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Abstract. Estimating the depth of a scene from a single image is impossible

due to scale ambiguity, but recent deep learning approaches have demonstrated

to produce faithful estimates anyways by learning the typical scale of objects

from implicit clues in the scene. In this paper, we present a new encoder-

decoder architecture for single image depth reconstruction that yields state-of-

the-art results with considerably less parameters than competitors. Our ar-

chitecture incorporates a modified inception module tailored to our application

which allows us to use a relatively lightweight architecture with fewer learnable

parameters than state-of-the-art single image depth reconstruction networks.

We train and evaluate on the known NYU RGB-D benchmark dataset, and

show generalization of our method by evaluating the pretrained NYU model on

the iBims dataset. Our results are in the same order of magnitude as state-

of-the-art competitors, even though we trained on a different resolution.

Keywords. Monocular depth, deep learning, CNNs, efficient deep learning,

inception module
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1 Introduction

Classical approaches to capture the geometry of a scene require at least two viewpoints

(e.g. a stereo [1] or light field camera [2]), a sequence of images, such as focal stacks

to extract depth clues from the depth of field in depth-from-focus (e.g. [3]) and depth-

from-defocus (e.g. [4]) approaches, or special recording techniques with active lighting such

as structured light or time-of-flight cameras. Applications of such techniques range from

image refocusing, over the initialization of 3D reconstruction algorithms, e.g. in autonomous

driving, to augmented reality. However, estimating the depth of a scene from only a single

RGB image is an inherently ill-posed problem, which – from a purely physical perspective

– cannot distinguish between the size of an object and its distance to the camera. To solve

this problem, prior knowledge of typical object sizes as well as blur focus at different depth

levels can give meaningful clues about the scene composition and depth. For a certain type

of natural images, numerous recent works have exploited deep learning techniques to still

make faithful predictions, demonstrating that implicit clues of the size of everyday objects

are often sufficient to still provide accurate estimates, see Section 2.

At the same time, more powerful hardware allowed training incredible complex deep

learning models with ever improving results. Complex models with a huge amount of

parameters are able to learn very complicated functions but naturally also require a larger

amount of memory and computing power, even at inference time. This is often not feasible

on smaller or cheaper hardware that is used, for example, in many mobile applications and

consumes, sometimes unnecessary, large amounts of electricity. The purpose of this paper is

to introduce a network architecture for monocular depth estimation which balances network

size and training time without sacrificing too much accuracy or overfitting to specific training

data.

To this end, we propose an encoder-decoder network for monocular depth estimation

using inception style layers [5]. Our architecture performs on-par with state-of-the-art

algorithms while being comparably light-weight, i.e. having less trainable parameters, and

is generalizable to different datasets and resolutions.

Contributions. We propose a novel encoder-decoder architecture for depth from a single

RGB image using inception blocks. Our architecture optimizes the trade-off between having

few parameters for efficient training and inference but still resulting in good accuracy. The

multi-scale property of this block as well as its separation of channel and spatial dimensions

lead to convincing performance on the NYU dataset [6]. In addition to yielding accurate

results, our architecture has considerably fewer trainable parameters than direct competitors

which makes it more efficient in both training as well as inference. We show that our results

are generalizable to different resolutions and datasets by evaluating the pretrained NYU

model on the iBims dataset [7].



Negese Z. et. al. 25

2 Related Work

In this section, we review existing work for monocular depth reconstruction that is directly

related to our method (Section 2.1), as well as work about increasing the efficiency of neural

networks (Section 2.2). We refer the interested reader to [8] for an in-depth overview of

deep learning based monocular depth estimation.

