
ATHENA Research Book, Volume 1 Reprint

Reprint. This article was first published in Mokslas – Lietuvos Ateitis. Elektronika Ir Elektros
Inžinerija, 13, 1–5. https://doi.org/10.3846/mla.2021.15180.

Analysis of Linux OS Security Tools for

Packet Filtering and Processing

Dmitrij Melkov1, Šarūnas Paulikas1

1 Vilnius Gediminas Technical University, Saulėtekio al. 11, Vilnius, Lithuania

{dmitrij.melkov, sarunas.paulikas}@vilniustech.lt

Abstract. Open-source software and its components are widely used in various

products, solutions, and applications, even in closed-source. Majority of them

are made on Linux or Unix based systems. Netfilter framework is one of the

examples. It is used for packet filtering, load-balancing, and many other

manipulations with network traffic. Netfilter based packet filter iptables has

been most common firewall tool for Linux systems for more than two decades.

Successor of iptables – nftables was introduced in 2014. It was designed to

overcome various iptables limitations. However, it hasn’t received wide

popularity and transition is still ongoing. In recent years researchers and

developers around the world are searching for solution to increase performance

of packet processing tools. For that purpose, many of them trying to utilize

eBPF (Extended Berkeley Packet Filter) with XDP (Express Data Path) data

path. This paper focused on analyzing Linux OS packet filters and comparing

their performances in different scenarios.

Keywords. Linux, Netfilter, iptables, nftables, eBPF, XDP, firewalls, packet

filters.

358 Analysis of Linux OS Security Tools for Packet Filtering and Processing

1 Introduction

Nowadays, open-source software is extensively used in many different areas and devices. From

supercomputers and enterprise level network devices to smartphones and various Internet of

Things (IoT) devices. Open-source software is decentralized in many cases, so multiple

stakeholders can do adjustments or fixes. Development of open-source software is rapid, and

it basically open to everyone without any cost. So, it is quite clear why it has achieved such

popularity.

In networking, open-source code is also playing a major role. TCP/IP stack in Linux and

Unix systems is solid, mature and offers switching, routing, firewalling, and other functional-

ity with possibility to tune it for various purposes. That is why it widely used by many

companies in their proprietary software and hardware products using proprietary software.

Cisco Open NX-OS is built on Linux kernel (Cisco DevNet, 2021). Others Cisco’s operating

systems such as IOS-XE, NX-OS are also built on Linux. Juniper’s Junos OS Evolved runs

natively on Linux whereas classical Junos OS runs over an instance of the FreeBSD (Juniper

Networks, 2021). Citrix Systems Netscaler software is also based on FreeBSD (Citrix, 2017).

Additionally, in a lot of Linux based systems Netfilter framework is utilized for packet fil-

tering, load-balancing and other manipulations with IP packets. The most famous Netfilter’s

utility iptables was introduced back in 1998. It became a standard for firewalling tools. However,

various architectural limitations of iptables have pushed developers to introduce his successor –

nftables. It overcome main iptables limitations (Westphal, 2016). For example, addition and

removal of rules is now atomic, it is especially useful for applications such as Kubernetes or Red

Hat’s Openshift where ruleset updates are constant and very frequent. Most rule handling was

moved to userspace. Support of new protocol will not require to implement kernel changes.

Instead, only nft tool need to be updated. Since version 3.13 nftables was merged into the Linux

kernel. Despite all advantages, full migration from iptables to nftables have not happened yet.

In 2018 iptables was considered legacy tools and iptables-nft tool was released to translate

iptables rules into nftables and to enforce migration.

Increasing network speeds and transferred data rate has led Linux community to think about

alternative options of iptables replacer. In recent years, a lot of attention is focused on using

eBPF functionality to make iptables alternative based on it. First results are showing that

performance gain could be quite significant. What was one of the controversies in case of nfta-

bles.

This paper is structured as follows. In “Related Work” section results of similar works are

presented. In section “Packet flow in Netfilter and eBPF” packet flow in iptables, nftables and

eBPF is discussed. Our measurement results of UDP traffic are presented in section “Experi-

mental results”. Conclusions are provided in last section.

Melkov, D., Paulikas, Š. 359

2 Related works

In our previous work “Performance Testing of Linux Firewalls” (Melkov et al., 2020) we

measured how TCP throughput depends on number of installed rules in iptables or nftables.

