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Abstract. Methods based on artificial neural networks (ANN) are widely used 

in various audio signal processing tasks. This provides opportunities to optimize 

processes and save resources required for calculations. One of the main objects 

we need to get to numerically capture the acoustics of a room is the room 

impulse response (RIR). Increasingly, research authors choose not to record 

these impulses in a real room but to generate them using ANN, as this gives 

them the freedom to prepare unlimited-sized training datasets. Neural networks 

are also used to augment the generated impulses to make them similar to the 

ones actually recorded. The widest use of ANN so far is observed in the 

evaluation of the generated results, for example, in automatic speech 

recognition (ASR) tasks. This review also describes datasets of recorded RIR 

impulses commonly found in various studies that are used as training data for 

neural networks. 
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1 Introduction 

Room impulse response is a transfer function that describes the acoustics of a room, 

corresponding to one specific position between the sound source and the listener. Features of 

the RIR depend on the geometry of the room, the absorption and scattering coefficients of 

the surfaces, the distances of the source and receiver to the nearest reflecting surface and to 

each other. The RIR consists of silence at the beginning (its deuration determines how long 

it takes for the signal to travel to the receiver), as well as early and late reflections. We can 

convolve the RIR with an anechoic signal and thus place the signal virtually in the desired 

room. We can record the RIR in a real room, but if there is at least a slight change in the 

position of the source or receiver, we should repeat the recording. It can also be modeled using 

acoustic modeling algorithms, there are popular commercial applications such as ODEON or 

CATT-Acoustic, but using these applications it is very difficult to obtain authenticity due to 

the standard absorption coefficients assigned to the surfaces. These algorithms generate RIR 

using the Image source method (ISM). This method allows us to expect realistic results only 

if we model an almost empty room with standard geometric shapes. With the development 

of ANN technologies, in recent years, they have also been applied to the estimation of RIRs. 

ANN can be used not only to generate RIRs, but also to augment impulses generated by 

other methods to make them similar to recorded RIRs. ANN can also be used to perform 

evaluation tasks on proposed RIR generation methods. In this review, we will discuss methods 

for applying ANN to achieve all of these goals. 

2 Estimation and generation methods 

Tang et al. proposed a new geometric acoustic simulation method (GAS), which was 

compared with the ISM method. The article states that this method allows to model not only 

specular but also diffuse reflections, which makes it possible to simulate rooms with much 

more complex geometric shapes and more reflective surfaces (Tang et al., 2020a). GAS is 

based on Monte Carlo path tracing, which differs from the ISM method in that the reflections 

are generated in randomly selected directions. The authors report that their proposed method 

cannot model diffraction and low frequency reflections. This algorithm does not use neural 

networks to generate RIRs, but they are used in evaluation tasks and will be discussed in 

Section 4. 

Ratnarajah and colleagues presented a method for generating RIRs using the Generative 

Adversarial Network (GAN) and named it IR-GAN. The authors used the WaveGAN 

structure for their work, which was originally designed to generate short audio files (Donahue 

et al., 2019). The structure of WaveGAN is one-dimensional deep convolutional generative 

adversarial networks (DCGANs) that first generate a spectrogram and then convert it into 

an audio signal. In this case, the GAN trained from a dataset of RIRs recorded in a real room, 

and could later change the acoustic parameters of the generated RIRs, such as reverberation 

time (RT60), direct to reverberant ratio (DRR) and others, to generate an unlimited number 
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of new RIRs simulating new rooms (Ratnarajah et al., 2020). It should be noted that the 

authors converted the recorded RIRs to 16 kHz before sending them to the network for 

training, which means that high frequency energy is removed from the RIRs. 

Yu and Kleijn presented a method for estimating room acoustic parameters. Separate 

algorithms estimate the geometry of the room and the absorption coefficients of its surfaces. 

Convolutional neural networks (CNNs) are used to estimate geometry, and feedforward 

multilayer perceptrons (MLPs) are used to estimate absorption coefficients (Yu & Kleijn, 

2021). The authors state that satisfactory results can be achieved by training neural networks 

with only one RIR impulse, although increasing the learning dataset slightly improves the 

performance of the algorithms.  

For room geometry estimation, the CNN consisting of eight one-dimensional convolutional 

layers and three fully connected layers was used. Each convolutional layer was followed by a 

one-dimensional batch normalization layer and a leaky rectified linear unit (Leaky ReLU) 

activation function. The CNN at its end has three output nodes that provide the length, 

width, and height of the room. CNN was first trained with simulated RIRs, later the model 

was adapted to work well with recorded RIRs. The simulated RIRs were generated by the 

ISM method. 

The estimation of surface absorption coefficients was tested only on a set of simulated 

RIR data, as databases of recorded RIRs together with their absorption coefficients are not 

usually available. Both in the geometry estimation and at this stage, time domain RIRs were 

used. Surface absorption coefficients usually differ when analyzing individual frequencies, so 

the authors performed an additional processing step before sending impulses to neural 

networks - dividing RIRs into several frequency bands. In this way, the estimation can be 

performed for each frequency band separately. Chebyshev type I, 10th order filters were 

chosen for filtering as it allowed to achieve higher computational speed. The MLP used for 

this estimation had nine hidden layers, the number of neurons in each of them was halved 

from 2048 to 8 neurons each time. A rectified linear unit (ReLU) activation function was used 

after each hidden layer. 