2048 CH

Encoder

Decoder
In

ce
p

ti
o

n
 

B
lo

ck

1280

2
x2

 

M
ax

 P
o

o
l

1280

In
ce

p
ti

o
n
 

B
lo

ck

760

In
ce

p
ti

o
n
 

B
lo

ck

672

2
x2

 

M
ax

 P
o

o
l

672

In
ce

p
ti

o
n
 

B
lo

ck

384

In
ce

p
ti

o
n
 

B
lo

ck

128

2
x2

 

M
ax

 P
o

o
l

128

3
x3

 

C
o

n
vo

lu
ti

o
n

64

5
x5

 

C
o

n
vo

lu
ti

o
n

32

7
x7

 

C
o

n
vo

lu
ti

o
n

3

Input (RGB)

In
ce

p
ti

o
n
 

B
lo

ck

2048

In
ce

p
ti

o
n
 

B
lo

ck

1280

2
x2

 

U
p

 P
o

o
l

1280

2
x2

 

U
p

 P
o

o
l

32

3
x3

 

C
o

n
vo

lu
ti

o
n

32

In
ce

p
ti

o
n
 

B
lo

ck

776

2
x2

 

U
p

 P
o

o
l

480

In
ce

p
ti

o
n
 

B
lo

ck

480

3
x3

 

C
o

n
vo

lu
ti

o
n

256

2
x2

 

M
ax

 P
o

o
l

128

3
x3

 

C
o

n
vo

lu
ti

o
n

128

3
x3

 

C
o

n
vo

lu
ti

o
n

16

Output (scalar valued)

Figure 1. The proposed model architecture. We employed an inception style

encoder-decoder network. The layers with red colors indicate basic spatial convolution, while the

layers with cyan color indicate inception layers (also see Figure 2). The layers with gray color

indicate max-pooling layers in the encoder part and up-sampling layers in the decoder layer. The

number over each block indicate the input feature dimension. Exact details of the architecture are

described in Table 5.

2.1 Monocular Depth

Predicting depth from a single image is an ill-posed problem in which the influence of scale

and distance to the camera cannot be completely separated. As a result, the majority of

literature about depth estimation considers settings with at least stereo vision [9], or coming

directly from specialized hardware [10]. However, reasonable estimations can be made with

semantic prior knowledge about scenes. With the rise of deep learning, using huge amount

of training data became feasible and, as a result, made solving this problem possible. One

of the first major works in this direction was [11]. They proposed a single image method

for depth estimation by training two consecutive CNNs. The first CNN learns coarse global

information based on the whole image and then the second deep network refines it by
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learning local cues. [12] also used a two stage strategy where they first categorized the

RGB image into different RGB ranges using a scene understanding module, and then in

the second stage, train a network on the images with a specific depth range. Similar works

on depth estimation from a single image [13]–[18] have been proposed based on CNNs with

different architectures and loss functions. [19] proposed to train an encoder-decoder CNN

where the encoder part employs DenseNet-169.

Other directions include more geometric information directly into the network architec-

ture. [20] described a depth estimation technique using local planar guidance layers placed

at multiple stages in the decoding phase of an encoder-decoder network. [21] proposed a

monocular depth estimation method with stable geometric constraints from a global perspec-

tive to take long-range constraints into account, termed as virtual normals. [22] proposed a

novel technique called attention based context aggregation network (ACAN). They adopt a

deep residual network [23] where dilated convolutions are used to maintain the spatial scale.

[24] proposed SharpNet, a method that predicts an accurate depth map from given a single

input color image, with particular attention to the reconstruction of occluding points, by

constraining the depth estimation and occluding contours during model training.

Current state-of-the-art is able to produce highly accurate depth maps but at the price

of very complex networks with long training times (see Table 4). Our work is also a CNN

encoder-decoder, but instead of explicitly including expensive geometric priors into the

architecture we focus on the higher priority of cross-channel relationships, as opposed to

spatial information in normal convolutions, by using inception blocks [5]. We show that

this prior is powerful enough for monocular depth to achieve results on par with state-of-

the-art using considerably less parameters than previous methods. Chen et al. [25] already

build a network with inception blocks for this problem with great success in reducing the

parameters but at the cost of accuracy.

2.2 Efficient Networks

With more powerful GPUs available in the last years, it became possible to train larger and

larger networks with some methods taking several days to train architectures with billions

of parameters [26]. While this often leads to superior results, the energy consumption rises

and some hardware can only deploy smaller networks [27]. This is especially important

for mobile and IoT applications where both are limited. One of the first major papers

to tackle this was [28]. The method uses depth-wise separable convolutions to manage

the size of the network, and lets the user adjust the performance-complexity ratio through

hyperparameters. Many works followed up on this, putting the focus mainly in classification

on mobile applications [29]–[31].

