
Embedding Non-planar Graphs: Storage and 
Representation

Ðorđe K lisura
University of Primorska,

Faculty of Mathematics, Natural Sciences
and Information Technologies,

Glagoljaška ulica 8, 6 000 K oper, S lovenia
klisuradjordje10@gmail.com

Abstract
In this paper, we propose a convention for repre-
senting non-planar graphs and their least-crossing
embeddings in a canonical way. We achieve this
by using state-of-the-art tools such as canonical
labelling of graphs, Nauty’s Graph6 string and
combinatorial representations for planar graphs.
To the best of our knowledge, this has not been
done before. Besides, we implement the men-
tioned procedure in a SageMath language and
compute embeddings for certain classes of cubic,
vertex-transitive and general graphs. Our main
contribution is an extension of one of the graph
data sets hosted on MathDataHub, and towards
extending the SageMath codebase.

Keywords planar graph, graph representation, crossing
number, graph database

1 Introduction

Computers are increasingly used by mathematicians to
assist them in their studies. This includes most aspects
of a researcher’s work, from publishing and reading pa-
pers to computations in mathematical software. Perhaps
surprisingly, mathematicians also generate and use data,
and the production and processing of massive datasets
are becoming increasingly important in several areas of
mathematics.
The primary applications for these mathematical datasets
and databases are exploratory in nature. They are used
by researchers to test hypotheses or to discover pat-
terns and counterexamples. It’s not difficult to find such
"datasets" that even predate computers: the Atlas of
Graphs and the Foster census are two examples from
graph theory. The Online Encyclopedia of Integer Se-
quences (OEIS) is a modern mathematical database that
represents an online database of integer sequences. The
OEIS now contains over 334000 sequences that are useful
to both professional and amateur mathematicians, mak-
ing it the largest database of its kind. The sequences
in the database serve as fingerprints for the records they
are associated with. A somewhat similar project in graph
theory is the House of Graphs. An important notion is
that of using mathematical objects, such as integer se-
quences, or graphs, to search for mathematical theorems.
This has been introduced as theorem fingerprinting by
Billey and Tenner [2] as a way to improve the efficiency

of searching for mathematical knowledge. In a broader
sense, fingerprints are used in many fields of science, rang-
ing from computer science to chemistry, archaeology, and
genetics. Computer documentation, reducing duplication
in web search results, and surely DNA fingerprinting are
a few examples.
Because of its applications in physics, biochemistry, bi-
ology, electrical engineering, astronomy, operations re-
search, and computer science, graph theory is rapidly
moving into the core of mathematics. The theory of
planar graphs is based on Euler’s polyhedral formula,
which is related to the polyhedron edges, vertices and
faces. Planar graphs are used in a variety of applications
in the modern era, including constructing and organiz-
ing sophisticated radio electronic circuits, railway maps,
planetary gearboxes, and chemical molecules. Pipelines,
railway lines, subway tunnels, electric transmission lines,
and metro lines are all vitally crucial for modelling an
urban city. For further readings on this topic, look at
Trudeau and Richard [13], and Barthelemy [1].

1.1 Related work and contributions

Some of the most significant projects that act as mathe-
matical databases which are of assistance to researchers
in their research projects are the SageMath platform [12],
American Mathematical Society MathSciNet [11], above-
mentioned Encyclopedia of Integer Sequences [6], House
of Graphs [5], and Atlas of Graphs [10].
The above-named tools are far from perfect and are many
times subject to important work of the open-source com-
munity. This project aims to provide another toolset for
researchers, via improving the platform MathDataHub
which will, in the future, provide our database contain-
ing planar embeddings minimising the number of cross-
ings. Those embeddings are hard to compute and such
a database of precomputed embeddings does not exist in
any mathematical database.
The paper is structured as follows. In Section 2, we
present the central technique and ideas of embedding
non-planar graphs. Moreover, we give a concrete algo-
rithm that uses them and evaluates them in terms of
space and time complexity. In Section 3, we talk about
the impact of our results so far. Finally, in Section 4, we
present some output samples of the algorithm that has
been evaluated before we make some concluding remarks
in Section 5.

DOI https://doi.org/10.18690/978-961-286-516-0.13
ISBN 978-961-286-516-0 57



2 Embedding non-planar graphs

In this section, we present our main result, namely the
algorithm for calculating the canonical embedding of non-
planar graphs.

Data: Non-planar graph G
Result: Planar embedding, crossing number

and added vertices of G
1 V V (G)
2 edgePairs {ab, cd, where a, b, c, d ∈ V (G) and

ab, cd ∈ E(G)}
3 k ← 0
4 while G is not planar do
5 S ← all k-subsets from edgePairs
6 for {a1, a2, . . . , ak} in S do
7 E(G)← E(G) \

⋃k
i=1 ai

8 for ai element in {a1, a2, . . . , ak} do
9 {{a1

i , a2
i }, {a3

i , a4
i }} ← ai

10 vi ← vertex such that vi /∈ V (G)
11 V (G)← V (G) ∪ {vi}
12 E(G)← E(G) ∪ {a1

i vi, via
2
i , a3

i vi,
via

4
i }

13 end
14 if G is planar then
15 return G, k, V (G) \ V
16 end
17 end
18 k k + 1
19 end

Algorithm 1: Algorithm for calculating the
canonical embedding of non-planar graphs.

