
Interactive Evolutionary Computation Approach to
Permutation Flow Shop Scheduling Problem

Vid Keršič
University of Maribor,

Faculty of Electrical Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

vid.kersic@um.si

Abstract
Artificial intelligence and its subfields have be-
come part of our everyday lives and efficiently
solve many problems that are very hard for us
humans. But in some tasks, these methods strug-
gle, while we, humans, are much better solvers
with our intuition. Because of that, the ques-
tion arises: why not combine intelligent methods
with human skills and intuition? This paper pro-
poses an Interactive Evolutionary Computation
approach to the Permutation Flow Shop Schedul-
ing Problem by incorporating human-in-the-loop
in MAX-MIN Ant System through gamification
of the problem. The analysis shows that combin-
ing the evolutionary computation approach and
human-in-the-loop leads to better solutions, sig-
nificantly when the complexity of the problem in-
creases.

Keywords scheduling problems, interactive evolution-
ary computation, ant colony optimization, metaheuristic
optimization

1 Introduction

Computers have become an essential (and sometimes the
only) tool to approach complex real-world problems. But
many problems are still too hard to solve, even for com-
puters. Many of these problems are NP-hard, and their
solution cannot be found by using exact algorithms [1].
Thus, many of these problems are solved with approxima-
tion and different stochastic nature-inspired population-
based algorithms, where suboptimal solutions are found.
However, they are still considered good enough to use
in practice. Some of these problems include Travelling
Salesman Problem (TSP), scheduling problems, etc. This
paper focuses on the Permutation Flow Shop Scheduling
Problem (PFSP), one of the scheduling problems.
PFSP is the scheduling problem where there are m ma-
chines and n jobs [2]. Each job consists of m operations,
where i-th operation must be executed on the i-th ma-
chine. The order of jobs must be the same on all ma-
chines, and each machine can perform only a single oper-
ation at a time. Each operation has a specified execution
time, and the goal is to minimize total job execution time,
called makespan. The problem was proven to be NP-hard
when m ≥ 3, which means no efficient algorithm exists
[3].

Different approximation approaches were presented in
the last decades and shown to be effective in finding
suboptimal solutions. Firstly, different approximation
algorithms were introduced to reduce time to solve the
problems and find suitable solutions [4]. Afterwards,
researchers applied and adjusted different optimization
algorithms, especially nature-inspired and metaheuristic
optimization algorithms, to improve results in shorter
time execution [5].
In the last years, a new approach emerged to solve these
problems. Inspired by human intuition of problem-
solving, the Interactive Evolutionary Computation
(IEC) approach combines metaheuristic optimization
algorithms, e.g., nature-inspired algorithms, with
human-in-the-loop through some process, e.g., gamifi-
cation of the problem [6]. This paper proposes an IEC
approach based on the MAX-MIN Ant System (MMAS),
one of the Ant Colony Optimization (ACO) algorithms,
to PFSP through gamification of the problem.
The structure of the paper is as follows: Section 2 pro-
vides an overview of related work. Section 3 describes
the IEC approach to PFSP. Section 4 describes the ex-
periment, shows the results, and provides an analysis of
the results. Section 5 concludes the paper.

2 Related Work

Researchers started solving PFSP almost 70 years ago,
when Johnson proposed the exact algorithm, but it was
restricted to two machines [2]. Many exact algorithms
with different strategies were proposed in the following
decades, such as the branch-and-bound algorithm [7].
Despite that, the exact algorithms could not scale to
bigger instances of the problem.
To overcome the NP-hard time complexity of the
problem, researchers started to develop approximation
and heuristic algorithms, where different approaches and
heuristics were considered, such as [8]. Methods based
on the Nawaz-Enscore-Ham (NEH) heuristic proved
to be one of the best performers to the problem [4].
NEH-based methods consist of two steps: first, order the
jobs based on some characteristic and then insert them
one by one. But the approximation algorithms still have
several drawbacks, such as being dependent on certain
characteristics of the specific setting of the problem and
still being too slow.
Metaheuristic optimization algorithms were also consid-

DOI https://doi.org/10.18690/978-961-286-516-0.8
ISBN 978-961-286-516-0 35



ered for PSFP, and they achieved more favorable results
than approximation algorithms, especially time-wise.
Many algorithms were applied to the problem, such
as Simulated Annealing, Differential Evolution, and
many nature-inspired algorithms, such as ACO [9, 5].
In many benchmarks, metaheuristic algorithms achieve
comparable or even better results than approximation
algorithms [10].
As mentioned in the introduction, researchers tried to in-
corporate human intuition into metaheuristic algorithms,
which proved beneficial [11]. Authors included human-
in-the-loop to TSP through gamification, where a user
affects pheromone level in MMAS algorithm when play-
ing a game [6]. Several other researchers also focused
on gamification of different NP-hard problems like Bin-
packing problem, Job Shop Scheduling, and Open Shop
Scheduling [12, 13]. Based on the related work, the pro-
posed approach incorporates human intuition to solve the
PFSP problem through the gamification process where a
user affects the pheromone trail in the MMAS algorithm.