[16] worked on reducing the complexity of monocular depth estimation architectures.

While producing a very small network with fast inference time, their accuracy is not on-par

with state-of-the-art results. [32] proposed a monocular depth estimation for IoT devices

which are normally even more restricted than mobile hardware. Therefore, this work focuses

on energy consumption instead of accuracy, and only works on restricted image resolutions.

Our method goes in the direction of [33] but for monocular depth instead of general convo-

lutional nets: reducing the complexity of the network without a specific hardware in mind
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while achieving state-of-the-art results.

3 Method

In this work, we employ an encoder-decoder CNN architecture with inception blocks. The

architecture is explained in detail in the following sub-sections. The entire network architec-

ture is shown in Figure 1 and Table 5 in the supplementary. Instead of an encoder-decoder

network with basic convolutional layers, an inception-like encoder-decoder network is used

to get the advantage of multi-level feature extraction in both spatial and cross-channel

dimensions.

The inception blocks are a key feature that allow our architecture to consistently perform

on-par with state-of-the-art methods while using considerably fewer parameters than any

competitor. Due to a collection of 1 × 1 convolutions (see Section 3.1), inception blocks

put more weight on cross-channel information than on spatial relations. We claim that this

induces a more meaningful and stronger network prior for the task of depth prediction on

natural images than existing models, and this is the reason for our good performance with

a smaller network architecture.
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Figure 2. Inception block. Each k × k convolution with k ≥ 2 is preceded by a 1× 1

convolution to make the model efficient while having a deeper network. The final results are

concatenated into the output feature. This is a slightly adjusted version of the original inception

blocks [5] without a pooling operation as it was already used in [25].

3.1 Inception Blocks

We make use of the so-called inception blocks introduced in [5] for classification and object

detection. Inception blocks introduce 1 × 1 convolutions before the higher dimensional

convolutions (3× 3, 5× 5 in the original paper) to reduce the dimensionality of the feature

maps. This densifies the representation and, as a result, reduces the computational cost

because smaller feature maps cover the the same information. The needed computational

cost, i.e. the number of multiplications, is reduced by an order of magnitude for k×k kernels

with k > 1, and allows to use deeper networks without an efficiency loss. See Figure 2 for
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the structure of inception blocks. Using this, [5] managed to improve the state-of-the-art

accuracy on ImageNet without a huge increase in complexity of the network.

3.2 Method

In our approach, we use the inception blocks in an encoder-decoder architecture to calculate

depth maps from single images. The entire architecture can be seen in Figure 1. The

inception structure leads to multi-level feature extraction in the image without increasing

the complexity too much. This is the reason why we can achieve high accuracy with the

least amount of parameters in our experiments (see Section 4.5). Additionally, inception

blocks include cross-channel correlations independently of the spatial dimension in the 1×1

reduction. This is an advantage over many previous works where convolutions cover spatial

and channel dimensions simultaneously without separating the information.

We also tested our architecture with the suggested auxiliary networks used with the

inception blocks in [5]. However, we found that the network performs better without, and,

additionally, has a lower number of parameters.

3.2.1 Network Architecture.

We optimized our network architecture to use as few parameters as possible without com-

promising the performance. As a result we use an adjusted inception block without max

pooling (see Figure 2), and input the RGB image in half the resolution of the desired output

depth resolution, as both did not have a significant influence on the results. Our final model

architecture is comprised of 3 convolutional layers and 5 inception blocks in the encoder, and

4 inception blocks followed by 4 convolutions in the decoder, both with pooling operations

in between. See Figure 1 for the full architecture.

Inception Blocks. We adjusted the original inception blocks from [5] slightly to fit this

application better. Instead of convolutions up to kernel size 5 × 5, our inception block

contains an additional convolution of size 7× 7. The larger kernel size leads to more global

feature information that helps with a consistent depth output. Each higher dimensional

convolution is preceded by the inception block typical 1 × 1 convolution. We removed the

max pooling of the inception block in [5] because it did not improve the results but increased

the number of parameters. We show the structure of our inception block in Figure 2.