After investigating several non-planar graphs with up to
five vertices in SageMath we came up with the notion
of representing their embeddings. Combinatorial embed-
ding is a key concept in the study of such graph embed-
dings. The significance stems from the fact that, when
combined with canonical labelling, combinatorial embed-
dings can be utilized to generate a unique representation
of (planar) embeddings for (planar) graphs. For further
reading on combinatorial representations and planar em-
beddings, refer to Mutzel and Weiskircher [9], Didjev [8],
Duncan, Goodrich and Kobourov [4], and to Hopcroft
and Tarjan [7].
The concept is as follows: we first construct all non-
incident pairs of edges of a graph; then, we go through
those pairs of edges and for each crossing of two edges,
we delete those edges and add a new vertex to which we
connect vertices of deleted edges. We repeat the process
until the graph is planar. Finally, if it is planar, in the
end, we canonically reorient its vertices and save new
embedding of a graph.
We show the approach and demonstrate how it works
using a Petersen graph shown in Figure 1. The first
step of Algorithm 1 is constructing all pairs of non-
incident edges of G, meaning that the two different edges
cannot share the same vertex. Those pairs of edges are
{{0, 1}, {2, 3}}, {{4, 9}, {5, 8}} etc. In the beginning, we

initialise crossing number k to 0, to check if the graph is
already planar if it is we return k and if it is not, k is
increased by 1, and we are going through the set of pairs
of non-incident edges. For each k we modify the graph
until we get a planar embedding, in the following way:
we take the first pair, in our example pair {{0, 1}, {2, 3}}
and we delete edges {0, 1} and {2, 3}. Then we add a new
vertex v to which we connect the vertices of the deleted
edges: {0}, {1}, {2}, {3}. We check for planarity. If the
checking confirmed a positive result, that is, confirmed
that the graph is planar, the crossing number is returned
and the algorithm terminates. However, if the checking
confirmed a negative result, that is, confirmed that the
graph is not planar we go to the next pair. If all pairs
fail, we look for tuples of size 3 next, and so on.

0

1

2 3

4

5

6

7 8

9

Figure 1: Petersen graph.

We get that graph G is planar after three iterations,
hence, the crossing number of the Peterson graph is 2.
In the end, we canonically relabel vertices and we obtain
a planar embedding presented in Figure 2.

Figure 2: Planar embedding of Petersen graph after
applying Algorithm 1.

See Section 3 for more details about the transformation.

2.1 Theoretical analysis of the algorithm

Consider first the space complexity of Algorithm 1. The
amount of memory used by Algorithm 1 to execute and
produce the result is linear with respect to the input
instance. This is due to the fact that the input instance
is a graph and most of the work on it is done in-place, by

58



modifying it locally and not taking more space even after
many manipulations. Hence, we can say that Algorithm 1
does not take too much memory.
Next, let us evaluate the time complexity of Algorithm 1.
To determine the time complexity, we need to consider
all of the SageMath integrated functions we called in our
main function. Function is_planar that is implemented
runs in linear time, concerning the graph as an input
instance, meaning it runs in time O(n + m) where n is
a number of vertices and m is a number of edges of the
graph. For more reading on the time complexity of the
planarity algorithm, refer to Boyer and Myrvold [3]. To
remove a vertex in a graph, we first need to find the vertex
in the data structure and the time complexity depends
on the structure we use; if we use a HashMap, the time
complexity will be O(1). Then we remove the vertex, and
we do it in O(n) time. Adding and removing an edge
of the graph is done in constant time, O(1), time while
adding a vertex to a graph takes O(n) time. Checking
if there is an edge between vertices is done in O(n) time
since a vertex can have at most O(n) neighbours. The
time complexity of getting an embedding of the graph
and of finding the neighbours is linear, that is O(n + m),
since we needed to perform the Breadth-First Search
algorithm.
Let us analyze the lines from Algorithm 1. Line 1 has
complexity O(n) , as it assigns to a set n vertices, while
line 2 assigns m2 edge pairs to a set and hence has com-
plexity O(m2). Line 3 has constant, O(1), complexity.
Let us now analyse the complexity of the while loop.
Inside the while loop, we see that line 5 generates all
subsets of size k from the set of size m2. Hence, the
assignment of the k-subsets to the set has complexity
equal to the size of the set which is O(

(
m2

k

)
) = O(m2k).

Now, the first for loop goes through all k elements of
the k-subset, and has complexity O(m2k(k + kn + m +
n)) = O(m2k(nk +m)) because the line 7 has complexity
O(k), the inner for loop has complexity O(nk) and the
if statement in line 14, that checks whether the graph is
planar, has complexity O(n + m). Finally, the while loop
is executed k times meaning that the complexity of the
whole while loop is O(m2kk(nk + m)).

