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Abstract Online shopping services are commonplace for people 

around the world for acquisitions. The product offers on 

websites are mostly given with some text descriptions and are 

often accompanied by specification tables. The same product can 

be found in many different e-shops, but information about the 

offers of this product can vary greatly on different electronic 

platforms. The task of product description categorization is not 

new, but the solution heavily depends on the data set of product 

descriptions. The pipeline is the scheme of step-by-step data 

processing. The aim of the paper is to construct the pipeline, for 

product description categorization, which should be flexible. The 

pipeline should allow getting access at any step during data 

processing and modify it by adding new functions, changing 

activity order, and implementing particular methods. We 

propose an approach to construct a flexible pipeline for product 

matching. The case study is given and experimental results are 

discussed. 
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1 Introduction 

 

Today, online shopping services are commonplace for people around the world. The 

rapid development of e-commerce caused an increasing number of products sold 

online. Product on websites is given along with some text descriptions. Specification 

tables, i.e., HTML tables that contain such specifications as price, manufacturer, 

country of origin, etc. are often presented (Ristoski, 2018). The broad concept of 

product matching is related to the process of finding and buying goods. The same 

product can be found in many different e-shops, but information about the item can 

vary greatly. In addition, there are no global identifiers for such products, and 

product offers are often unrelated. Therefore, there is no easy way for consumers to 

find all the necessary information and the best prices for the goods they are looking 

for. To improve user interaction, there are many product aggregators that try to 

integrate and classify products from many e-shops and many different vendors 

(Ristoski, 2018). 

 

2 Related works 

 

The issue of item matching has been already studied by the researchers (Hoffmann, 

2015; Kannan, 2011; Köpcke, 2009). The similarity function is proposed to compare 

items according to their attributes. This method presumes attribute categorization 

using a specific similarity function that processes this attribute (Hoffmann, 2015). 

The regular expressions are used for classification. The unstructured product offers 

could be matched using semantic processing of item descriptions (Kannan, 2011). 

Product matching sort out product offer deriving from great variety of e-commerce 

websites that concern to the same real-world product. The product matching is 

solved as a binary classification problem. Pair of product offers is compared if they 

describe the same/similar product or not. The available frameworks for item 

matching are analyzed (Köpcke, 2009) and the conclusion claims that all matching 

frameworks work offline, have drawbacks and don't give the general scheme to solve 

the studied task. Product offers are usually given on trading platforms as a textual 

description and are specification table (https://ir-ischool-uos.github.io), for 

example HTML tables provides the information about the price or the country of 

origin.  
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In order to solve this task, the set of semantic technologies is required. The 

technology should be adjusted to the product domain, product offer matching, and 

product taxonomy matching (https://ir-ischool-uos.github.io). Existing solutions 

use text manipulation and transformation, clustering and classification algorithms, 

but they lack specific structure definition for their data processing. A lot of 

researches focus on implementing a pipeline, which is customizable, flexible and 

robust at the same time as a solution for this issue. 

 

There are developed pipelines, which could be used. SpaCy allows creating own 

pipelines consisting of reusable components (https://spacy.io). This includes 

spaCy’s default tagger, parser and entity recognizer, but also your own custom 

processing functions. Scikit-learn pipeline (https://scikit-learn.org) can be used to 

chain multiple estimators into one. This is useful as there is often a fixed sequence 

of steps in processing the data, for example feature selection, normalization and 

classification. The use of mentioned above pipelines presumes that person can make 

some changes in code and has developer skills. But real managers who work in the 

sphere of e-commerce mostly are not specialized in programming. They need a tool 

for non-professional developer, but for average user, who can use existing blocks 

and libraries. At the same time proposed pipeline should be tailored to different 

languages, diverse product peculiarities. The developed pipeline should allow getting 

access at any step during data processing and modify it by adding new functions, 

changing activity order, and implementing particular methods.   

 

Therefore, the aim of the given research is to improve the use of text analysis 

pipelines for ad-hoc product description mining for the product matching task. 