Convolutions. Additional to inception blocks, we used 3 basic convolutional layers in the

lower stage of the encoder and 4 basic convolutional layers in the last stage of decoder part.

Each basic convolutional layer is comprised of a convolution, a batch normalization, and a

ReLU operation. Padding size of 1, 2, and 3 are used in 3 × 3, 5 × 5, 7 × 7 convolutions,

respectively.

Pooling. Three max-pooling layers, with kernel size 2 × 2 and stride 2, are used in the

encoder part to reduce the spatial dimension of features by preserving the most important

feature information. In the decoder, 4 bi-linear up-sampling layers with scale factor 2 are

used to upscale the dimension back to the image resolution for the final predicted depth.
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Original Training Data (480× 640) Cropped Training Data (416× 560)

Figure 3. Comparison of original and cropped training data in the NYU dataset. The zero values

along the boundaries vary within the training set and hinder efficient optimization.

4 Experiments

We show the performance of our architecture on the NYU and iBims datasets (Section 4.1)

against several established monocular depth estimation methods. We compare the quanti-

tative performance (Section 4.4) as well as the network size and training time (Section 4.5).

4.1 Datasets

We evaluate on the NYU v2 (Section 4.1.1) and iBims-1 (Section 4.1.2) datasets.

4.1.1 NYU v2 Dataset

In our experiments, we used the publicly available NYU Depth v2 RGB-D dataset [6]. This

dataset contains 464 video sequences of 26 different indoor scenes recorded with a Microsoft

Kinect RGB-D camera with over 400k frames in total. It contains two sets of 480 × 640

images, which are labeled (pre-processed) and raw sets. The labeled dataset accounts for

1449 pairs of RGB-D images which were randomly selected from the raw dataset. The second

set is the raw dataset, which contains raw images (RGB and depth) and accelerometer dumps

as produced by the Kinect camera. This set is unprocessed and with many missing depth

pixels. Hence, we pre-processed and aligned the raw depth image using the acceleration

data and tools provided with the dataset. The test images were randomly selected from

the labeled images. The rest of the labeled images were added to training set. Then, the

validation set was randomly selected from the whole training set.

We synchronized the RGB and depth images based on the timestamps of the captured

frames. To increase the size and diversity in the training set, we augmented the training set

with horizontally flipped versions which are meaningful for indoor scenes. The augmentation

was done off-line as preprocessing. In total, we used 194K images (after augmentation)

for training, 654 images for validation, and 654 images for testing. In our experiments

comparing to existing works (Table 1), we have used the train-test split proposed by the

dataset.

Cropped Training Data Due to the slight offset of depth and RGB frames and hardware,

the training data contains varying amounts of missing boundaries. They are quite irregular,

and hindered our network from training efficiently. To overcome this, we cropped the

training set at the boundaries to a smaller resolution, namely 416×560 pixels. See Figure 3
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Input RBG Ground-Truth Predicted Depth

Figure 4. Output of our model on NYU RGB-D dataset. The first row shows the input

RGB image, the second row shows the ground truth depth image, and the last row shows the

estimated depth image of our method.
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for a side-by-side comparison of the original and cropped versions. This improved our results

and lowered the time and memory needed for training significantly. Notice that although we

train on a lower resolution, our architecture is fully convolutional and, therefore, applicable

to higher resolutions as well. We show the evaluation of both resolutions in Section 4.4.

4.1.2 iBims-1 Dataset

Additionally, we evaluate on the iBims-1 dataset [7]. This dataset contains 100 RGB-depth

pairs from 10 different indoors scenes, and contains more in-depth ground-truth labeling and

evaluation metrics than NYU. It is meant to further evaluate models trained on different

datasets, especially NYU, showing generalization capability and providing more detailed

metrics. All images are 480×640 pixels, with ground-truth depth, masks annotating invalid

and missing pixels, as well as some semantic segmentation masks and plane estimations that

are used for evaluation.

4.2 Implementation and Training

Our depth estimation network is implemented using PyTorch using Adam as the optimizer.

