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Abstract. A stable estimation of the THz model parameters for low SNR con-

figurations is essential to achieve acquisition times required for applications

in, e.g., quality control. The deep optimization prior approach was introduced

with application to the estimation of material-related model parameters from

THz data, which is acquired by a FMCW THz scanning system. Conceptu-

ally, this approach estimates the desired THz model parameters by optimizing

for the weights of a 3D spatially coupled deep neural network. This approach

was verified numerically on various THz parameter estimation problems for

synthetic and real data. In this paper, we propose to combine the deep op-

timization prior approach to the modern 2D blind deblurring method for the

FMCW THz image resolution enhancement. The experimental results show

that this approach improves the lateral resolution enhancement robustly under

low SNR noise condition in comparison to the per-pixel curve fitting method.
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1 Motivation

In Frequency Modulated Continuous Wave (FMCW) THz imaging, the THz 3D image can

be modelled as a formation model A in depth direction z, by repeating this process for each

position (per-pixel) in lateral xy domain [1].

A(u; z) = ê sinc (σ(z − µ)) exp (−i(ωz − φ)) (1)

where the THz model parameters u = (ê, µ, σ, φ) relate to the electric field amplitude, the

z-position of the surface, the width of the reflected pulse, and the phase of the spatial signal

g(x, y, z), respectively. The resulting complex valued spatial 3D THz signal g(x, y, z) ∈

C
nx×ny×nz , where nx, ny, nz is the number of vertical, horizontal and depth samples.

Hence, the objective of THz model parameter estimation is to extract the parameters

u ∈ R
4 of the THz model (1) at each pixel location (x, y) such that it corresponds to the

given FMCW THz measurements G(x, y) ∈ R
nz×2 by solving this non-convex optimization

problem:

min
u

∑

x,y

∥A(ux,y)−Gx,y∥
2

2, (2)

As A is nonlinear and this problem is highly non-convex, (2) is often solved locally with

classical first-order gradient descent methods.

Due to the low signal strength of the widely used THz sources, it takes up to hours to

acquire high Signal-to-Noise Ratio (SNR) THz image data for robust parameter estimations,

and the parameter estimation for high SNR data already requires significant optimization

efforts and fine tuned parameter initialization.

Therefore, to improve the robustness of the parameter estimation process for lower SNR

THz data, deep optimization priors [2] was proposed as a novel unsupervised deep learning

approach to solve highly non-linear optimization problems. This approach extended deep

image prior [3] to non-convex optimization problems and shows that not only the quality of

the solution increases, but also the ability to find lower energy minima: By reparameterizing

the originally spatially uncoupled variables u as the output of a U-net [4] acting on the data,

a gradient descent algorithm is able to avoid undesirable local minima when the same

algorithm on the original variables gets stuck in. Most strikingly, the quality of a classical

approach (2) has a severe dependency on a good initialization with physical knowledge, while

the common random initialization of network weights seems to be sufficient for consistently

finding good local minima.

In this paper, we propose the combination of the deep optimization prior approach [2]

and the THz image deblurring et al. [1] and investigate the impact of combining both

methods to the resolution improvement for FMCW THz imaging. More precisely, we apply

modern blind deconvolution method, such as Xu et al. [5], [6] to the result of the THz

parameter estimation achieved by the 3D deep optimization prior technique [2].

Section 2 gives a brief overview of the deep optimization prior approach. The details of

the deblurring and experimental result are described in Section 3.
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Figure 1. Deep optimization prior approach is reparametrizating ux,y by a network N in

combination with the model-based autoencoder.

2 Deep Optimization Prior

The concept of deep optimization prior (DOP) is to reparameterize the unknown (image)

variable ux,y in non-convex optimization problems of the form (2) by the prediction of a

neural network N via ux,y = N (Gx,y; θ) for network parameters. Besides from the data

term, a regularization term for THz model parameter estimation can be applied, where the

regularization improves the THz parameter estimation in the case of individual pixel failure,

i.e. shot noise, and yields:

min
θ

∑

x,y

∥A(N (G; θ)x,y)−Gx,y∥
2

2 + λ∥∇N (G; θ)x,y∥1, (3)

As illustrated in Fig. 1, this approach is minimizing the loss function L as an optimizer

during the unsupervised training procedure, which is different to the unsupervised training-

then-prediction approach proposed by [7].