Experiment was done using different Netfilter chains: PREROUTING, INPUT, FORWARD,

OUTPUT. Different amount of virtual CPU (vCPU) was used on virtual machine with

installed iptables or nftables. Results showed performance advantage of iptables over nftalbes

in all scenarios. Best result was achieved using ipset extension. Scholz et al. (2018) examined

how number of processed packets per second depends on number of rules in iptables and

nftables. Then they compared these results with results when XDP was used. XDP utilize

eBPF virtual machine to process packets before they reach kernel. Witch such set-up they

were able to reach four times better results than using iptabes and nftables. Bertrone et al.

(2018a) in paper “Toward an eBPF-based clone of iptables” proposed architecture of a

possible replacement of iptables with an equivalent software based on eBPF technology. They

proposed how to implement matching algorithm and connection tracking using eBPF

preserving iptables semantic and syntax. In their another paper “Accelerating Linux Security

with eBPF iptables” (Bertrone et al., 2018b) they made performance tests of iptables and

their designed iptables alternative – bpf-iptables. Two different tests were done. In first test

they measured UDP throughput in FORWARD chain and in second test TCP throughput

was measured in INPUT chain. In both cases custom bpf-iptbales tool outperformed standard

iptables. Greater advantage seen with increased number of installed rules. In further work

from same authors “Securing Linux with a Faster and Scalable Iptables” (2019) they did

nftables performance test in same scenarios. Results were worse than using custom created

bpf-iptables and standard iptables. Tumolo form Politecnico di Torino in his master thesis

“Toward a faster iptables in eBPF” (Tumolo, 2018) implemented his own version of iptables

using eBPF and measured UDP throughput and ICMP latency. Results were compared with

standard iptables results. Higher throughput and lower latency were achieved using his

custom created bpf-iptables tool. Article “Benchmarking nftalbes” published by Sutter (2017)

confirms other performance testing of iptables and nftables. In this article nftalbes was able

to outperform iptables only in scenario when native nftables set functionality was used. Using

this functionality, it is possible to add multiple targets into single match rule. But same result

could be achieved using ipset extension for iptables. It was confirmed in the same article and

in our previous paper.

3 Packet flow in Netfilter and eBPF

In case of Netfiler/iptables each packet travels through several chains and tables. First, every

packet that enters system will go thorough Raw, Mangle and NAT tables of PREROUTING

chain. If packet destined to local applications, it would enter INPUT chain and will go through

Mangle and Filter tables. Otherwise, when packet should be routed, it will enter FORWAD

chain and will go through same tables as in INPUT chain. If packet was locally generated, it

360 Analysis of Linux OS Security Tools for Packet Filtering and Processing

enters OUTPUT chain and will also go through Raw, Mangle, NAT, and Filter tables. At

the very end of the path, every packet enters POSTROUTING chain which contains mangle

and NAT tables. In case of ipbales packet will go through all chains. Unlike iptbales, nftables

does not have all chains and tables by default. So, it is up to user to determine which chains

and tables should be used (Suehring, 2015).

eBPF programs can be attached even before packet enter PREROUTING chain of Net-

filter. eBPF based program XDP provides possibility to process packets before TCP/IP stack

achieving higher performance of packet processing (Miano et al., 2019b). Location of Netfil-

ter’s chains, most popular tables and eBPF hooks are shown in Figure 1.

Figure 1. Location of Netfilter chains and eBPF hooks (Miano et al., 2019a)

4 Experimental results

Experiment was done in network laboratory at the Faculty of Electronics of the Vilnius Tech

University. We used same testbed as in our previous work (Melkov et al., 2020). It was

designed according to recommendations provided int RFC 3511.