The root mean squared error (RMSE) is used as the loss function. All models were trained

with a batch size of 4.

The learning rate starts as 0.001 and is reduced by 10−1 as soon as the error on the

validation set does not decrease anymore. This is also used as a stopping criterion. Table 3

shows the improvement of the RMS in each epoch with the corresponding learning rate.

The training takes around 15 epoches and one epoch takes about 200 minutes. We choose

the model with the best validation error as the final model. All experiments were done on

a GeForce GTX GPU with 12 GB memory.

4.3 Evaluation Measures

We the following four standard metrics to compare the performance in our experiments.

Here, yi denotes the ith pixel values in the ground-truth depth image y, ŷi is the ith pixel

value in the predicted depth image y, and N is the total number of pixels of the depth

image.

Root mean squared error: RMSE measures the normalized distance between the pre-

dicted value and the actual value. It is defined as follows:

rms =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2

Average relative error: RE is computed by dividing the absolute error by the magnitude

of the ground-truth value:

rel =
1

N

N
∑

i=1

|yi − ŷi|

yi

Average log10 error: This is the mean of log10 scaled errors which weights down outliers
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Table 1. Quantitative comparison on the NYU v2 RGB-D dataset. The first column

shows the different methods for depth prediction. The next six rows show the standard metrics

used to compare these methods. The up-arrow indicates that the largest value is the best, while

the down-arrow indicates that the lowest value is the best. The bold values indicate the best

model on that specific metric. The values for the other methods are taken from their respective

papers. While we outperform on the resolution we trained on, we still get on-par accuracy on the

original resolution that our network never saw during training.

Method δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rms ↓ log10 ↓

Lee et al. [20] 0.885 0.978 0.994 0.110 0.392 0.047

Wei et al. [21] 0.875 0.976 0.994 0.108 0.416 0.048

Alhashim et al. [19] 0.895 0.980 0.996 0.103 0.390 0.043

Eigen et al. [11] 0.611 0.887 0.971 0.215 0.907 0.285

Xu et al. [14] 0.811 0.954 0.987 0.121 0.586 0.052

Laina et al. [17] 0.811 0.953 0.988 0.127 0.573 0.055

Hao et al. [13] 0.841 0.966 0.991 0.127 0.555 0.053

Li et al. [34] 0.788 0.958 0.991 0.143 0.635 0.063

Bhat et al. [35] 0.903 0.984 0.997 0.103 0.364 0.044

Chen et al. [25] - - - 0.34 1.10 0.38

Ours (original resolution) 0.843 0.960 0.990 0.126 0.388 0.051

Ours (training resolution) 0.937 0.989 0.997 0.076 0.253 0.031

in the solution:

log10 =
1

N

N
∑

i=1

|log10(yi)− log10(ŷi)|

Threshold accuracy: This measures the ratio of samples for which the relative error is

below a threshold.

δk =
1

N

N
∑

i=1

σi, (1)

σi =







1 if max( yi
ŷi
, ŷi
yi
) < T k,

0 otherwise.
(2)

In our experiments, we use δ1, δ2, δ3 and T = 1.25 for the evaluation. The first three measure

the error, so values close to zero are better. Threshold accuracy is valued between 0 and 1

with 1 being the optimal value.

4.3.1 iBims Metrics

As an enrichment to the the standard metrics, the iBims dataset offers a collection of

additional metrics based on the additional ground-truth annotation in the dataset. We will

give a short overview of the measures here, please consult [7] for the exact formulas.
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Table 2. Quantitative comparison on the iBims-1 dataset. The first six columns show the

metrics as in Table 1, the next six are iBims specific, see Section 4.3. The up-arrow indicates that

the largest value is the best, while the down-arrow indicates that the lowest value is the best. The

bold values indicate the best model on that specific metric. The values for the other methods are

taken from [7]. All of the methods were trained on NYU. Although the winner in the standard

metrics is clear, the newly introduced metrics for iBims show varying results.