The model-based autoencoder [7] allows unsupervised learning of measurement data by

resembling an autoencoder with a learnable network based encoder and a physical model-

based decoder, and is, therefore, able to deal with measurement-specific distortions. How-

ever, during the per-pixel learning phase in [7], the lateral neighborhood information is not

considered. Therefore, the 3D model-based autoencoder architecture in Fig. 2 allows un-

supervised learning on the THz measurement data using this approach for a lateral spatial

coupled optimization. In contrast to the 1D single pixel autoencoder [7], this network-based

reparameterization allows spatial coupling even though the THz model (1) is independent

in the lateral spatial domain. This U-net network architecture is computational extremely

more efficient than CNN architecture, while it couples pixels in large lateral spatial regions,

which is an important feature in this application.

The evaluation in [2] showed that this deep optimization prior approach finds a better

minima than classical optimizers (Table 1), estimates model parameters in low SNR levels

(Fig. 3) and robustly reconstructs parameters in shot noise situations. More details of the

experiments can be found in [2].
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Figure 2. U-net architecture of network N (example for 182 channels with 446× 446 pixels) start

from the data tensor Gx,y to the desired parameter ux,y = N (Gx,y ; θ).

Table 1. Comparison of average ℓ2-squared loss in (2) using measurement dataset by classical

optimizers to the Deep Optimization Prior (DOP) approach. The full details of experiments can

be found in [2].

Average Normalized Loss (×10−6)

Optimizer AdamW DOP

MetalPCB+AWGN at PSNR Level

Opt. LR 0.001 0.01

-20dB 36100.08 30871.59

-10dB 7380.64 3271.89

0dB 965.00 400.09

10dB 135.92 111.22

3 Deblurring on the THz model parameter image

In this section, we compare the resolution enhancement by the deep optimization prior

(DOP) approach to the per-pixel curve fitting approach using the THz image enhancement

methodology in [1].

3.1 Experimental Setup

We evaluate the deblurring result on the MetalPCB+AWGN datasets from [2], which are

based on a measured FMCW THz image datasets using a resolution target. The datasets

are synthetically added with an Additive White Gaussian Noise (AWGN) at PSNR noise

level from −20dB to 10dB by simulation respectively.

For the comparison of the per-pixel curve fitting optimizer, we choose the AdamW [8] op-
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Figure 3. Comparison of RMSE of model parameter ê using synthetic datasets at AWGN noise

level from −20 to 10dB. The full details of the experiments can be found in [2].

timizer adopted in [2] instead of the Trust-Region Algorithm [9] in [1] to be able to properly

compare with the DOP approach in [2] by taking the same optimizer and hyperparameters.

For the deconvolution method, we apply one of the modern blind deblurring method by

Xu et al. [5], [6], which had the best resolution enhancement performance in the evaluation

of [1].

For the evaluation parameter, we reconstruct the intensity image according to the method

in [1, Section 7.2.2], while the lateral resolution is defined as the finest dimension that can

resolve an target with 3dB intensity difference. In this section, we evaluate the vertical

and horizontal intensity difference of each resolution group of the resolution target (from

4000µm to 280.6µm). The vertical and horizontal resolution is then determined as the first

minimum dimension that obtained at 3dB crossing of intensity difference. By repeating to

determine the resolution for each noise level, we compare the lateral resolution improvement

of the optimization approaches using different AWGN noise level (see Table 2). Note that

in practise the intensity difference can decrease non-homogeneously (see example in Fig. 5).

Therefore, we additionally determine the range of uncertainty (see Table 2) that indicates

the difference between the first and last noise levels obtaining a 3dB crossing intensity

difference.

