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Abstract The paper presents the topology optimization of lined 
rock caverns designed for underground storage of chemical 
energy. This type of storage can store a high amount of hydrogen, 
methane, natural gas, carbon dioxide or other substances. The 
caverns are made of concrete shells and lined with thin steel sheets 
to seal the content. Optimization is performed by the mixed-
integer non-linear programming (MINLP) approach. The MINLP 
computer program GAMS/Dicopt is used. The model includes 
the cost objective function, which is subjected to geomechanical 
and design constraints. In this attempt, the topology calculation is 
included in the discrete optimization of the underground storage. 
A numerical example at the end of the paper shows the overall 
discrete MINLP optimization of an underground gas storage 
facility. The optimal discrete design with the optimal number of 
caverns of the storage is explicitly determined. Additional 
investment savings are achieved. 
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1 Introduction 
 
This paper deals with the topology optimization of lined rock caverns (LRC) 
designed for underground storage of chemical energy. This type of storage can store 
a high amount of hydrogen, methane, natural gas, carbon dioxide or other 
substances. The LRC caverns consist of 2 meters or more thick, cylindrically shaped 
concrete walls and are lined with 12-15 mm thin steel sheets. They are up to 100 m 
high, are built with diameters of up to 30 m or more and are bored to a depth of 300 
m. Because the LRCs contain the gas under high pressure (between 3 and 30 MPa), 
they have to be bored into a rock with high strength (limestone, dolomite, granite, 
gneiss). The concrete walls of the caverns transfer the internal pressure onto the 
rock mass, while the steel lining seal the gas content. The surrounding rock mass 
carry the gas pressure, see (Sofregaz US Inc., 1999), (Brandshaug et al., 2001), (Chung 
et al., 2003) and (Glamheden & Curtis, 2006). 
 
In the near past, some investigations have been carried out in the field of 
optimization of underground gas storages. For example, the optimization of a single 
gas cavern with non-linear programming (NLP) was introduced by (Kravanja & 
Žlender, 2010), the optimization of any number of caverns in the UGS was later 
presented by (Žlender & Kravanja, 2011), while the optimization in different rock 
environments was reported by (Kravanja & Žlender, 2012) and (Jelušič et al., 2019). 
The latter reference introduced a prediction of the minimal investment costs using 
an adaptive network based fuzzy inference system (ANFIS) for the UGSs with 
capacities from 10 to 100 million m3 of natural gas. The optimization of the discrete 
dimensions of the caverns was performed by (Kravanja & Žula, 2018) using mixed-
integer non-linear programming (MINLP).  
 
Underground gas storage facilities (UGS) are usually constructed from one to four 
LRCs. The correct determination of the number of LRCs built is very important as 
it has a strong impact on the investment costs. Therefore, we perform the topology 
optimization of the UGS with the calculation of the optimal number of LRCs. The 
topology logical constraints are inserted into the optimization model. In this way, 
the optimal discrete design of the storage facility with the optimal number of caverns 
is explicitly determined. 
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2 MINLP problem formulation 
 
The optimization problem of the lined rock cavern is non-linear, continuous and 
discrete. Mixed-integer non-linear programming (MINLP) is thus applied. The general 
MINLP optimization problem is formulated as follows: 
 

min  z=f (x,y) 
subjected to:   gk (x,y) ≤ 0    k ∈ K 

x ∈ X = {x ∈ Rn:  xLO ≤  x ≤  xUP} 

y ∈ Y ={0,1}m 
 
where x is a vector of continuous variables and y is a vector of discrete (binary 0-1) 
variables. The function f(x, y) is the objective function, which is subjected to the 
(in)equality constraints gk(x,y). At least one function must be non-linear. All 
functions must be continuous and differentiable. 
 
3 MINLP optimization model 
 
According to the above MINLP formulation, the MINLP optimization model of 
the UGS is being developed. The model comprises the cost objective function of 
the system, which is subjected to geomechanical, design and logical constraints. The 
model input data (constants) and variables are also defined.  
 
While the geomechanical constraints assure sufficient strength of the surrounding 
rock, they also prevent the uplift of the rock above the cavern, they prevent rock 
collapse between caverns and they limit the large deformations of the concrete wall 
and steel lining. The design constraints define the relationships between the 
dimensions of the LRC, internal gas pressure and the rock. They also represent the 
upper and lower bounds of the variables. The logical constraints define the 
relationships between discrete (binary 0-1) variables and determine the system 
topology (number of caverns) and the discrete dimensions of the structure. Since 
the model is simple and contains only some main constraints, it is suitable for use in 
the preliminary design phase. 
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The design variables (x) represent the number of caverns NOCAV, the inner 
diameter of the cavern DCAV [m], the depth of the cavern DEPTH [m], the height 
of the cavern tube HCAV [m], the thickness of the concrete cavern wall TWALL 
[m] and the gas pressure PGAS [MPa], see Fig. 1. These variables are explicitly 
rounded on whole discrete values during the optimization process. 
 

 
 

Figure 1: Vertical cross-section of lined rock cavern. 
Sourece: own. 

 
The objective function includes the investment costs of the UGS system COSTS [€]. 
It is defined by Eq. (1). 
 