3 IEC Approach to PFSP

The goal of PFSP is to find a permutation of n jobs that
minimize the total makespan. Thus, the optimization
task for the problem is defined as:

minC(π) (1)

where π is a permutation of n jobs and C is the cost
function that calculates makespan.
Based on the techniques and approaches discussed in the
previous section, the solution consists of three modules1:
video game, back-end server, and MMAS algorithm. The
video game was implemented in Unity, while the back-end
server and MMAS algorithm, which runs on the back-end,
are written in Python.
The video game contains blocks (jobs) and a board con-
structed from several rows (machines). The user tries to
move and stack blocks together while complying with the
limitations of the problem. For each game, a new instance
of the MMAS algorithm starts. Each movement per-
formed by the user is sent to the back-end server, where
the MMAS algorithm runs in iterations. For each block
placement, one iteration of the algorithm is launched.
Pheromone of the ants is presented as 2D matrix A of
size N × N , where N is the number of jobs. Matrix’s
element Ai,j is the pheromone level of positioning job i
on the position j. The user’s placement of blocks affects
the pheromone level of the algorithm; in the proposed ap-
proach, the value is multiplied by a scalar. This change of
the pheromone level is the human-in-the-loop part. After
each user’s movement, the solution for the current prob-
lem is recommended to the user based on the outcome and
current state of the MMAS algorithm (of course, users
can freely decide which move they will make next). The
player is also encouraged to perform well and achieve the
highest score as fast as possible since the game contains
a time counter. The final game score is calculated based

1Source code available at:
https://github.com/Vid201/flow-shop-scheduling-iec

on the combination of makespan and the time duration
of the game. The algorithm of the MMAS-IEC approach
is shown in Algorithm 1.

1 start the game
2 init MMAS
3 launch 1 iteration (MMAS)
4 while game not finished do
5 wait for the user to position a job (block)
6 i← positioned_job
7 j ← position_index
8 Ai,j ← Ai,j × 3
9 launch 1 iteration (MMAS)

10 end
11 return best found solution

Algorithm 1: Algorithm of the MMAS-IEC ap-
porach.

4 Experiments and Results

The experiment aims to show that incorporating human-
in-the-loop can positively affect the search process of
metaheuristic algorithms, which means better solutions
can be found in fewer iterations. Thus the analysis is
mainly oriented on comparing MMAS without human-
in-the-loop results with MMAS-IEC.
The operation times of the jobs are randomly generated
on each new instance of the game since standard bench-
mark datasets are too big to be visualized in the game.
Problem sizes used in the experiment are shown in Table
1. An example of the video game can be seen in Fig-
ure 1. The comparison of brute-force algorithm, MMAS
algorithm without human-in-the-loop, and MMAS-IEC
approach is performed. The results are also compared to
the one variant of the Genetic Algorithm (GA) [14].

Table 1: Sizes of the problem in the experiment.

Number of jobs Number of machines
5 3
10 2
10 4
12 2
12 4
12 6

In both executions of the MMAS algorithm, with and
without human-in-the-loop, the parameters were set as
follows: n = 5 (number of ants), p0 = 0.9 (probability
to select the job with highest pheromone), mmr = 5
(min-max ratio), ρ = 0.75 (persistence of the trail),
max_iter = 100 (maximum number of iterations) and
max_stag = 5 (maximum number of iterations of stag-
nation - iterations with the same solution). The param-
eters of MMAS were set according to the literature [5].
Readers are advised to read the referenced paper for an

36



Figure 1: The gameplay of the video game.

in-depth description of the MMAS algorithm. For GA,
the parameters were adapted from the used implementa-
tion [14].
The MMAS algorithm without human-in-the-loop was
run 30 times to get solutions characterized by the algo-
rithm and not randomness. In the MMAS-IEC approach,
the multiplier of the pheromone was set to 3, which means
element Ai,j is increased if the user places the job i on
position j in the game. The size of the multiplier was
chosen empirically.
To measure the performance of algorithms, the subopti-
mal solutions of metaheuristic algorithms were compared
to optimal solutions by calculating relative percentage
deviation (RPD), which tells how much suboptimal so-
lutions are worse than the optimal solution. RPD was
calculated according to the following equation:

RPD = Suboptimalsol −Optimalsol

Optimalsol
× 100 (2)

The number of iterations to find the best solution was
also compared since time execution was much longer in
the interactive approach due to playing the game.

