

DOI https://doi.org/10.18690/um.fov.3.2022.12
ISBN 978-961-286-583-2

TOWARDS PIPELINE CONSTRUCTION FOR

PRODUCT MATCHING TASK

Keywords:

product

matching,

pipeline,

text

mining,

item

categorization,

software.

OLGA CHEREDNICHENKO, OKSANA IVASHCHENKO
 &

MARYNA VOVK
National Technical University »Kharkiv Polytecnic University« , Ukraine.
E-mail: olga.cherednichenko@khpi.edu.ua , oksana.ivashchenko@khpi.edu.ua,
maryna.vovk@khpi.edu.ua

Abstract Online shopping services are commonplace for people

around the world for acquisitions. The product offers on

websites are mostly given with some text descriptions and are

often accompanied by specification tables. The same product can

be found in many different e-shops, but information about the

offers of this product can vary greatly on different electronic

platforms. The task of product description categorization is not

new, but the solution heavily depends on the data set of product

descriptions. The pipeline is the scheme of step-by-step data

processing. The aim of the paper is to construct the pipeline, for

product description categorization, which should be flexible. The

pipeline should allow getting access at any step during data

processing and modify it by adding new functions, changing

activity order, and implementing particular methods. We

propose an approach to construct a flexible pipeline for product

matching. The case study is given and experimental results are

discussed.

166
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

1 Introduction

Today, online shopping services are commonplace for people around the world. The

rapid development of e-commerce caused an increasing number of products sold

online. Product on websites is given along with some text descriptions. Specification

tables, i.e., HTML tables that contain such specifications as price, manufacturer,

country of origin, etc. are often presented (Ristoski, 2018). The broad concept of

product matching is related to the process of finding and buying goods. The same

product can be found in many different e-shops, but information about the item can

vary greatly. In addition, there are no global identifiers for such products, and

product offers are often unrelated. Therefore, there is no easy way for consumers to

find all the necessary information and the best prices for the goods they are looking

for. To improve user interaction, there are many product aggregators that try to

integrate and classify products from many e-shops and many different vendors

(Ristoski, 2018).

2 Related works

The issue of item matching has been already studied by the researchers (Hoffmann,

2015; Kannan, 2011; Köpcke, 2009). The similarity function is proposed to compare

items according to their attributes. This method presumes attribute categorization

using a specific similarity function that processes this attribute (Hoffmann, 2015).

The regular expressions are used for classification. The unstructured product offers

could be matched using semantic processing of item descriptions (Kannan, 2011).

Product matching sort out product offer deriving from great variety of e-commerce

websites that concern to the same real-world product. The product matching is

solved as a binary classification problem. Pair of product offers is compared if they

describe the same/similar product or not. The available frameworks for item

matching are analyzed (Köpcke, 2009) and the conclusion claims that all matching

frameworks work offline, have drawbacks and don't give the general scheme to solve

the studied task. Product offers are usually given on trading platforms as a textual

description and are specification table (https://ir-ischool-uos.github.io), for

example HTML tables provides the information about the price or the country of

origin.

O. Cherednichenko, O. Ivashchenko & M. Vovk:
Towards Pipeline Construction for Product Matching Task

167

In order to solve this task, the set of semantic technologies is required. The

technology should be adjusted to the product domain, product offer matching, and

product taxonomy matching (https://ir-ischool-uos.github.io). Existing solutions

use text manipulation and transformation, clustering and classification algorithms,

but they lack specific structure definition for their data processing. A lot of

researches focus on implementing a pipeline, which is customizable, flexible and

robust at the same time as a solution for this issue.