COSTS = FIX + f(x)·NOCAV   (1) 
 
The equation defines the fixed costs FIX and the dimension-dependent costs f(x) of 
a cavern, multiplied by the number of caverns NOCAV. While the fixed costs 
include the upper-ground and underground works, the dimension-dependent costs 
represent the excavation and protection of the cavern and its tunnel, as well as the 
costs for the drainage system, concrete, reinforcement and steel lining of the cavern.  
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Topology logical constraints define the objective variable NOCAV - the number of 
caverns built in a UGS facility, see Eqs. (2)-(4). The variable NOCAV is calculated 
as the sum of the binary variables yNOCAVi, i∈I, see Eq. (3). Eq. (4) defines only one 
possible vector of binary variables, which is assigned for each topology (number of 
caverns). For example, the minimal topology with a single cavern is defined in this 
way by the vector of binary variables yNOCAV = {1,0,0,0,0,…,0} and not by yNOCAV 

= {0,1,0,0,0,…,0} or others. 
 
NOCAVLO ≤ NOCAV ≤ NOCAVUP (2) 
NOCAV = ∑i yNOCAVi (3) 
yNOCAVi-1 ≥ yNOCAVi (4) 
 
Discrete dimensions are determined by Eqs. (5)-(7). For example, the height of the 
cavern tube HCAV is calculated as a scalar product between a vector of the discrete 
value alternatives qHCAV and a vector of the binary variables yHCAV, see Eq. (6). Only 
one discrete value is then selected for the variable, since the sum of j, j∈J, binary 
variables is equal one, see Eq. (7). All design variables are determined in this way. 
 
HCAVLO ≤ HCAV ≤ HCAVUP (5) 
HCAV = ∑i qHCAVj · yHCAVj (6) 
∑i qHCAVj = 1 (7) 
 
4 Numerical example 
 
The simultaneous topology, discrete dimension and cost optimization of the 
underground gas storage in Senovo, Slovenia, is presented. The UGS in Senovo is 
planned to store 22.24 million m3 of natural gas. 
 
Note that the primary project comprised four lined rock caverns, which were to be 
included in the UGS - to store 5.56 million m3 of natural gas each. This design (with 
the specified number of four caverns) was optimized with MINLP by (Kravanja and 
Žula, 2018) and achieved the optimal result of 72.88 million EUR., see Fig. 2, which 
represented 47.7 % of the savings compared to the design obtained with the classical 
method (FEM).  
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Figure 2: Optimized lined rock caverns of the UGS (Nocav = 4). 
Sourece: own. 

 
The topology, discrete dimension and cost optimization of the Senovo UGS is 
performed using a new MINLP optimization model, which includes topology logical 
constraints and some other modifications. The cost items and prices defined in the 
cost objective function are the same as those used in the project and in our previous 
optimizations, see Table 1. The model is written in GAMS, the General Algebraic 
Modelling System by (Brooke et al., 1988). Four different topologies have been 
defined that determine 1, 2, 3 or 4 caverns. The LRC superstructure also includes 
200 different rounded dimension alternatives for the inner diameter of the cavern, 
2000 alternatives for the depth of the cavern, 2000 alternatives for the height of the 
cavern tube, 30 alternatives for the thickness of the concrete cavern wall and 200 
discrete alternatives for the internal gas pressure. The overall combinatorics of the 
discrete problem is high: a total 4434 binary variables of the alternatives yield 
1.92·1013 different LRC structural alternatives. One of them is optimal.  
 
This discrete MINLP optimization is performed with the program 
GAMS/DICOPT, which was developed by (Grossmann & Viswanathan, 2002). 
Note that comprehensive MINLP problems we usually optimize with the computer 
synthesizer MipSyn by (Kravanja, 2010). The optimal result represents the minimal 
total investment costs of the UGS of 57.62 million EUR. The optimal topology with 
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2 caverns is obtained. Fig. 3 shows the vertical cross-section of the optimized lined 
rock caverns. The figure shows the calculated “optimal” discrete variables 
(dimensions and the internal gas pressure). Note that this optimal result shows an 
additional 21 % of the net savings compared to the previous optimized design with 
fixed topology. 
 
Table 1: Cost items and prices. 
 

Cost item Price 
Upper ground works 2 982 500 EUR 
Underground works 2 798 025 EUR 
Price of the tunnel excavation 2 440 EUR/m1 
Price of the tunnel protection 1 340 EUR/m1 
Price of the cavern excavation 100 EUR/m3 
Price of the cavern protection 90 EUR/m2 
Price of the cavern drainage 60 EUR/m2 
Price of the cavern wall concrete 190 EUR/m3 
Price of the wall reinforcement 2 000 EUR/t 
Price of the steel lining 920 EUR/m2 

 

 
 

Figure 3: Optimized lined rock caverns of the UGS (Nocav = 2). 
Sourece: own. 
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5 Conclusions 
 
The paper discusses the simultaneous topology, discrete dimension and cost 
optimization of the lined rock caverns of underground storage of chemical energy. 
The optimization is performed by the mixed-integer non-linear programming, 
MINLP. The MINLP optimization model is developed into which the topology 
logical constraints are inserted. The numerical example at the end of the paper shows 
the advantages of the presented simultaneous optimization approach, tested on the 
case of the underground gas storage Senovo, Slovenia. A new optimal topology of 
two caverns is found. Significant additional investment savings are achieved. The 
result achieved represents the trade-off between the storage capacity and the 
investment costs of construction. In a future study, the operating costs of the 
underground storage facility, including filling and emptying of the storage, will be 
investigated. The proposed approach is also attractive for the optimization of 
underground storage facilities for hydrogen or methane.   
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