4.1 Analysis and Discussion

The video game and other algorithms were launched
five times for each problem size, and the average/mean
makespan with standard deviation was calculated. The
brute force algorithm was run only on smaller problem
sizes since its execution time was too long for the other

instances. Where brute force results were available, RPD
was also calculated. Results for the experiment are shown
in Table 2.
While in the smallest instances of the problem, the
MMAS algorithm outperformed the MMAS-IEC ap-
proach, the latter achieved better results in all the
other problem sizes. This implies that when the search
space becomes enormous and complex, human intuition
positively affects the algorithm and leads to a better
solution. Since the user affected the pheromone level
and directed the algorithm towards better solutions, the
average number of iterations was less than with only
the MMAS algorithm. It must be noted that the best
solution in the MMAS-IEC is usually not the same as the
end state of the blocks in the user’s game. The user only
affected the pheromone level of the job on the selected
position, and the game’s order does not directly change
the solution. The best solution is still the solution
found by the MMAS algorithm, while the user only
changed the algorithm’s internal state, i.e., pheromone
matrix. Figure 2 shows that when the problem sizes
increase, MMAS-IEC tends to find solutions with a lower
makespan.

Figure 2: Box plots of makespan for different
sizes of the problem with all four approaches.
Colors represent different sizes of the problem,
while dots show makespans for all five settings

per each problem size for each approach.

Results of the MMAS-IEC approach are very dependent
on the way the user plays the game. In the first played
games, the results of the MMAS-IEC were not better

Table 2: Results of the experiment, where N is number of jobs, M is number of machines, M is
average makespan, σ is standard deviation, IT is average number of iterations for best solution and

RPD is average relative percentage deviation.

Problem sizes Approach
N M

Brute force MMAS GA MMAS-IEC
M σ M σ IT RPD M σ IT RPD M σ IT RPD

5 3 6.514 0.402 6.605 0.399 31.0 1.396 6.515 0.402 25.8 0.015 6.742 0.463 3.6 3.500
10 2 9.719 0.814 9.834 0.753 27.8 1.183 9.749 0.797 45.0 0.309 9.742 0.792 2.8 0.236
10 4 12.281 0.876 12.890 0.543 28.4 4.958 12.594 0.625 61.2 2.549 12.614 0.657 5.2 2.711
12 2 / / 12.019 0.845 26.0 / 11.870 0.877 42.4 / 11.869 0.877 2.6 /
12 4 / / 14.005 0.949 29.8 / 13.430 1.118 49.2 / 13.463 1.152 5.4 /
12 6 / / 17.075 0.464 19.8 / 15.970 0.739 84.2 / 16.801 1.195 8.2 /

37



or were even worse than MMAS alone. But after some
games, strategies for the game come into mind, and re-
sults get better, which means the makespan decreases.
One of the strategies that tend to work well is to po-
sition the job with increasing operations times by the
machine number in the first place and then putting jobs
with as little space between operations as possible on all
machines. While the number of iterations is much less
in the MMAS-IEC approach, time to find the best solu-
tion depends on how fast the user plays the game, e.g.,
MMAC alone can find the suboptimal solution in 1 sec-
ond, while the user cannot play the game so fast. For
bigger instances, around 10 seconds are needed to find
the best suboptimal solution (the game does not have to
be played to the end to find the best solution).
Comparing to the GA, both MMAS and MMAS-IEC
approaches achieve worse results, except when N = 10
andM = 2, where the MMAS-IEC approach achieves the
best ones. According to the obtained results, combining
an interactive process, i.e., gamification, and GA, looks
like a promising direction to explore.
The open problem for this gamification process is how
to scale the game to bigger problem sizes since the game
can become too complex, and it is also hard to visualize
blocks and boards. The experiments were successfully
conducted on the problems with up to 6 machines and 12
jobs, but scaling the game to more machines and jobs is
open for further research.