There are developed pipelines, which could be used. SpaCy allows creating own

pipelines consisting of reusable components (https://spacy.io). This includes

spaCy’s default tagger, parser and entity recognizer, but also your own custom

processing functions. Scikit-learn pipeline (https://scikit-learn.org) can be used to

chain multiple estimators into one. This is useful as there is often a fixed sequence

of steps in processing the data, for example feature selection, normalization and

classification. The use of mentioned above pipelines presumes that person can make

some changes in code and has developer skills. But real managers who work in the

sphere of e-commerce mostly are not specialized in programming. They need a tool

for non-professional developer, but for average user, who can use existing blocks

and libraries. At the same time proposed pipeline should be tailored to different

languages, diverse product peculiarities. The developed pipeline should allow getting

access at any step during data processing and modify it by adding new functions,

changing activity order, and implementing particular methods.

Therefore, the aim of the given research is to improve the use of text analysis

pipelines for ad-hoc product description mining for the product matching task.

3 Methods and Materials

Item matching deals with identifying product offers deriving from different websites

or from different sellers that refer to the same real-world product. To study the

problem of product matching it is necessary to work with datasets of product

descriptions. Usually, this data is presented as text descriptions and images of goods.

168
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

The Web Data Commons project (http://webdatacommons.org) has released the

publicly available product data corpus originating from e-shops on the Web. In our

research, we use Shoes as a product category from the data corpus. The product data

corpus is offered in JSON format. The following attributes are used for describing

the product offers in the corpus: title, description, brand, price, the content of the

specification tables, and category to which is the offer was assigned. The initial

dataset is huge and can be considered as a special kind of text.

Text mining deals with issues of the inference of structured information from

collections of unstructured input texts. Approaches that are applied in text mining

requires task-specific text analysis processes that may consist of several

interdependent steps. Usually, these processes are realized with text analysis

pipelines (Wachsmuth, 2015). One of the main problems is text analysis pipelines

are mostly constructed manually because their design requires expert knowledge. To

work with the problem of product matching, methods for processing proposal

descriptions are used can be divided into the following stages: preliminary data

processing; breakdown and work with individual tokens; implementation of special

stages of processing such as clustering, classification, etc. A certain structure is used

and the data must be adjusted, for text data, it is the use of alphabetic characters,

lowercase text, and so on. The pipeline is implemented of such processing steps.

To implement a pipeline, we should understand what it is, what it consists of, and

how to implement it for use. In computing systems, pipeline means a logical queue

of actions to which instructions for sequential data processing are transmitted. It is

an organized process of storing, placing, and transmitting data in turn. The main

feature of the pipeline is that the output of processing the previous function is the

input to the next function.

In the given work we introduce the paradigm of the pipeline construction and

execution for product matching task. The product matching task is worded

following. Given a collection of product text descriptions A, process A in order to

infer all information as a structured set of information types B. Depending on the

task, the types in B may represent different semantic concepts, linguistic annotations,

sets of tags, and similar.

O. Cherednichenko, O. Ivashchenko & M. Vovk:
Towards Pipeline Construction for Product Matching Task

169

The decomposition of a text analysis process into single steps is a prerequisite for

identifying relevant information types. Usually, this decomposition and pipeline

construction are made manually, which prevents the use of pipelines for special text

such as product descriptions. Our research focuses on implementing a pipeline,

which is customizable, flexible and robust at the same time as a solution for this

issue.

The main idea is the improvement of product description processing. We are

implementing a pipeline concept for data processing which includes: data

preprocessing; filtering; block of main data processing functions (clustering; token

evaluation; core of tags creation). The pipeline contains a data clustering step. We

consider K-means and SVM methods, because of their common usage in such

classes of tasks.

Due to NLP and machine learning algorithms working with numeric data we need

vectorization of the textual data. Vector is a numeric representation of a text value

that encodes its meaning. The most common vectorization approaches are Bag-of-

words; TF-IDF; Word Embeddings (Jacob, 2018; Joulin, 2017; Mikolov, 2013).

We have chosen the Word Embeddings approach with the usage of the Word2Vec

model because of its high-level accuracy compared to others. Figure 1 displays the

processing steps (developed by authors) that we proposed in the pipeline, which can

be configured.

Figure 1: Proposed pipeline steps

170
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

Thus, we are going to perform experiments and analyze results. Different methods

for clustering text data are used, generating a core of tokens according to clusters is

performed.

