy to understand and apply in
the particular BeeAPEX project. We applied only pre-defined alphas and conclude
they describe the most important aspects of low-code development project well. We
are confident that Essence provides efficient and effective approach for Erasmus+
projects with any kind of software deliverables. Estimation of the state of the alphas
is rigorous. All conditions must be meet to progress to the next state (level). Such
approach is conservative and known from SEI Capability Maturity Model on. Our
estimation of BeeAPEX project alphas was straight forward and fast. Visualization
of the states would further contribute to usability with less effort and with greater
impact. The estimation of the states of alphas twelve months after project kick-of
gives the team some evidence-based confidence that project progresses according to
plan.

Acknowledgements
The authors would like to acknowledge the support given by the European Commission through the
Action Erasmus + Better Employability for Everyone with APEX (project ID 2021-1-SI01-KA220-
HED-000032218), co-funded by the Erasmus+ programme of the European Union. The European
Commission support for the production of this publication does not constitute endorsement of the
contents which reflects the views only of the authors, and the Commission cannot be held responsible
for any use which may be made of the information contained therein.

Also, authors express acknowledgement to Oracle Academy Program Manager Mr. Darko Jureković
for continuous support in project results dissemination.

584 42ND INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:
INTERDISCIPLINARITY COUNTS

References

Akbar, M. A., Sang, J., Khan, A. A., Fazal-E-Amin, Nasrullah, Shafiq, M., Hussain, S., Hu, H., Elahi,

M., & Xiang, H. (2017). Improving the quality of software development process by introducing
a new methodology-Az-model. IEEE Access, 6, 4811–4823.
https://doi.org/10.1109/ACCESS.2017.2787981

Chaudhary, M., & Chopra, A. (2017). CMMI for Development. In CMMI for Development.
https://doi.org/10.1007/978-1-4842-2529-5

Dendere, R., Janda, M., & Sullivan, C. (2021). Are we doing it right? We need to evaluate the current
approaches for implementation of digital health systems. Australian Health Review, 778–781.
https://doi.org/10.1071/AH20289

Galin D. (2018). Software Quality: Concepts and Practice. IEEE Computer Society, John Wiley &
Sons, Hoboken, NJ

ISO & IEC. (2017). ISO/IEC 25010 Software Quality Model.
(https://www.iso.org/standard/35735.html)

ISO/IEC/IEEE. (2018). ISO / IEC / IEEE 29148 Systems and software engineering — Life cycle
processes - Requirements engineering.

Jacobson, I., Lawson, H., Ng, P.-W., McMahon, P. E., & Goedicke, M. (2019). The Essentials of
Modern Software Engineering.

Object Management Group. (2018). Kernel and Language for Software Engineering Methods
(Essence). 2007 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis, Versión 1.2, 300. https://www.omg.org/spec/Essence/1.2

Park, J. S., Jang, J., & Lee, E. (2018). Theoretical and empirical studies on essence-based adaptive
software engineering. Information Technology and Management, 19(1), 37–49.
https://doi.org/10.1007/s10799-016-0273-5

Rasheed A., Shehryar T., Aiman Aslam N., Zafar B. (2021). Requirement Engineering Challenges in
Agile Software Development. Mathematical Problems in Engineering (2021, May).
DOI:10.1155/2021/6696695

Reel J.S. (1999), Critical success factors in software projects, IEEE Software, vol. 16, no. 3, pp. 18-23,
May-June 1999, doi: 10.1109/52.765782.

