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Abstract. Adherence to inhaled controller medications is crucial for patients

with chronic respiratory illnesses to achieve favorable clinical outcomes. Self-

management measures have been shown to enhance health outcomes, decrease

unnecessary interventions, and improve disease control. However, compliance

evaluations have difficulties in establishing a high level of trustworthiness, as

patient’s self-reported high compliance rates are frequently regarded unreliable.

A mobile application module to objectively verify inhalation usage using im-

age snapshots of the inhalation counter and optic character recognition has

shown to be promising, but insufficient for some inhaler models. In this paper

a model specific approach was explored to enable reliable adherence measure-

ment. To achieve this, a machine learning model was trained on an inhaler

image dataset. The trained model had an average accuracy of 88% in recog-

nizing the digits on the dose counter of an inhaler model. These results show

the potential to gain additional evidence for inhaler compliance.
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1 Introduction

Asthma affects about 300 million people globally and accounts for 1 in every 250 deaths. In

Europe alone, approximately 30 million people have asthma and 15,000 people die yearly

from this disease [1]. Although asthma exacerbations occurrences can be reduced with

appropriate regular therapy and patient education, treatment adherence is generally low

among patients with asthma. As a matter of fact, some studies show that adherence is less

than 50% in children and as low as 30% in adults [2]. This low adherence may be due in part

to misinformation or confusion regarding complicated treatment regimens. Poor medication

adherence is concerning, since it is known to increase risk of asthma exacerbations, leading

to higher mortality, greater financial burden for the patient and health system, as well

as decreased quality of life [2]. Numerous adherence-improvement interventions have been

introduced, but most have been only moderately successful with little evidence of long-term

sustainability or reduction of health care utilization and cost [3].

Mobile Health (mHealth) technologies can improve disease outcomes and may be an

especially powerful tool to deliver effective behavioral health interventions that are dy-

namic, user-centric, and continuously adapted [4]. Medication-use monitoring can provide

important information for patients, researchers, and health professionals, with the aim of

facilitating improved adherence and of improving treatment prescribing. Patient self-report

and clinician assessments of medication adherence are notoriously unreliable [5].

Regarding inhaled medication, current mHealth applications require the user to manually

enter the readings from the dose counters of these medical devices. This process is slow and

prone to error. As the internet becomes more embedded into medical monitors through

Wi-Fi and Bluetooth technologies, more sophisticated systems transmit the values from the

connected devices to the smartphone. However, this adds costs to the manufacturing of

the device and brings connectivity issues [6]. People who cannot afford to upgrade to these

expensive devices will fail to receive the benefits [7].

In the United States, smartphones are owned and regularly carried by approximately

50% of 12–17 year-olds and 75% of adults ages 30–49 [5]. The advantages of smartphones

over other devices is not only the fact that they are affordable, but also that they are very

powerful, with most models nowadays integrating several cores in their main processor.

They are also standalone devices with a camera, a battery, and audio output and an Internet

connection [10]. Therefore, these devices show high potential to be explored as a relevant

mHealth tool.

2 Methods

Optical character recognition (OCR) is a tool that converts scanned images of typewritten or

hand-written text into machine-readable text [8]. Despite recent technology advancements,

the available OCR approaches still present several limitations (e.g. the dependency on the

quality of input images), and are still not able to compete with human reading capabilities

with desired accuracy levels [7][9].

Previous research [10] used a mobile application module to objectively verify inhalation
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usage through image snapshots of the inhaler counter and OCR. Although this research

demonstrated encouraging results in the use of OCR to address non-adherence to inhaled

medicine, the results indicate that the approach used is less effective for particular inhaler

models (e.g. Seretaide and Twisthaler). As such, we hope to build on prior work by devel-

oping a machine learning algorithm trained on an image database of the Seretaide model

and optimize the OCR performance for this specific inhaler. To accomplish the proposed

objectives, annotated and pre-processed images of Seretaide inhaler devices were used to

train and validate a machine learning model.

Dataset. The database consists of 354 images of the Seretaide inhaler model in PNG

format, with dimensions of 640 x 360 pixels, collected under ideal conditions using a LG-

V700 (Android) camera app. These images show a wide representation of digits in the dose

counter; additionally, the background varies between black, white, and multi-color, and the

lighting source of the photo varies between natural light and artificial light. For the purpose

of training a machine learning model on inhaler pictures, a manual annotation process was

performed on all images present in the dataset. This task was accomplished with the help

of the VGG Image Annotator (VIA) tool [11].