3 Applications

Drawing: One of the applications is in graph colouring.
In Algorithm 1, we labelled newly added edges, then we
use the method plot() within SageMath and with the
property colour by label, we get different colours for the
newly added edges. In Figure 3 we see an example of the
transformed Petersen graph from Figure 2. As it can be
seen, the original graph embedding is coloured red, while
the newly inserted edges are coloured green and blue.

Storing graphs: Another application of our approach
is related to the storing of graphs with their combinatorial
embedding, added vertices (if the graph is non-planar)
and with Graph6 string. We constructed a function that
stores data about an individual graph in a single text
file that a computer can comprehend (Graph6 string,
calculated embedding and added vertices - separated by

(1).jpg (1).jpg (1).jpg

Figure 3: Colouring of planar embedding of Petersen
graph.

semicolons) since we aim to store graphs in the database.
Furthermore, we added the certificate flag verbose so that
we may provide a detailed output (when set to True) for
users - with output explanations.
By now, we processed cubic graphs with up to 21 edges,
vertex-transitive graphs with up to 20 edges and all
graphs with up to 13 edges. These files can be stored in
any database since we created a non-verbose mode of
writing into them. In Table 1 we present an overall of
the processed families of graphs by now.

Table 1: Processed families of graphs

family of graphs # generated up to edges
cubic 752 21
vertex-transitive 16 20
general 376899 13

4 Output samples

Here we present some examples of the algorithm’s final
outputs, as previously detailed in the paper. We’ve suc-
cessfully generated embeddings, saved them in files along
with additional vertices and Graph6 strings, and plotted
images of vertex-transitive graphs on less than 20 edges.
In Figure 4 we present some of them individually, with
the Graph6 string for each one written in the caption.

5 Conclusions

In the paper, we had a look at a non-planar graph embed-
ding, its storage, and representation. We introduced an
algorithm for constructing those embeddings and a func-
tion that writes them in both a human-readable way, or
in the way suitable for the storage in the database. This
contributes to the subject of representation theory be-
cause there was no standard way of encoding such em-
beddings.
We demonstrated how our method may be used to draw
graphs and save graph data in various file formats.
Our techniques can be used to enrich almost any graph

59



(a) :An (b) :DaHg∼

(c) :CcKI (d) :Ea@aRgs

(e) :Ea@_Q_QM@Gs (f) :Fa@_WIRQbP∧

(g) :GaGecctgs (h) :Ga@_WIRhDlDZ

(i) :Ga@_QaShDlDZ (j) :Ga@_WGwChLDgsTn

Figure 4: Coloured representations of several vertex-
transitive graphs with up to 20 edges, with Graph6 string
in captions.

database, and that is exactly what we were hoping
to achieve. We’ve generated vertex-transitive graphs
with up to 20 edges, all graphs with up to 13 edges,
and all cubic graphs with up to 21 edges by now. In
collaboration with Katja Berčič, PhD, our files will be
uploaded to the MathDataHub database.
Currently, we are working on contributing our code to
the SageMath project.

Acknowledgment

I’d like to thank Professor Matjaž Krnc for his advice and
suggestions throughout the planning, development, and
writing of this paper.
I’d like to thank Klemen Berkovič for his help in codifying
this Author’s Guide, and to Iztok Fister Jr. for his
contribution to Author’s Guide and .tex files.

References

[1] Barthelemy, M. Morphogenesis of Spatial Net-
works. New York: Springer, 2017.

[2] Billey, S. C., and Tenner, B. E. Fingerprint
databases for theorems. Notices of the AMS 60, 8
(2013), 1034.

[3] Boyer, J. M., and Myrvold, W. J. On the cut-
ting edge: Simplified o(n) planarity by edge addi-
tion. Journal of Graph Algorithms and Applications
8, 3 (2004), 241–273.

[4] Christian, D., T., G. M., and Stephen, K. Pla-
nar drawings of higher-genus graphs, graph drawing,
17th international symposium, gd 2009. vol. 5849,
pp. 45–56.

[5] Goedgebeur, G. B. K. C. J., and Mélot, H.
House of Graphs: a database of interesting graphs,
Discrete Applied Mathematics, 2013.

[6] Inc., O. F. The On-Line Encyclopedia of Integer
Sequences, 2021. http://oeis.org.

[7] John, H., and E., T. R. Efficient planarity testing.
Journal of the Association for Computing Machinery
21, 4 (1974), 549–568.

[8] N., D. H. On drawing a graph convexly in the plane,
graph drawing, dimacs international workshop, gd
’94, princeton. vol. 894, pp. 76–83.

[9] Petra, M., and René, W. Computing optimal
embeddings for planar graphs, computing and com-
binatorics, 6th annual international conference, co-
coon 2000. vol. 1858, pp. 95–104.

[10] Read, R. C., and Wilson, R. J. An Atlas of
Graphs (Mathematics). Oxford University Press,
Inc., USA, 2005.

[11] TePaske-King, Bert; Richert, N. The Iden-
tification of Authors in the Mathematical Reviews
Database, 2001.

[12] The Sage Developers. SageMath, the Sage
Mathematics Software System (Version 9.4), 2021.
https://www.sagemath.org.

[13] Trudeau, and J., R. Introduction to Graph The-
ory. New York: Dover Pub, 1993.

60