Testbed was made from 2 IBM System x3550 M3 servers with installed ESXi hypervisor

and physical switch Cisco Catalyst 3650 series. VM with installed iptables version 1.8.3 was

hosted on ESXi server with 12 CPU × 2.40 GHz and 96 GB of RAM. To translate rules of

iptables into nftables, iptables-nft tool was used. Sender and receiver VM’s were hosted on

another ESXi server with 8 CPU × 2.4 GHz and 96 GB of RAM. For each VM we dedicated

8 GB of RAM and 2 vCPU. As operating system we used Ubuntu 18.10 version. To ensure

L3 connectivity, sender and receiver had IP addresses from different subnets and were con-

nected to separate virtual Switch (vSwitch). VM with installed packet filter had two inter-

faces, one for subnet of sender and another for subnet of receiver. Each interface was

connected to separate vSwitch. Two 1 Gb/s uplinks from each ESXi server were connected

to physical Cisco switch. Logical diagram of testbed is shown in Figure 2. For traffic genera-

tion and analysis iPerf tool was used. Measurements were done in FORWARD and INPUT

chains of iptables and nftables using 1, 2 and 4 dedicated vCPU for VM. We measured three

different UDP flows. First flow consisted of 128 B packets with 15 Mbps bandwidth, second

Melkov, D., Paulikas, Š. 361

flow consisted of 512 B packets with 30 Mbps bandwidth and third flow consisted of 1280 B

packets with 45 Mbps flow. Measurements for each flow were done separately. For the begin-

ning, VM with installed packet filter had 2 dedicated vCPU.

Figure 2. Logical network diagram of testbed (Melkov et al., 2020)

Experimental results of iptables are shown in Figure 3. As we can see from the graph, in

case of 15 Mbps flow of 128B packets degradation starts at around 5 thousand installed rules.

Degradation means that packet filter is not able to process all UDP packets and starts to

drop some of them. When 30 Mpbs flow consists of 512 B packets degradation starts at

around 11 thousand installed rules and in case of 45 Mbps flow that consists of 1280 B packets

degradation starts at around 20 thousand rules. After the point when packet filter has more

than 20 thousand installed rules number of processed packets per second decreases in same

manner for each flow. So, at this point there is no difference for firewall what size packets

are, as number of processed packets will remain the same. Then we repeated measurements,

but filtering was done in INPUT chain. In that scenario receiver was VM with installed packet

filter itself. In contrast to our previous work (Melkov et al., 2020), when TCP throughput

was better in INPUT chain, in case of UDP traffic results were the same as in FORWARD

chain. Also, there were no difference in results with 1 or 4 dedicated vCPU.

Figure 3. Processed UDP packets per second using iptables

362 Analysis of Linux OS Security Tools for Packet Filtering and Processing

Same measurements were done filtering packets with nftables instead of iptables. Experi-

mental results are shown in Figure 4. Performance of nftables worse than iptables as decrease

in number of processed packets per seconds starts earlier. It starts at around 1, 2 and 3.5

thousand of installed rules for 128 B, 512 B and 1280 B packets accordingly. As in previous

case, performance of filtering packet in FORWARD and INPUT chain is the same.

Figure 4. Processed UDP packets per second using nftables

In Figure 5 advantage of iptables over nftables are shown. As we can see form this picture,

advantage is greater with smaller size packets. It is increases with number of installed rules

into packet filter. With 6 thousand rules installed, iptables processing around 5.2 times more

128 B packets. In case of 512 B and 1280 B packets advantage is around 2.9 and 1.7 times

accordingly.

Figure 5. Advantage of iptables over nftables

Melkov, D., Paulikas, Š. 363

In order to find reason of decrease in number of processed packets we tried to measure

CPU utilization during the tests on VM where packet filter was installed. We were able to

find relation between CPU performance decrease and CPU utilization. On Figure 6 CPU

utilization during iptables test with 128 B packets are shown. As we can see from this graph,

when number of installed rules is lower than 5 thousand there are some fluctuations of CPU

utilization. But when there are more than 5 thousand installed rules usage of CPU1 for hand-

ing software interrupts reaching almost 100%, while CPU0 is idle for almost 100%. Breaking

point of 5 thousand rules are the same as the point of performance degradation in Figure 3

for 128 B packets. In Figure 7 CPU utilization during test of iptables with 1280 B packets

are shown. Again, CPU1 was utilized for almost 100% starting at around 20 thousand rules.

It matches degradation point of flow with 1280 B packets as in Figure 3. Same CPU utilization

pattern was also visible in case of using nftables.