3 Datasets 

In the ASpIRE (Automatic Speech Recognition In Reverberant Environments) challenge, 

participants worked with different datasets for training, development and evaluation (Harper, 

2015). The Fisher conversational telephone corpus dataset (Cieri et al., 2004), which contains 

more than 10,000 telephone conversations in English was provided for training. The Mixer 6 

corpus dataset (Brandschain et al., 2010), which contains 1.425 telephone conversations 

recorded in two different rooms using 15 differently arranged microphones, was designed for 

development. A new database for the evaluation of algorithms was created and named “Mixer 

8 pilot corpus”. It differed from the Mixer 6 corpus in that recordings were made in seven 

different rooms using 8 microphones spaced at different distances. 
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Ko et al. in their study compared the simulated and recorded RIRs. They compiled a 

recorded RIRs database consisting of the RWCP (Nakamura et al., 2000), the REVERB 

challenge (Kinoshita et al., 2013), and the Aachen impulse response (AIR) datasets (Jeub et 

al., 2009). They were able to achieve satisfactory results in the study only after adding point-

source noises to the simulated RIRs. These noises were taken from the MUSAN (music, 

speech, and noise corpus) database (Snyder et al., 2015). 

The authors of IR-GAN compared the RIRs generated by their method with the recorded 

RIRs of BUT ReverbDB (Szoke et al., 2019) and the aforementioned AIR database. 

Additionally, in this study, anechoic signals from the LibriSpeech database (Panayotov et al., 

2015) were used, which were convolved with both simulated and recorded RIRs. From the 

BUT ReverbDB database, the authors additionally used environmental noise files that were 

added to the convolved signals in an attempt to generate the far field signals required for 

ASR tests. 

Yu and Kleijn also used BUT ReverbDB data in their experiments as a set of recorded 

RIR data. This decision was made due to the large number of impulses in the set from 

different types of rooms that were not empty during the measurement. The dataset consists 

of an average of 155 RIRs from each room (5 source and 31 receiver positions). The RT30 

parameter of the rooms ranged between 0.59 and 1.85 s. The dataset also contains geometric 

information for all measured rooms. The simulated RIR dataset was generated using a Room 

Impulse Response Generator (Habets, 2010) with a sampling rate of 8kHz and a RIR length 

of 4096 samples, which allowed the generation of impulses lasting approximately 0.5 s. The 

recorded RIR dataset had a higher sampling rate, but before applying these impulses to neural 

networks, the authors converted the dataset to a 8 kHz sampling rate, truncated, and 

continued to use only 4096 samples. 

4 Data augmentation methods 

Ko and colleagues conducted a study to determine how the difference between the results of 

the ASR test could be eliminated when simulated and recorded RIRs are used in different 

tests (Ko et al., 2017). It was found that the ASR test results are significantly improved if 

we add point-source noises to the simulated RIRs. Table 1 shows how the word error rate 

(WER) values differ when the same acoustic model is trained on different data – using the 

point-source noise addition method and without using any augmentation method. 

Table 1. Differences in WER values when one of the augmentation methods is applied to the training 

data of the algorithm 

Algorithm / 

authors 

Augmentation method used WER [%] 

Ko et al. Without augmentation 40.9 

Addition of point-source noises 27.0 

IR-GAN Without augmentation 19.71 

Constraint method 14.99 
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The authors of the IR-GAN algorithm had to solve the problem arising from the ability 

of GAN network to generate an unlimited variety of RIR impulses. There was a high 

probability that the generated RIRs would be noisy and have an unrealistically large 

reverberation time. A constraint method was used, which allowed to limit the variety of 

generated RIRs (Ratnarajah et al., 2020). The limits of the changes in the main acoustic 

parameters were calculated from the training data, and when generating new RIRs, the GAN 

network was not allowed to exceed these limits.  Table 1 also shows how the WER value 

improves in the implementation of the IR-GAN algorithm by additionally applying this 

constraint method. 

To adapt the room geometry estimation algorithm proposed by Yu and Kleijn for use 

with recorded RIRs, the authors used the insights of the SpecAugment method (Park et al., 

2019) and added 30–50 dB signal-to-noise ratio (SNR) additive noise to the simulated RIRs 

(Yu & Kleijn, 2021). Moreover, RIRs generated by the ISM method usually lack information 

about obstacles and additional objects that can interfere with the sound wave. In real rooms, 

these objects block the trajectories of reflections or create unusual new reflections. To solve 

this problem, it is possible to remove or add randomly selected reflections from simulated 

RIRs or to add blocked reflection structures taken from recorded RIRs. The authors used the 

adaptive rectangular decomposition (ARD) method (Raghuvanshi et al., 2009) and thus tried 

to simulate possible obstacles in the room for simulated RIRs. 

