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Abstract. In this work, we explore several relevant concepts in Compressive

Sensing (CS) theory. Firstly, we present two sensing schemes for the recovery

of highly sparse signals named Sliced OMP and Zoned APEG. Then, we de-

scribe a number of construction methodologies for the sensing matrices which

significantly reduce their coherence and density. The different procedures are

validated through numerical simulations, and aim to ensure the successful re-

construction of the 3D scene under study with high probability.

Keywords. Adaptive sensing, compressed sensing, 3D imaging, sparse re-

covery, Time-of-Flight.
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1 CS-based ToF Imaging

1.1 Time-of-Flight Sensing Scheme and Signal Recovery Approaches

This study aims to investigate the 3D reconstruction of a scene from the measurements

obtained by a pulse-based ToF camera. This yields the problem of recovering a very sparse

echo signal for each ToF pixel. We exploit CS and sparsity-awareness techniques to perform

this operation from few measurements and to achieve high depth resolution.

The first approach, whose structure is shown in Figure 1, is called Sliced Orthogonal

Matching Pursuit (OMP) [1]. It is a non-adaptive procedure, since the construction of the

sensing matrices does not require any previous knowledge of the signal to be recovered. It

consists of the slicing of the spatial domain in a number of partitions in order to reduce

the inter-column coherence (µ), i.e., to increase the dissimilarity between the columns of

the sensing matrix. The signal is preliminarily localized between the partitions and, then, a

greedy algorithm, such as OMP [2], is applied over the refined domain to retrieve the signal.
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Figure 1. Sliced OMP

Zoned Adaptive Progressive Edge Growth (APEG) [6] extends the applicability of APEG

[7] and paves the way to implement such a scheme in multi-aperture arrays [8]. The structure

of Zoned APEG is presented in Figure 2. Zoned APEG builds the sensing matrix per rows

by allocating a number of non-zero elements which accounts for the information on the signal

support from the previous measurements, while it minimizes the coherence of the resulting

matrix. When the process is complete, we can use the measurement vector and the sensing

matrix generated to recover the signal. In our study, we use OMP for this purpose.
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Figure 2. Zoned APEG over Middlebury dataset Dolls [3]–[5]

1.2 Sensing Matrices for Sliced OMP

Since the performance of Sliced OMP significantly depends on the selection of the type

of sensing matrix, we perform an evaluation of different construction methodologies. Fig-

ure 3 summarizes the sensing matrices built via the different construction methodologies

considered in [6], [9]–[11] and the corresponding normalized Gram matrices. The proposed

techniques aim at minimizing their coherence and density. A low inter-column coherence

helps ensuring unique reconstruction of sparse signals, whereas a low density reduces the

memory footprint. The first four rows of Figure 3 present, from top to bottom, the sens-

ing matrices from random binary (0,1)-codes, random binary (-1,1)-codes, (0,1)-Scrambled

Hadamard Ensembles (SHEs) and (-1,1)-SHEs. The last four rows illustrate the sensing ma-

trices generated using Low-Density Parity-Check (LDPC) codes generated via Progressive

Edge Growth (PEG) [10], [11] and combinatorial approaches [6]. In addition, we present

two extensions of these algorithms accounting for the non-instantaneous transitions from

one element to another of the code which may lead to the coincidence of rising and falling

edges and a subsequent degradation of the coherence. An evaluation of the performance of

Sliced OMP using them as sensing matrices may be found in [1], [6].

Figure 4 shows the behaviour of the coherence with respect to the resolution of the grid

and provides an estimation of the upper super-resolution limit, i.e., the minimum grid size

which guarantees µ < 1 [6].
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Figure 3. Sensing matrices for Sliced OMP
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Figure 4. Upper limit for superresolution and discretization grid size
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