5 Conclusion

This work shows how human intuition for problem-
solving can be incorporated into metaheuristics
algorithms for NP-hard problem PFSP. MMAS-IEC
approach tends to find better solutions than fully
autonomous metaheuristic algorithm MMAS, especially
in bigger settings of the problem. Solutions are also
found in a fewer number of iterations. But still, there
are some open questions to the proposed approach, as
bigger instances are hard to visualize, and playing the
game usually takes more time than the MMAS algorithm
alone. Both of these drawbacks are good starting points
for further research.
Further research could be dedicated to selecting a meta-
heuristic algorithm since this study only accounts for the
MMAS algorithm for PSFP. At the same time, several
other algorithms proved to be suitable for this problem,
e.g., the GA from the analysis. The research goal was to
use the same metaheuristic algorithm with and without
human interaction and not to compare different meta-
heuristic algorithms. On the MMAS algorithm itself,
other techniques to change the pheromone level could be
explored. Various strategies to encourage the player to
perform well could also be introduced, e.g., online score-
boards or rewards, which could increase the player’s per-
formance with a positive loop. It would also be interest-
ing to compare and try the MMAS-IEC approach on one
of the benchmarks for PSFP, e.g., Taillard’s benchmark
problems [15].

References

[1] D. E. Knuth. Postscript about np-hard problems.
SIGACT News, 6(2):15–16, Apr. 1974. issn: 0163-
5700. doi: 10.1145/1008304.1008305.

[2] S. M. Johnson. Optimal two- and three-stage pro-
duction schedules with setup times included. Naval
Research Logistics Quarterly, 1(1):61–68, 1954.

[3] M. R. Garey, D. S. Johnson, and R. Sethi. The com-
plexity of flowshop and jobshop scheduling. Math-
ematics of operations research, 1(2):117–129, 1976.

[4] M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuris-
tic algorithm for the m-machine, n-job flow-shop
sequencing problem. Omega, 11(1):91–95, 1983.

[5] T. Stützle et al. An ant approach to the flow
shop problem. In Proceedings of the 6th European
Congress on Intelligent Techniques & Soft Com-
puting (EUFIT’98), volume 3, pages 1560–1564,
1998.

[6] A. Holzinger, M. Plass, M. Kickmeier-Rust, K.
Holzinger, G. C. Crişan, C.-M. Pintea, and V.
Palade. Interactive machine learning: experimental
evidence for the human in the algorithmic loop.
Applied Intelligence, 49(7):2401–2414, 2019.

[7] E. Ignall and L. Schrage. Application of the branch
and bound technique to some flow-shop schedul-
ing problems. Operations research, 13(3):400–412,
1965.

[8] S. Suliman. A two-phase heuristic approach to the
permutation flow-shop scheduling problem. Inter-
national Journal of production economics, 64(1-
3):143–152, 2000.

[9] I. Osman and C. Potts. Simulated annealing
for permutation flow-shop scheduling. Omega,
17(6):551–557, 1989. issn: 0305-0483.

[10] E. Vallada, R. Ruiz, and J. M. Framinan. New
hard benchmark for flowshop scheduling problems
minimising makespan. European Journal of Opera-
tional Research, 240(3):666–677, 2015. issn: 0377-
2217.

[11] A. Holzinger. Interactive machine learning for
health informatics: when do we need the human-
in-the-loop? Brain Informatics, 3(2):119–131,
2016.

[12] N. D. Ross, M. B. Johns, E. C. Keedwell, and
D. A. Savic. Human-evolutionary problem solving
through gamification of a bin-packing problem. In
Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion, pages 1465–1473,
2019.

[13] M. Vargas-Santiago, R. Monroy, J. E. Ramirez-
Marquez, C. Zhang, D. A. Leon-Velasco, and
H. Zhu. Complementing solutions to optimization
problems via crowdsourcing on video game plays.
Applied Sciences, 10(23):8410, 2020.

[14] Suyunu. Github - suyunu/flow-shop-scheduling:
genetic algorithm for flow shop scheduling. url:
https : / / github . com / suyunu / Flow - Shop -
Scheduling (visited on 07/23/2021).

[15] E. Taillard. Benchmarks for basic scheduling
problems. european journal of operational research,
64(2):278–285, 1993.

38

https://doi.org/10.1145/1008304.1008305
https://github.com/suyunu/Flow-Shop-Scheduling
https://github.com/suyunu/Flow-Shop-Scheduling