 

3  Methods and Materials 

 

Item matching deals with identifying product offers deriving from different websites 

or from different sellers that refer to the same real-world product.  To study the 

problem of product matching it is necessary to work with datasets of product 

descriptions. Usually, this data is presented as text descriptions and images of goods.  
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The Web Data Commons project (http://webdatacommons.org) has released the 

publicly available product data corpus originating from e-shops on the Web. In our 

research, we use Shoes as a product category from the data corpus. The product data 

corpus is offered in JSON format. The following attributes are used for describing 

the product offers in the corpus: title, description, brand, price, the content of the 

specification tables, and category to which is the offer was assigned. The initial 

dataset is huge and can be considered as a special kind of text. 

 

Text mining deals with issues of the inference of structured information from 

collections of unstructured input texts. Approaches that are applied in text mining 

requires task-specific text analysis processes that may consist of several 

interdependent steps. Usually, these processes are realized with text analysis 

pipelines (Wachsmuth, 2015). One of the main problems is text analysis pipelines 

are mostly constructed manually because their design requires expert knowledge. To 

work with the problem of product matching, methods for processing proposal 

descriptions are used can be divided into the following stages: preliminary data 

processing; breakdown and work with individual tokens; implementation of special 

stages of processing such as clustering, classification, etc. A certain structure is used 

and the data must be adjusted, for text data, it is the use of alphabetic characters, 

lowercase text, and so on. The pipeline is implemented of such processing steps. 

 

To implement a pipeline, we should understand what it is, what it consists of, and 

how to implement it for use. In computing systems, pipeline means a logical queue 

of actions to which instructions for sequential data processing are transmitted. It is 

an organized process of storing, placing, and transmitting data in turn. The main 

feature of the pipeline is that the output of processing the previous function is the 

input to the next function. 

 

In the given work we introduce the paradigm of the pipeline construction and 

execution for product matching task. The product matching task is worded 

following. Given a collection of product text descriptions A, process A in order to 

infer all information as a structured set of information types B. Depending on the 

task, the types in B may represent different semantic concepts, linguistic annotations, 

sets of tags, and similar.  
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The decomposition of a text analysis process into single steps is a prerequisite for 

identifying relevant information types. Usually, this decomposition and pipeline 

construction are made manually, which prevents the use of pipelines for special text 

such as product descriptions. Our research focuses on implementing a pipeline, 

which is customizable, flexible and robust at the same time as a solution for this 

issue. 

 

The main idea is the improvement of product description processing. We are 

implementing a pipeline concept for data processing which includes: data 

preprocessing; filtering; block of main data processing functions (clustering; token 

evaluation; core of tags creation). The pipeline contains a data clustering step. We 

consider K-means and SVM methods, because of their common usage in such 

classes of tasks.  

 

Due to NLP and machine learning algorithms working with numeric data we need 

vectorization of the textual data. Vector is a numeric representation of a text value 

that encodes its meaning. The most common vectorization approaches are Bag-of-

words; TF-IDF; Word Embeddings (Jacob, 2018; Joulin, 2017; Mikolov, 2013). 

 

We have chosen the Word Embeddings approach with the usage of the Word2Vec 

model because of its high-level accuracy compared to others. Figure 1 displays the 

processing steps (developed by authors) that we proposed in the pipeline, which can 

be configured. 

 

 
 

Figure 1: Proposed pipeline steps 
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Thus, we are going to perform experiments and analyze results. Different methods 

for clustering text data are used, generating a core of tokens according to clusters is 

performed. 

 

4 Experiments 

 

An experiment on the operation of the pipeline is conducted. WDC Product Data 

Corpus (http://webdatacommons.org) is considered. For the offer category in the 

research we have chosen shoes. 

 

For implementation we use publicly available python libraries with 

tokenization/clustering algorithms: 

 

 spaCy - NLP library for tokenization; 

 gensim - ML tools; 

 scikit-learn - ML tools library with pipeline concept. 
 

The aim of the experiment is to test the work of the pipeline, using various methods 

for clustering text data, creating a core of tokens based on clusters and comparing 

their relevance indicators on trading platforms. The first step in the processing chain 

is to pre-process the dataset, which includes standardizing text data and filtering 

empty values. The results of the preliminary cleaning of the dataset is given in the 

table 1. 