Table 2. Differences in RMSE values when one of the augmentation methods is removed from the system 

Bypassed data augmentation method Average RMSE [m] 

Addition of noise 0.0310 

Adding / removing reflections 0.0570 

Adding blocked reflection structures 0.0648 

ARD method 0.1210 

 

Table 2 shows the root mean square error (RMSE) differences, which represent the 

accuracy of the results generated by the algorithm compared to known room geometry data. 

The algorithm uses all augmentation methods listed above. To identify the importance of 

each of the methods, the experiments were repeated, each time a different method of 

augmentation was bypassed. From the results, we can see that after the deactivation of the 

ARD method, the RMSE value increased the most, which means that the use of this method 

ensures the highest accuracy of the results. 

5 Evaluation methods 

Intelligence Advanced Research Projects Activity (IARPA) organized a competition called 

the ASpIRE challenge (Harper, 2015). Those wishing to participate had to develop ASR 

systems without access to matched data for system training and development. This 

competition was for the evaluation of far-field recordings and differed from previous 
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competitions in that the algorithms had to work with conversation-type voice data, the 

number of words in the vocabulary used was not limited, which means that the evaluation 

dataset could contain words that were not in the training dataset. Participants were not 

provided with any information about the audio files in the dataset. The algorithm proposed 

by the winner of this competition used the ROVER system (Fiscus, 1997), which allows to 

combine several different ASR models and thus obtain better results. In this case, the 

combination of Gaussian Mixture Models (GMMs) and Deep Neural Networks (DNNs) gave 

the best results (Hsiao et al., 2015). 

In the Ko study, the results were evaluated by performing Large Vocabulary Continuous 

Speech Recognition (LVCSR) tasks. Tasks were performed using Time-delay neural network 

(TDNN) and bi-directional long-short-term memory (BLSTM) acoustic models. The authors 

state that using the RIRs generated by their method, with the added point-source noise, the 

BLSTM model can achieve a WER value of 24.6% (Ko et al., 2017).  

The results of the GAS algorithm are evaluated by performing ASR and Keyword spotting 

(KWS) tasks. The ASR task was performed using an acoustic model that consists of two 

layers of two-dimensional convolutional neural network (2D CNN) and five layers of long 

short-term memory (LSTM). The model used for the KWS task consists of a single-layer 1D 

CNN and a two-layer LSTM. The ASR task on the BUT ReverbDB database achieved a 

WER value of 16.53%. The results of the KWS task are measured by equal error rates (EERs). 

The authors show that their proposed GAS method can reduce EER values by 21% compared 

to the ISM method (Tang et al., 2020a). 

The authors of the IR-GAN algorithm also evaluate the generated RIRs by performing an 

ASR test, using the Kaldi LibriSpeech acoustic model, which is based on the TDNN network 

(Tang et al., 2020b). The paper states that the proposed algorithm can reduce WER by 

almost 9% compared to the GAS method. However, this can only be achieved when the AIR 

dataset is selected as the training set. The authors also show that by combining RIRs 

generated by IR-GAN and GAS algorithms, WER can be reduced by more than 14% 

(Ratnarajah et al., 2020). 

Table 3. Comparison of different algorithms, databases used, ASR models and WER results obtained 

Method/ 

authors 

Dataset ASR model WER [%] 

Hsiao et al. Fisher GMM & DNN 27.1 

Ko et al. RWCP + REVERB + AIR BLSTM 24.6 

GAS BUT 2D CNN & LSTM 16.53 

IR-GAN BUT TDNN 14.99 

IR-GAN AIR TDNN 7.71 

 

The results of Yu and Kleijn’s room geometry estimation algorithm are compared with 

another algorithm using the graph-based echo labeling method (Jager et al., 2016). It should 

be noted that the recordings, selected in this study for comparison, had a sampling frequency 

of 96 kHz, while the authors used sampling frequency of 8 kHz. The authors showed that 
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both methods achieve almost identical average error, but the algorithm proposed by Yu and 

Kleijn can offer significantly better computational efficiency – even 104 shorter working time 

due to the lower sampling rate used. Comparing the known room geometry parameters and 

those estimated by neural networks, the authors were able to achieve a minimum average 

error of 4 cm for the simulated RIR data and 6.5 cm for the recorded RIR data. The smallest 

error in estimating absorption coefficients was 0.09 (Yu & Kleijn, 2021). 

6 Conclusions 

In this review, we discussed the use of ANN to generate, augment and evaluate RIRs. From 

the reviewed studies, we see that GAN, CNN, and MLP networks are used to generate RIRs 

as well as to estimate room geometry and absorption coefficients. In most studies, the authors 

have shown that better results can be achieved by applying additional augmentation to the 

generated RIRs. We can also conclude that the choice of datasets for training, as well as the 

choice of an acoustic model consisting of certain neural networks, strongly determines the 

results obtained when performing evaluation tasks of the generated RIRs, such as ASR. The 

authors of the IR-GAN algorithm, whose acoustic model was based on the TDNN, achieved 

the best results. They were able to obtain the best WER value when the AIR dataset was 

selected as the training data. 
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