4 Experiments

An experiment on the operation of the pipeline is conducted. WDC Product Data

Corpus (http://webdatacommons.org) is considered. For the offer category in the

research we have chosen shoes.

For implementation we use publicly available python libraries with

tokenization/clustering algorithms:

 spaCy - NLP library for tokenization;

 gensim - ML tools;

 scikit-learn - ML tools library with pipeline concept.

The aim of the experiment is to test the work of the pipeline, using various methods

for clustering text data, creating a core of tokens based on clusters and comparing

their relevance indicators on trading platforms. The first step in the processing chain

is to pre-process the dataset, which includes standardizing text data and filtering

empty values. The results of the preliminary cleaning of the dataset is given in the

table 1.

Table 1: The results of the preliminary cleaning of the dataset

Step name Dataset size Size difference

Initial dataset 664176 0

Empty values drop 551239 112937

Punctuation removal 551239 0

Lowercasing 551239 0

Duplicate values drop 392528 158711

O. Cherednichenko, O. Ivashchenko & M. Vovk:
Towards Pipeline Construction for Product Matching Task

171

The next step after cleaning and standardizing text values is to vectorize the data and

split the data into atomic tokens. Functions for tokenization and vectorization of

words using Tok2Vec and Word2Vec models, functions for token filtering and

validation are implemented. The results of these tokens processing functions are

given in the table 2.

After vectorization and filtering, the data should be clustered. Displayed (figures 2-

4) pie charts show K means clustering for vectors from 3 vectorization models:

spaCy Tok2Vec model with static vectors; Google trained Word2Vec model

(GoogleNews-vectors-negative300); Custom trained Word2Vec model (WDC

corpus). Each slice represents number of tokens in each cluster.

Table 2: Results of tokenization and filtering

Step name Dataset size Size difference

Initial dataset 3702438 0

Non alphabetic values drop 3490404 212034

Stop words drop 3257529 232875

Single characters drop 3055223 202306

Fully consonants values drop 2539365 515858

Fully vowels values drop 2525143 14222

Unique values count 100725 2424418

Vectorization 100725 0

OOV (out of vocabulary) values drop 44621 56104

Figure 2: Custom trained Word2Vec model

172
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

Figure 3: Google trained Word2Vec model

Figure 4: spaCy Tok2Vec model with static vectors

The results show that Pipline was able to cluster the results of the Tov2Vec

vectorization model into only two clusters, so these results can not be used to train

the SVM model. Instead, we use the results of clustering the Word2Vec model from

Google, which split the data into 7 clusters, and our trained Word2Vec model, which

split the data into 3 clusters. The results of SVM clustering show that the use of

clusters from our trained model Word2Vec is not effective, because 1-2 clusters

came out, and the use of Word2Vec trained Google gave results with 4-5 clusters.

O. Cherednichenko, O. Ivashchenko & M. Vovk:
Towards Pipeline Construction for Product Matching Task

173

The next task was to assemble token cores for each of the clusters. We will use only

those results where more than 2 clusters were obtained - the results of clustering by

the K method of average Word2Vec models from Google and our trained model,

the results of SVM clustering based on clusters of the Word2Vec model from

Google. Using different combinations of vectorization and clustering, we created

cores of tags for each cluster. Tokens were compared with each other using semantic

similarity within their cluster, tokens with highest results were assigned to the core.

In addition to the shoe category selected for the experiment, the developed pipeline

can be used to process a variety of text data by adjusting the order of processing

steps.

The experimental results show that the choice of particular algorithms for each step

of the text processing pipeline is quite ad-hoc and requires the tool to create the

adjustable and flexible pipeline.

5 Results

The main goal is to make the pipeline as flexible as possible and allow users to change

it as they wish: add their own functions, set their own order of action, use other

methods for data processing. The main action and goal of users or external systems

that can use and integrate the implemented Pipeline module is to download data for

processing and create a configuration file to perform Pipeline operations.