With the aid of this software, it was possible to collect annotations regarding the position

and dimensions of the dose counter and the corresponding digits that appear on the display.

Image Pre-Processing. All images suffered four pre-processing steps: rotating, crop-

ping, convert to grayscale and resizing. The images in the dataset were rotated 90º right,

since the photos were acquired horizontally, and cropped according to the dimensions of the

dose counter indicated on the annotations file. Since the cropping measurements were not

consistent across the dataset, the cropped-out images did not have the same size; hence, all

images were resized to standardize the data.

Model Architecture. With an OCR approach in mind, a neural network (NN) con-

sisting of convolutional layers (CNN) to extract a sequence of features and recurrent layers

(RNN) to propagate information through this sequence, was developed. Additionally, it

instantiates a new “endpoint layer” for implementing CTC loss. The former enables using

unsegmented pairs of images and corresponding text transcriptions to train the model with-

out any character/frame-level alignment [12]. More specifically, the architecture of the NN

consists of an input layer, two convolutional layers each followed by a pooling layer, two

bidirectional layers, a CTC layer and finally an output layer (Figure 1).

Model Training. In later stages, a training and validation dataset were generated. For

this purpose, the dataset was shuffled randomly, so that each time the dataset is split a

new training and validation dataset are created. Additionally, the dataset split into 90 %

training set (318 images) and 10% validation set (36 images). This project runs using the

Google Colab environment and the network was built using TensorFlow 2. 6.. The model

was trained in 200 epochs and a batch size of 5.
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Figure 1. Information regarding the inhaler used in the dataset, along side a photo of a Seretaide

inhaler (above); Schematics of the optical character recognition model’s architecture (bellow).

3 Results

To evaluate the model, several metrics were taken into consideration. The findings of this

examination are summarized in Table 1, which includes the average values for the metric

following five tests, as well as the standard deviation.

Table 1. Evaluation Metrics for the Trained Model.

Metrics Average (%) Standard Deviation

Accuracy 87,2 0,04

Exact Match Ratio 87,2 0,04

Hamming Loss 0,13 0,04

Recall 88,3 0,06

Precision 87,2 0,04

F1-measure 87,1 0,04

4 Discussion

The exact match ratio can be considered a challenging metric since it doesn’t support the

notion of being partially correct.

As it can be seen in Table 1, the exact match ratio is 87,2%, which indicates that a large

part of the predicted results were entirely correct, and consequently reflects a good model

performance.

The Hamming Loss considers the incorrect label predictions and the relevant labels not

predicted, over the total number of labels. In this case, the computed hamming loss is
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0,13 %, which is a significantly low value and indicates a good performance of the learning

algorithm.

For this model, the calculated recall was 88,3 % (Table 1), which indicates that a large

number of the actual labels were predicted. On the other hand, precision is the ratio of how

much of the predicted is correct, i.e., it only considers the positive predicted results. In this

case, the precision equals the exact match ratio (87,2 %).

Furthermore, the F1 measure is the harmonic mean of Precision and Recall and gives a

better measure of the incorrectly classified cases than the Accuracy Metric. The F1 measure

reaches 87,1%, which is an indication of both good precision and good recall.

The purpose of this effort was to enhance the Seretaide model’s OCR performance.

In comparison to prior study, the model’s accuracy has increased significantly (from 38%

to 87%). It is important to highlight, however, that the datasets utilized to evaluate these

methodologies are not equal, and hence a direct comparison cannot be drawn. Nevertheless,

the advancements in this research might be seen as an indication of significant improvement.

5 Conclusions and Future Work

The purpose of this paper was to develop a text recognizer for an inhaler model (Sere-

taide). This was done by building a machine learning model, trained on a database of

inhaler images, compatible with mobile applications.

To the best of our knowledge, there are not many approaches in the literature that help

to reduce the unreliability of patient compliance and self-reporting by making use of OCR

to record effective dosage in inhaler dose counters. Furthermore, the proposed work explores

the potential of a customized OCR approach to enhance the performance of already existing

algorithms, thus making this work relevant to help mitigating the patient’s unreliable, self-

reported adherence.

Nevertheless, further improvements are still needed to enhance the detection perfor-

mance. It will be critical in future work to compare the findings of this model to those of

the general model in the previous research, on the same collection of photos (independent

of the image set used to train the model). Additionally, this model could be applied to

additional inhaler models in order to assess the impact of employing customized machine

learning models on other inhalers, thus, determining if performance is maintained. Fur-

thermore, an object detector-like algorithm can be implemented to detect the dose counter,

thus avoiding the cropping stage in the image pre-processing.
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