 

Table 1: The results of the preliminary cleaning of the dataset 

 

Step name Dataset size Size difference 

Initial dataset 664176 0 

Empty values drop 551239 112937 

Punctuation removal 551239 0 

Lowercasing 551239 0 

Duplicate values drop 392528 158711 
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The next step after cleaning and standardizing text values is to vectorize the data and 

split the data into atomic tokens. Functions for tokenization and vectorization of 

words using Tok2Vec and Word2Vec models, functions for token filtering and 

validation are implemented. The results of these tokens processing functions are 

given in the table 2. 

After vectorization and filtering, the data should be clustered. Displayed (figures 2-

4) pie charts show K means clustering for vectors from 3 vectorization models: 

spaCy Tok2Vec model with static vectors; Google trained Word2Vec model 

(GoogleNews-vectors-negative300); Custom trained Word2Vec model (WDC 

corpus). Each slice represents number of tokens in each cluster. 

 

Table 2: Results of tokenization and filtering 

 

Step name Dataset size Size difference 

Initial dataset 3702438 0 

Non alphabetic values drop 3490404 212034 

Stop words drop 3257529 232875 

Single characters drop 3055223 202306 

Fully consonants values drop 2539365 515858 

Fully vowels values drop 2525143 14222 

Unique values count 100725 2424418 

Vectorization 100725  0 

OOV (out of vocabulary) values drop 44621 56104 

 

 
 

Figure 2: Custom trained Word2Vec model  
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Figure 3: Google trained Word2Vec model  

 

 
 

Figure 4: spaCy Tok2Vec model with static vectors 

 

The results show that Pipline was able to cluster the results of the Tov2Vec 

vectorization model into only two clusters, so these results can not be used to train 

the SVM model. Instead, we use the results of clustering the Word2Vec model from 

Google, which split the data into 7 clusters, and our trained Word2Vec model, which 

split the data into 3 clusters. The results of SVM clustering show that the use of 

clusters from our trained model Word2Vec is not effective, because 1-2 clusters 

came out, and the use of Word2Vec trained Google gave results with 4-5 clusters. 
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The next task was to assemble token cores for each of the clusters. We will use only 

those results where more than 2 clusters were obtained - the results of clustering by 

the K method of average Word2Vec models from Google and our trained model, 

the results of SVM clustering based on clusters of the Word2Vec model from 

Google. Using different combinations of vectorization and clustering, we created 

cores of tags for each cluster. Tokens were compared with each other using semantic 

similarity within their cluster, tokens with highest results were assigned to the core. 

 

In addition to the shoe category selected for the experiment, the developed pipeline 

can be used to process a variety of text data by adjusting the order of processing 

steps.  

 

The experimental results show that the choice of particular algorithms for each step 

of the text processing pipeline is quite ad-hoc and requires the tool to create the 

adjustable and flexible pipeline. 

 

5 Results 

 

The main goal is to make the pipeline as flexible as possible and allow users to change 

it as they wish: add their own functions, set their own order of action, use other 

methods for data processing. The main action and goal of users or external systems 

that can use and integrate the implemented Pipeline module is to download data for 

processing and create a configuration file to perform Pipeline operations. 

 

First of all, to process data, you need to be able to load it into memory and determine 

which block of data to work with. The data is defined in a table format and uploaded 

to the object for management. Next, you need to allow users to use a series of data 

processing features that will be used in the pipeline. More specific functional 

requirements for the implementation of the software component are given in table 

3. 
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Table 3: Functional requirements for pipeline component implementation 

 

Name  Description 

REQ-1 Able to load a dataset into memory for work 

REQ-2 Function for deleting special and punctuation characters that cannot be 

processed 

REQ-3 Data standardization function - lowercase translation 

REQ-4 "Blank" filtering function 

REQ-5 Duplicate removal function 

REQ-6 Data tokenization method 

REQ-7 Function to remove "empty" tokens 

REQ-8  Vectorization of tokens, deletion of invalid data 

REQ-9 Token filtering function by length, must be full words, some characters 

must be deleted 

REQ-10 The function of removing tokens that consist entirely of vowels or 

consonants 

REQ-11 Unique token counting function 

REQ-12 Function of clustering vectors into groups 

REQ-13 Function of estimating semantic similarity of vectors 

REQ-14 The function of creating a token kernel beyond the threshold of semantic 

similarity 

 

The software implementation has the structure of a python library and modules that 

can be integrated into other applications. The implemented solution can be used as 

an internal or external component of such systems, the main objects of which are 

the implementation of a pipeline controller interacting with pre-processing 

processors, a token processor interacting with the vector model, and a main 

processor for data clustering. For the data transmission of these components, the 

internal Systems Network Architecture (SNA) is used - a proprietary network 

architecture with a full stack of protocols, designed to connect computers and their 

resources (https://www.ibm.com). Communication with the pipeline component 

does not take place via Internet protocols. Processing modules should be separated 

in the developed component: data pre-processing module; tokenization module; 

token processing module; main module of controllers; modules of additional 

functions, etc. 