First of all, to process data, you need to be able to load it into memory and determine

which block of data to work with. The data is defined in a table format and uploaded

to the object for management. Next, you need to allow users to use a series of data

processing features that will be used in the pipeline. More specific functional

requirements for the implementation of the software component are given in table

3.

174
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

Table 3: Functional requirements for pipeline component implementation

Name Description

REQ-1 Able to load a dataset into memory for work

REQ-2 Function for deleting special and punctuation characters that cannot be

processed

REQ-3 Data standardization function - lowercase translation

REQ-4 "Blank" filtering function

REQ-5 Duplicate removal function

REQ-6 Data tokenization method

REQ-7 Function to remove "empty" tokens

REQ-8 Vectorization of tokens, deletion of invalid data

REQ-9 Token filtering function by length, must be full words, some characters

must be deleted

REQ-10 The function of removing tokens that consist entirely of vowels or

consonants

REQ-11 Unique token counting function

REQ-12 Function of clustering vectors into groups

REQ-13 Function of estimating semantic similarity of vectors

REQ-14 The function of creating a token kernel beyond the threshold of semantic

similarity

The software implementation has the structure of a python library and modules that

can be integrated into other applications. The implemented solution can be used as

an internal or external component of such systems, the main objects of which are

the implementation of a pipeline controller interacting with pre-processing

processors, a token processor interacting with the vector model, and a main

processor for data clustering. For the data transmission of these components, the

internal Systems Network Architecture (SNA) is used - a proprietary network

architecture with a full stack of protocols, designed to connect computers and their

resources (https://www.ibm.com). Communication with the pipeline component

does not take place via Internet protocols. Processing modules should be separated

in the developed component: data pre-processing module; tokenization module;

token processing module; main module of controllers; modules of additional

functions, etc.

O. Cherednichenko, O. Ivashchenko & M. Vovk:
Towards Pipeline Construction for Product Matching Task

175

Pipeline implementation modules are written in Python, using clustering and

vectorization libraries, as well as structuring and data transformation libraries:

gensim, spaCy, sklearn, numpy, pandas. Both code libraries and individual script files

containing a set of functions can be considered as a module. Modules allow you to

organize related functions, classes, or any block of code in a single file. Thus, it is

best practice to split large blocks of code into smaller modules, especially for large

amounts of code for production-level projects in Data Science.

Pipeline implementation is strictly divided into the following modules and

directories: 1) src - main folder with source code and functions; 2) base.py - the main

file with the implementation of the pipeline class; 3) module of data processing

functions - data_processing: a) pre-treatment module; b) token module; c) module

of basic functions-handlers; 4) the config module, which is responsible for the

validation of the config file; 5) auxiliary modules scripts, and utils.py; 6) directories

for data storage - data, dumps.

The main components of the modules are the implemented classes. Classes provide

a means of combining data and functions together. Creating a new class creates a

new object type that allows you to create new instances of this type. Each instance

of a class can have attributes added to it to maintain its state.

Pre-processing is the processing of "raw" data - dataset processing. In our case, it

contains:

 loading the dataset into memory for work;

 cleaning of special symbols, numbers, punctuation marks;

 lower case transfer for further processing;

 delete empty values, null values;

 remove duplicates.

This pipeline step is the first, and its results are important for further processing. As

mentioned earlier, a configuration file is used to use and change the order of

processing functions. It has a mandatory preprocessing parameter, which specifies

the procedure for processing text descriptions from a dataset.

176
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

Vectorization of tokens is one of the key aspects of pipeline development, because

it is with the form of vectors that further actions are performed. For vectorization,

several methods were considered, the modules of which are implemented in existing

libraries: Doc2Vec from gensim; Tok2Vec from spaCy.

The following functionality should also be included in the pipeline: functions of

counting the number of unique tokens; clustering by groups; comparison of tokens

by semantic features; creating a token core.

The implemented pipeline is adaptive and by changing processing steps you can

achieve the needed results to process the text data. The implemented pipeline is

modular, it has library architecture. As a result, we got a pipeline that can be used in

a variety of text processing evaluations. Customizable configuration allows building

different adaptive scenarios. By adding necessary processing pipes we can improve

our solution without changing the whole structure.