3.2 Evaluation

Fig. 4 shows the intensity images by the original datasets (first row), the AdamW estimation

(second row), the DOP estimation (third row), and respective deblurring images (last two

rows) using MetalPCB datasets at AWGN noise level from −20dB to 10dB. Note, that

the original datasets intensity image is extracted by the same methodology in [1, reference

intensity in Section 7.2.2], which is the signal intensity of the MetalPCB+AWGN datasets
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Figure 4. Comparison of THz intensity images by original dataset data (first row), the per pixel

AdamW optimizer approach (second row) and the DOP approach (third row) using MetalPCB

datasets at AWGN noise level from -20dB to 10dB. Images by AdamW and DOP (last two rows)

approaches are deblurred by blind deconvolution method from Xu [5], [6].

data at the center of sampling window.

By visual comparison of the intensity images of AdamW and DOP estimation, we observe

that DOP approach obtains less outliers for very low SNR level, i.e., −20dB and −10dB.

These outliers are more significantly observable after the deblurring procedure, which makes
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Figure 5. Comparison of the vertical and horizontal intensity difference using MetalPCB

datasets at 0dB AWGN noise level for each resolution target group from 4000µm to 280.6µm.

the deblurred DOP intensity image having a better quality than the deblurred AdamW

intensity image because of the robustness of DOP estimation.

Fig. 5 plots the vertical and horizontal intensity difference for each resolution target

group from 4000µm to 280.6µm, using the MetalPCB datasets at 0dB AWGN noise level

as an example.

As a higher intensity difference represents a better ability to resolve a resolution target,

both deblurred AdamW and DOP intensity images out-perform the original dataset image,

while the deblurred DOP intensity image obtains a more stable intensity difference than the

deblurred AdamW image. By comparing the 3dB crossing dimension obtained by both de-

blurred images, the DOP apporach enhances the performance of deblurring method because

of the robustness of model parameter estimation.

Table 2. Comparison of vertical and horizontal resolution using MetalPCB datasets at AWGN

noise level from -20 to 10dB. The range of uncertainty is shown in parentheses. The best (lower is

better) optimizers are highlighted.

Vertical Resolution in µm (range of uncertainty)

SNR Dataset image AdamW deblur DOP deblur

-20dB 2282.62 ( -0.0) 2808.23 (-2027.3) 2223.05 (-1454.1)

-10dB 2088.29 ( -0.0) 2318.77 (-1712.9) 585.87 ( -0.0)

0dB 2066.73 ( -0.0) 944.45 ( -344.4) 457.60 ( -0.0)

10dB 2022.34 ( -0.0) 535.28 ( -0.0) 568.10 ( -99.6)

Horizontal Resolution in µm (range of uncertainty)

SNR Dataset image AdamW deblur DOP deblur

-20dB 2208.92 ( -0.0) 2633.74 ( -0.0) 2288.36 (-1539.3)

-10dB 2099.83 ( -0.0) 1808.98 (-1076.7) 1048.52 ( -447.1)

0dB 2054.55 ( -0.0) 575.93 ( -0.0) 460.14 ( -0.0)

10dB 2055.73 ( -0.0) 573.10 ( -80.8) 444.31 ( -0.0)
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Table 2 compares the vertical and horizontal resolution for the AWGN noise level from

−20dB to 10dB respectively, and the range of uncertainty is shown in parentheses.

As we can see from the table, the DOP approach is generally improving the deblurring

method with respect to the resolution enhancement ability. The improvement of the DOP

approach over the AdamW approach is mainly due to the enhanced robustness of model

parameters estimation, which obtains a shorter range of uncertainty except for the vertical

resolution at 10dB and the horizontal resolution at −20dB noise level.

4 Summary

In this paper, we propose the combination of the deep optimization prior approach [2]

and the THz image deblurring [1], and evaluate the impact of combining both methods

to the lateral resolution improvement for FMCW THz imaging. We apply the mod-

ern blind deconvolution method such as Xu et al. [5], [6] to the result of the THz

parameter estimation by the deep optimization prior approach [2] and the per-pixel

curve fitting approach [1], and evaluate the lateral resolution enhancement. Experiments

demonstrate that the deep optimization prior approach improves the lateral resolution en-

hancement because of the robust reconstruction of model parameters in low SNR noise level.
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