Method δ1 ↑ δ2 ↑ δ3 ↑ rel ↓ rms ↓ log ↓ ϵ
plan

PE ↓ ϵoriePE ↓ ϵaccDBE ↓ ϵ
comp

DBE ↓ ϵ+DDE ↓ ϵ−DDE ↓

Eigen [11] 0.36 0.65 0.84 0.32 1.55 0.17 6.65 25.62 5.48 70.31 25.71 2.23

Laina [17] 0.50 0.78 0.91 0.25 1.20 0.13 5.71 18.49 6.89 40.48 15.91 2.43

Li [34] 0.59 0.85 0.95 0.22 1.07 0.11 6.22 20.17 3.68 36.27 12.49 3.38

Ours 0.43 0.74 0.89 0.29 1.37 0.14 11.66 18.80 4.24 52.46 2.14 22.47

Planarity and Orientation: Based on ground-truth annotated major planes in the depth

data, the values ϵ
plan

PE and ϵoriePE measure how planar the result is in comparison to the

ground-truth and how close the orientations are to each other, respectively.

Location Accuracy of Depth Boundaries: The next metric measures how well bound-

aries in the depth maps are preserved by comparing detected edges. ϵaccDBE and ϵ
comp

DBE describe

the accurarcy of existing edges as well as the completeness of present edges, respectively.

Directed Depth Error: ϵ+DDE and ϵ-DDE measure the percentages of pixels that were

estimated as too far or too close, respectively.

4.4 Comparison with Existing Methods

We evaluate the quantitative performance of our methods against prior works in the same

setting using the performance measures from Section 4.3.

4.4.1 NYU v2

We evaluate on both the original resolution of the NYU dataset as well our training resolu-

tion (see Section 4.1), using the same pretrained model for both. On the training resolution,

our method performs extraordinarily well, outperforming the competitors in all measures

(which are all normalized wrt. resolution). On the original resolution, our results are still

close to state-of-the-art methods although this resolution was never seen during training.

Notice that the NYU test set does not suffer from the same boundary issues the training

set has. We are convinced that our architecture would perform even better on the original

with a slightly adapted training procedure overcoming the missing boundary problems. The

exact results are reported in Table 1. Qualitative results can be seen in Figure 4.

4.4.2 iBims-1

On the iBims, dataset we compare to three methods in the benchmark of [7]. Since this

dataset is rather new, not that many methods have been evaluated on it. All methods

were pretrained on NYU and not finetuned to iBims. While the winner in the standard

metrics is clear on this dataset, the results for the more detailed metrics of the dataset are

mixed. Again, our method is not far off the state-of-the-art although our network is a lot

smaller and was trained on a different resolution. The exact results are reported in Table 2.
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Table 3. The RMSE on the training and validation set as well as the learning rate

(LR) at each epoch. The learning rate is reduced by an order of magnitude each time the error

on the validation set does not decrease anymore. The final stop happens after reducing the

learning rate twice without improvement.

Epoch Train RMS Val RMS LR

1 0.889∗ 0.604∗ 0.001

2 0.509 ↓ 0.459 ↓ 0.001

3 0.390 ↓ 0.391 ↓ 0.001

4 0.333 ↓ 0.341 ↓ 0.001

5 0.299 ↓ 0.339 ↓ 0.001

6 0.277 ↓ 0.316 ↓ 0.001

7 0.261 ↓ 0.293 ↓ 0.001

8 0.248 ↓ 0.289 ↓ 0.001

9 0.239 ↓ 0.271 ↓ 0.001

10 0.231 ↓ 0.281 ↑ 0.001

11 0.207 ↓ 0.267 ↓ 0.0001

12 0.200 ↓ 0.256 ↓ 0.0001

13 0.197 ↓ 0.247 ↓ 0.0001

14 0.195 ↓ 0.259 ↑ 0.0001

15 0.193 ↓ 0.250 ↑ 0.00001

Qualitative results can be seen in Figure 5.

4.5 Number of Parameters

We compare our method in another metric, namely the number of trainable parameters

in the architecture. This is not directly related to the quantitative performance but the

number of parameters is still often critical for its performance and ability to generalize

to new inputs. While more parameters can be more expressive, they also need longer for

training and more training data to avoid overfitting. In general, a smaller network with the

same performance on the a task is preferable.