7 Discussion and Conclusion

Matching product offers is a complicated issue demanding refined and adapted entity

resolution approaches. We proposed to build a flexible pipeline for product

matching, as the other researches did (Nguyen, 2011). The valuable difference of our

approach is the pipeline allow getting access at any step during data processing and

modify it by adding new functions, changing activity order, and implementing

particular methods. The results of the experiments showed that it is quite difficult

to build and use generally applicable pipeline with preliminary defined clustering

models. The trained model provides acceptable results only on similar datasets. As

a result, the analysis and elaboration of the needs for the development of a software

component are started, which allows processing the text data of product proposals

for their classification. The main task of the proposed solution is to consistently

perform data processing functions from users or third-party systems, thus validating

and transforming the data into the necessary structure for further analysis and

processing. The concept of a pipeline for processing and clustering text descriptions

of product offers was developed. The implemented solution has a structure of

modules and libraries written using the Python 3.9 programming language, which

makes it easy to integrate into other systems. In future work, it is supposed to

develop the automated tool to pipeline construction for the product matching task.

O. Cherednichenko, O. Ivashchenko & M. Vovk:
Towards Pipeline Construction for Product Matching Task

177

References

Armand Joulin, Edouard Grave, Piotr Bojanowski, Tomas Mikolov, (2017). “Bag of Tricks for Efficient
Text Classification”, Conference: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 2

Devlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova Kristina, (2018). “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding”

Doc2Vec https://www.tutorialspoint.com/gensim/gensim_doc2vec_model.htm
Henning Wachsmuth (2015) Text Analysis Pipelines. Towards Ad-hoc Large-Scale Text Mining

Hoffmann, U., Silva, A., Carvalho, M. (2015) Finding Similar Products in E-commerce Sites Based on
Attributes. Published in AMW

Kannan, A. (2011) Matching unstructured product offers to structured product specifications.KDD
'11: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining pp. 404–412

Köpcke, H., Rahm, E. (2009) Frameworks for entity matching: A comparison, Data Knowl. Eng.
Nguyen, H. Fuxman, A. Paparizos, S. Freire, J. and Agrawal R. (2011) Synthesizing products for online

catalogs. Proceedings of the VLDB Endowment, 4(7):409–418.
Ristoski P., Petrovski P., Mika P., Paulheim H. (2018) A Machine Learning Approach for Product

Matching and Categorization. In: Yahoo Labs, London, UK
Robert C. Martin, (2018) Clean Code: A Handbook of Agile Software Craftsmanship 1st Edition
Scikit-learn Machine Learning in Python https://scikit-learn.org
Semantic Web Challenge ISWC2020 - GitHub Pages https://ir-ischool

uos.github.io/mwpd/
SpaCy Industrial-Strength Natural Language Processing https://spacy.io/usage/processing-pipelines
Systems Network Architecture https://www.ibm.com/docs/en/zos-basic

skills?topic=implementation-what-is-systems-network-architecture-sna
Tok2Vec https://spacy.io/api/tok2vec
Tomas Mikolov, et al. (2013). “Efficient Estimation of Word Representations in Vector Space”.

arXiv:1301.3781
WDC Product Data Corpus http://webdatacommons.org

https://dl.acm.org/doi/proceedings/10.1145/2020408
https://dl.acm.org/doi/proceedings/10.1145/2020408
https://dl.acm.org/doi/proceedings/10.1145/2020408
https://www.amazon.com/Robert-C-Martin/e/B000APG87E/ref=dp_byline_cont_book_1
https://scikit-learn.org/
https://spacy.io/usage/processing-pipelines
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1301.3781
http://webdatacommons.org/largescaleproductcorpus/v2/index.html

178
41ST INTERNATIONAL CONFERENCE ON ORGANIZATIONAL SCIENCE DEVELOPMENT:

SOCIETY’S CHALLENGES FOR ORGANIZATIONAL OPPORTUNITIES

