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Abstract. The use of regularized finite impulse response models allows to

incorporate prior knowledge of the process. This can be used to decrease the

variance error of an online parameter estimation and ensures a robust system

identification. The online adapted model can be used to control time-variant

or nonlinear processes. This approach is named adaptive model predictive con-

trol. The investigated method is tested on a nonlinear single tank simulation

and is compared to an already established method.
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1 Introduction

The main task in model predictive control (MPC) is to predict the future output of the

process and estimate an optimal sequence for the manipulated variable with respect to

an objective function. To be able to control nonlinear processes with an MPC, a linear

model which is adapted online can be used. The advantage of a linear MPC is given by a

closed-form solution, which is computationally efficient and yields a global optimum.

For the internal model, a finite impulse response (FIR) model structure is chosen. FIR

models belong to the class of linear time-invariant models. They are well suited for the

identification of stable processes as the model class is inherently stable. Further advantages

are e.g. the linearity in the parameters, the output error configuration, and the insensitivity

w.r.t. a wrong model order or too small dead times. However, a main drawback of this

model structure is the large number of parameters which causes a high variance error. To

overcome this problem, regularization can be used by introducing an additional penalty

term in the parameter estimation [1]. Thus, prior knowledge can be incorporated and the

variance error is decreased.

The use of regularization in a recursive weighted least squares (RWLS) method is inves-

tigated. The leaky recursive least squares (LRLS) method enables the use of regularization

without loosing its effect over time [2]. The estimation of the FIR model is done online in

a closed-loop adaptive model predictive control (AMPC). This method is compared to an

AMPC which interpolates between offline identified FIR models. Both methods are tested

on a simulation of a nonlinear single tank system [3], [4].

2 AMPC Algorithm

In the presented AMPC algorithm, a single FIR model is used. The parameters of this

model are updated with the LRLS in each time step, in order to match the current process

behavior of the controlled system.

2.1 FIR Models

The output of a strictly proper FIR model with offset can be calculated by a linear com-

bination of the delayed inputs u(k − 1), . . . , u(k − n − 1). Consequently, the output of the

model ŷ(k) of order n is given by

ŷ(k) = θoff +
n∑

j=1

θju(k − j) = x(k)T θ, (1)

where x(k)T =
[

1 u(k − 1) · · · u(k − n)
]

with u(k < 1) = 0 and the (n + 1)-

dimensional parameter vector θ =
[

θoff θ1 · · · θn
]T

. To estimate θ, usually a least

squares algorithm is used.
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2.2 Online System Identification

The parameters θ̂(k) at time k can be estimated by

θ̂(k) =

(
X(k)TQ(k)X(k)︸ ︷︷ ︸

M(k)

+λR

)−1

X(k)TQ(k)y(k)︸ ︷︷ ︸
t(k)

, (2)

with the regressor matrix X(k) =
[

x(1) x(2) · · · x(k)
]T

and the measured output

vector y(k) =
[

y(1) y(2) · · · y(k)
]T

. The weighting matrix is defined by Q(k) =

diag
(
ρk−1, ρk−2, · · · , ρ0

)
with the forgetting factor ρ. The (n + 1 × n + 1)-dimensional

regularization matrix R incorporates prior knowledge of the process and the strength of

it is controlled by λ. Here, a first order impulse response preserving (IRP) kernel with

exponential weighting is used. The offset parameter θoff is unregularized. For more detail

refer to [5].

The calculation of (2) can be simplified by calculating M(k + 1) and t(k + 1) recursively

by

M(k + 1) =ρM(k) + x(k + 1)xT (k + 1),

t(k + 1) =ρt(k) + x(k + 1)y(k + 1).
(3)

This approach corresponds to the LRLS algorithm [2].

3 Simulation Results

To investigate the proposed AMPC algorithm, a single tank system is considered. The task

is to control the fill level h(k) between 0 and 10 m in a tank with a small hole as an outlet by

adjusting the inflow u(k) = V̇in(k) of the fluid. For more information about the setup and

the geometric data refer to [3]. Additionally, the fill level h(k) is disturbed with additive

white Gaussian noise.

The closed-loop AMPC, with no (λ = 0), medium (λ = 50) and strong (λ = 106)

regularization, and an open-loop AMPC are compared. The open-loop AMPC interpolates

linearly between previously learned models. These models are estimated at fill levels between

0 and 5 m (training data). For the exact configuration, refer to [3]. As reference trajectory

(test data) different fill levels between 0.5 and 9.5 m are specified and held for 100 time steps

each. Therefore, for the open-loop AMPC both interpolating and extrapolating behavior

are investigated.

The fill level trajectories are depicted in Fig. 1. For a high value of λ the controller

leads to overshoots. Furthermore, for λ = 0 the model is not robust, due to high parameter

variance which leads to poor control (400 < k < 500, k > 900).

Table 1 shows the different root mean squared error (RMSE) values to compare the

methods. RMSEall calculates the RMSE in the interval 0 < k < 1000, whereas RMSEinter

only the interval k ≤ 500 and RMSEextra only k ≥ 501 considers. It can be seen that the

RMSE of the closed-loop AMPC with λ = 50 is nearly the same as of the open-loop AMPC.
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Figure 1. Fill level h(k) for a sequence of steps for the different AMPC methods and various

regularization strengths

Table 1. Performance of the different AMPC methods

method closed-loop AMPC open-loop

λ = 0 λ = 50 λ = 106 AMPC

RMSEall 0.148 0.122 0.153 0.121

RMSEinter 0.128 0.108 0.119 0.094

RMSEextra 0.166 0.135 0.182 0.143

During interpolation the open-loop AMPC and during extrapolation the closed-loop AMPC

is preferable.

Figure 2 shows the changing model parameters θ̂(k) over time k. For λ = 0, the model

parameters have a high variance error and with λ = 50 there is a good tradeoff between

variance and bias error. In the approach with λ = 106, the wrong prior is weighted to highly

which can be seen from the peaks of the model parameters θ̂(k). Additionally, it shows that

the the open-loop AMPC do not change its parameters during extrapolation.

4 Conclusion and Outlook

We describe a closed-loop AMPC using regularized linear FIR models to control a nonlinear

process. It is shown that incorporating prior knowledge of the process can improve the

model quality. The closed-loop AMPC performs better in the extrapolation. Whereas, if

a reference trajectory in the interpolation range is given, an open-loop AMPC should be

chosen.

Further research will be done on extending this concept to also perform a hyperparameter

optimization online.
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Figure 2. Adapted FIR coefficients during simulation of the sequence of steps for the different

AMPC methods and various regularization strengths
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