Our model has 16.7M trainable parameters which is less than all except one competitors,

and a third of the next larger architecture. See Table 5 for the details of our architecture.

The only network smaller than ours is from [25]. However, as can be seen in Table 1, it

falls behind in terms of accuracy in all given measures. The number of parameters of all

methods can be found in Table 4. Additionally, and as a result of this, our model also

needs fewer iterations before training converges. We train our method for 218.1k iterations

compared to [19] and [15] which need 1M , 3M iterations, respectively. The number of

training iterations is directly related to the power consumption needed, and therefore less

iterations are preferable.



Negese Z. et. al. 35

Input RBG Ground-Truth Predicted Depth

Figure 5. Output of our model on iBims-1 dataset. The first row shows the input RGB

image (cropped), the second row shows the ground truth depth image, and the last row shows the

estimated depth image of our method. Notice that our model was neither trained on this

resolution nor the same dataset.
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Table 4. Comparison on the number of learnable parameters. The numbers are in

million. Although our method has the least number of parameters by a large margin, we

outperform all other methods in the quantitative evaluations in Table 1.

Method # of Learnable Parameters

Lee et al. [20] 47.0M

Wei et al. [21] 90.4M

Alhashim et al. [19] 42.6M

Eigen et al. [11] 240.8M

Laina et al. [17] 63.5M

Fu et al. [15] 110.0M

Bhat et al. [35] 78.2M

Chen et al. [25] 5.3M

Proposed model 16.7M

5 Conclusion

We presented a novel encoder-decoder architecture with modified inception blocks for the

challenging task of monocular depth estimation. The inception blocks focus on finding cross-

Table 5. Detail of our model architecture. n× n out is the number of output channels after

a convolution by n× n, n× n red out is the number of output channels after 1× 1 convolution,

which is applied before n× n convolution, where n is the kernel size.

Layer Kernel

size

Output

features

1x1

out

3x3

red

out

3x3

out

5x5

red

out

5x5

out

7x7

red

out

7x7

out

Encoder Network

Basic Conv1 7 32 - - - - - - -

Basic Conv2 5 64 - - - - - - -

Basic Conv3 3 128 - - - - - - -

Max Pool1 2 128 - - - - - - -

Inception1 - 384 64 96 192 32 64 32 64

Inception2 - 672 192 112 256 32 96 64 128

Max Pool2 2 672 - - - - - - -

Inception3 - 760 224 156 312 64 128 32 96

Inception4 - 1280 384 192 384 92 256 64 256

Max Pool3 2 672 - - - - - - -

Inception5 - 2048 768 256 768 96 256 96 256

Decoder Network

Inception1 - 1280 512 192 384 32 256 64 128

Up Pool1 2 1280 - - - - - - -

Inception2 - 776 224 164 328 64 128 32 96

Inception3 - 480 128 96 224 32 64 32 64

Up Pool2 2 480 - - - - - - -

Inception4 - 256 64 96 128 16 32 16 32

Basic Conv1 3 128 - - - - - - -

Up Pool3 2 128 - - - - - - -

Basic Conv2 3 32 - - - - - - -

Up Pool4 2 32 - - - - - - -

Basic Conv3 3 16 - - - - - - -

Basic Conv4 3 1 - - - - - - -



Negese Z. et. al. 37

channel relationships instead of relying on the spatial information of convolutions only or

including geometric priors in the architecture as state-of-the-art methods do. We are able

to reach close to state-of-the-art results on the NYU v2 dataset while using a considerably

lower amount of trainable network parameters. We also showed how our network is general-

izable to different resolutions and datasets by training on a smaller resolution on NYU, and

evaluated the pretrained NYU model on the iBims dataset. Our method only needs a third

of the parameters of the next larger competitor with similar accuracy, and can be trained in

less iterations. In addition to speed, the training time is directly correlated to the electricity

needed, a measure that cannot be disregarded in light of recent developments of the climate

and environment. In future work we plan to directly measure the energy consumption of

our methods instead of relying on indirect measurement through training time.
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