Figure 6. CPU utilization filtering 128 B packets in iptables

Figure 7. CPU utilization filtering 1280 B packets in iptables

364 Analysis of Linux OS Security Tools for Packet Filtering and Processing

5 Conclusions

Development of open-source packet filtering tool attracts a lot of attention from developers

and researchers. The main goals are to overcome limitations of iptables and to achieve higher

filtering performance. Nftables solves a lot of limitations. However, our and other benchmarks

shows that if entire rule set is not designed for nftables, performance is worse than using

standard iptables (Tumolo, 2018). It is problem for applications such as Kubernetes that uses

ipables as transition to nftables without performance degradation will require change of

ruleset’s logic. Use of eBPF virtual machine with XDP program can bring significant increase

of performance, but still a lot of work should be done to keep various Netfilter functionality

such as connection tracking and other.

In our paper we presented how number processed UDP packets per second depend on

number of installed rules into iptables or nftables packet filter. It was concluded, that iptables

outperforms nftables. Also, performance is not depending on chain where filtering is performed

and not depending on amount of dedicated vCPU for VM with installed packet filter. We

noticed, that packet filters use only single vCPU during processing of UDP packets.

So far researcher’s attention mainly focused on measuring TCP throughput when filtering

is performed in eBPF virtual machine. Our future works should be focused on measuring

UDP flow characteristics (packet loss, latency, jitter) while eBPF and XDP technologies are

used for filtering.

References

Bertrone, M., Miano, S., Pi, J., Risso, F., & Tumolo, M. (2018a). Toward an eBPF-based

clone of iptables [Conference presentation]. The Technical Conference on Linux

Networking, Montreal, Canada.

Bertrone, M., Miano, S., Risso, F., & Tumolo, M. (2018b). Accelerating Linux security with

eBPF iptables [Conference presentation]. The ACM SIGCOMM 2018 Conference,

Budapest, Hungary. SIGCOMM. https://doi.org/10.1145/3234200.3234228

Cisco DevNet. (2021). Open NX-OS Linux. https://developer.cisco.com/docs/nx-os/#!open-

nx-os-linux/open-nx-os-linux

Citrix. (2017). How to check the version of FreeBSD on NetScaler.

https://support.citrix.com/article/CTX221291

Juniper Networks. (2021). Junos OS Evolve overview.

https://www.juniper.net/documentation/us/en/software/junos/evo-

overview/topics/concept/evo-overview.html

Melkov, D., Paulikas, Š. 365

Melkov, D., Šaltis, A., & Paulikas, Š. (2020). Performance testing of Linux firewalls

[Conference presentation]. 2020 IEEE Open Conference of Electrical, Electronic and

Information Sciences (eStream), Vilnius, Lithuania. IEEE.

https://doi.org/10.1109/eStream50540.2020.9108868

Miano, S., Bertrone, M., Risso, F., Vásquez Bernal, M., Lu, Y., & Pi, J. (2019a). Securing

Linux with a faster and scalable iptables. ACM SIGCOMM Computer Communication

Review, 49(3), 2–17. https://doi.org/10.1145/3371927.3371929

Miano, S., Doriguzzi-Corin, R., Risso, F., Siracusa, D., & Sommese, R. (2019b). Introducing

SmartNICs in server-based data plane processing: the DDoS mitigation use case. IEEE

Access, 7, 107161–107170. https://doi.org/10.1109/ACCESS.2019.2933491

Scholz, D., Raumer, D., Emmerich, P., Kurtz, A., Lesiak, K., & Carle, G. (2018).

Performance implications of packet filtering with Linux eBPF [Conference presentation].

30th International Teletraffic Congress, Vienna, Austria. IEEE.

https://doi.org/10.1109/ITC30.2018.00039

Suehring, S. (2015). Linux Firewalls: Enhancing security with nftables and beyond (4th ed.).

Addison-Wesley.

Sutter, P. (2017). Benchmarking nftables. Red Hat Developer blog.

https://developers.redhat.com/blog/2017/04/11/benchmarking-nftables

Tumolo, M. (2018). Towards a faster iptables in eBPF [Master thesis]. Politecnico di Torino.

Westphal, F. (2016). What comes after “iptables”? Its successor, of course “nftables”. Red

Hat Developer blog. https://developers.redhat.com/blog/2016/10/28/what-comes-after-

iptables-its-successor-of-course-nftables