 



O. Cherednichenko, O. Ivashchenko & M. Vovk: 
Towards Pipeline Construction for Product Matching Task 

175 

 

 

 

Pipeline implementation modules are written in Python, using clustering and 

vectorization libraries, as well as structuring and data transformation libraries: 

gensim, spaCy, sklearn, numpy, pandas. Both code libraries and individual script files 

containing a set of functions can be considered as a module. Modules allow you to 

organize related functions, classes, or any block of code in a single file. Thus, it is 

best practice to split large blocks of code into smaller modules, especially for large 

amounts of code for production-level projects in Data Science. 

 

Pipeline implementation is strictly divided into the following modules and 

directories: 1) src - main folder with source code and functions; 2) base.py - the main 

file with the implementation of the pipeline class; 3) module of data processing 

functions - data_processing: a) pre-treatment module; b) token module; c) module 

of basic functions-handlers; 4) the config module, which is responsible for the 

validation of the config file; 5) auxiliary modules scripts, and utils.py; 6) directories 

for data storage - data, dumps. 

 

The main components of the modules are the implemented classes. Classes provide 

a means of combining data and functions together. Creating a new class creates a 

new object type that allows you to create new instances of this type. Each instance 

of a class can have attributes added to it to maintain its state.  

 

Pre-processing is the processing of "raw" data - dataset processing. In our case, it 

contains: 

 

 loading the dataset into memory for work; 

 cleaning of special symbols, numbers, punctuation marks; 

 lower case transfer for further processing; 

 delete empty values, null values; 

 remove duplicates. 
 

This pipeline step is the first, and its results are important for further processing. As 

mentioned earlier, a configuration file is used to use and change the order of 

processing functions. It has a mandatory preprocessing parameter, which specifies 

the procedure for processing text descriptions from a dataset. 
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Vectorization of tokens is one of the key aspects of pipeline development, because 

it is with the form of vectors that further actions are performed. For vectorization, 

several methods were considered, the modules of which are implemented in existing 

libraries: Doc2Vec from gensim; Tok2Vec from spaCy. 

 

The following functionality should also be included in the pipeline: functions of 

counting the number of unique tokens; clustering by groups; comparison of tokens 

by semantic features; creating a token core.  

 

The implemented pipeline is adaptive and by changing processing steps you can 

achieve the needed results to process the text data. The implemented pipeline is 

modular, it has library architecture. As a result, we got a pipeline that can be used in 

a variety of text processing evaluations. Customizable configuration allows building 

different adaptive scenarios. By adding necessary processing pipes we can improve 

our solution without changing the whole structure. 

 

7 Discussion and Conclusion 

 

Matching product offers is a complicated issue demanding refined and adapted entity 

resolution approaches. We proposed to build a flexible pipeline for product 

matching, as the other researches did (Nguyen, 2011). The valuable difference of our 

approach is the pipeline allow getting access at any step during data processing and 

modify it by adding new functions, changing activity order, and implementing 

particular methods. The results of the experiments showed that it is quite difficult 

to build and use generally applicable pipeline with preliminary defined clustering 

models. The trained model provides acceptable results only on similar datasets. As 

a result, the analysis and elaboration of the needs for the development of a software 

component are started, which allows processing the text data of product proposals 

for their classification. The main task of the proposed solution is to consistently 

perform data processing functions from users or third-party systems, thus validating 

and transforming the data into the necessary structure for further analysis and 

processing. The concept of a pipeline for processing and clustering text descriptions 

of product offers was developed. The implemented solution has a structure of 

modules and libraries written using the Python 3.9 programming language, which 

makes it easy to integrate into other systems. In future work, it is supposed to 

develop the automated tool to pipeline construction for the product matching task. 
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