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Abstract
Recognizing graphs with high level of symmetries
is hard in general, and usually requires additional
structural understanding. In this paper we study
a particular graph parameter and motivate its
usage by devising efficient recognition algorithm
for the family of I-graphs.
For integers `, λ,m a simple graph is [`, λ,m]-
cycle regular if every path of length ` belongs to
exactly λ different cycles of lengthm. We identify
all [1, λ, 8]-cycle regular I-graphs and, as a conse-
quence, describe linear recognition algorithm for
the observed family.
Similar procedure can be used to devise the recog-
nition algorithms for Double generalized Petersen
graphs and folded cubes. Besides that, we believe
the structural observations and methods used in
the paper are of independent interest and could
be used for solving other algorithmic problems.

Keywords I-graphs, double generalized Petersen
graphs, folded cubes, recognition algorithm, cycle
regularity.

1 Introduction

Important graph classes such as bipartite graphs,
(weakly) chordal graphs, perfect graphs and forests are
defined or characterized by their cycle structure. A
particularly strong description of a cyclic structure is the
notion of cycle-regularity, introduced by Mollard [11]:

For integers l, λ,m a simple graph is
[l, λ,m]-cycle regular if every path on l + 1
vertices belongs to exactly λ different cycles of
length m.

It is perhaps natural that cycle-regularity mostly appears
in the literature in the context of symmetric graph fami-
lies such as hypercubes, Cayley graphs or circulants.
Understanding the structure of subgraphs of hypercubes
which avoid all 4-cycles does not seem to be easy. Indeed,
a question of Erdős regarding how many edges can such
a graph contain remains open after more than 30 years
[5].
In this paper we study cycle-regularity and more general
cyclic aspects of a family of I-graphs, with the focus of
devising an efficient recognition algorithm. Similar ap-
proach can be extended also to two other graph families,

namely Double generalized Petersen graphs and folded
cubes. Due to the space constraints the study of these
two families is not covered here, therefore we defer inter-
ested readers to the full version of this paper [9].

Figure 1: I-graph I(12, 2, 3), double generalized Pe-
tersen graph DP(10, 2), and folded cube FQ4.

I-graphs were introduced in the Foster census [6], and
are trivalent or cubic graphs with edges connecting ver-
tices of two star polygons. They form a natural gener-
alization of the well-known generalized Petersen graphs
introduced in 1950 by Coxeter [3] and later named by
Watkins in 1969 [14]. The family of I-graphs has been
studied extensively with respect to their automorphism
group and isomorphisms [1, 7, 13], Hamiltonicity [2],
spectrum [12], and independence number [4, 8].
Our first result identifies all [1, λ, 8]-cycle regular mem-
bers and determines the corresponding values of λ.
Theorem 1. An arbitrary I-graph is never [1, λ, 8]-cycle
regular, except when isomorphic to I(n, j, k) where j =
1 and (n, k) ∈ {(3, 1), (4, 1), (5, 2), (8, 3), (10, 2), (10, 3),
(12, 5), (13, 5), (24, 5), (26, 5)}.

These structural results are used to devise the recognition
algorithm for I-graphs.
Theorem 2. I-graphs can be recognized in linear time.

If the input graph is a member of the observed family, we
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not only provide its parameters but also give a certificate
of correctness, i.e. we give an exact isomorphism.

1.1 Preliminaries

Unless specified otherwise, all graphs in this paper are fi-
nite, simple, undirected and connected. For a given graph
G we use a standard notation for a set of vertices V (G)
and a set of edges E(G). A k-cycle C in G, on vertices
v1, v2, . . . , vk from V (G) is denoted as (v1, . . . , vk). For
integers a and b we denote with gcd(a, b) the greatest
common divisor of a and b respectively.
Definition 3. Let l, λ,m be positive integers. A simple
graph G is [l, λ,m]-cycle regular if every path on l + 1
vertices of G belongs to exactly λ different m-cycles of
G.

It is easy to see that [1, λ, 8]-cycle regular cubic graphs are
also [0, 3λ/2, 8]-cycle regular, but the converse does not
hold. Related to this we define a function σ : E(G) 7→ N,
where σ(e) corresponds to the number of distinct 8-cycles
an edge e belongs to. We call σ(e) an octagon value of an
edge e, and we say that a graph G has a constant octagon
value if σ is a constant function.

2 Structural analysis

Before we start with the analysis of the observed graph
family we need to formally define it and present some of
its basic properties.
Definition 4. Let n, j, k be positive integers for which
n ≥ 3 and n ≥ j, k ≥ 1. An I-graph I(n, j, k) is a graph
on vertices {u0, u1, . . . , un−1, w0, w1, . . . , wn−1}, with the
edge set consisting of outer edges uiui+j , inner edges
wiwi+k and spoke edges uiwi, where the subscripts are
taken modulo n.

Without loss of generality we always assume that j, k <
n/2. Since I(n, j, k) is isomorphic to I(n, k, j), we re-
strict ourselves to cases when j ≤ k. It is well known
[1] that an I-graph I(n, j, k) is disconnected whenever
d = gcd(n, j, k) > 1. In this case it consists of d copies
of I(n/d, j/d, k/d). Therefore, throughout the paper
we consider only graphs I(n, j, k) where gcd(n, j, k) =
1. We also know [7] that two I-graphs I(n, j, k) and
I(n, j′, k′) are isomorphic if and only if there exists an
integer a, which is relatively prime to n, for which either
{j′, k′} = {aj (mod n), ak (mod n)} or {j′, k′} = {aj
(mod n),−ak (mod n)}. Throughout the paper, when-
ever we discuss I-graphs with certain parameters, we con-
sider only the lexicographically smallest possible param-
eters by which the graph is uniquely determined.

2.1 Equivalent 8-cycles

A particular member of automorphism group of every I-
graph is a rotation defined as: ρ(ui) = ui+1, ρ(wi) =
wi+1. Clearly, applying n times the rotation ρ yields an
identity automorphism. When acting on I-graphs with
ρ we get 3 edge orbits: orbit of outer edges EJ , orbit
of spoke edges ES and orbit of inner edges EI . Edges
from the same orbit EJ , ES , or EI have the same octagon
value, which we denote by σJ , σS and σI , respectively.

Therefore the octagon value of an I-graph is said to be a
triple (σJ , σS , σI).
We say that two 8-cycles of an I-graph are equivalent if
we can map one into the other using rotation ρ. Let G '
I(n, j, k) be an arbitrary I-graph and let C be one of its 8-
cycles. With γ(C) we denote the number of equivalent 8-
cycles to C in G. Each 8-cycle contributes to the octagon
value of an I-graph. We denote the contributed amount
with τ(C), defined as the triple (δj , δs, δi), where we
calculate δj , δs, δi by counting the number of outer, spoke
and inner edges of a cycle and multiply these numbers
with γ(C)/n. If a graph G admits m non-equivalent
8-cycles C1, C2, . . . , Cm, one may calculate its octagon
value (σJ , σS , σI) as

∑m
i=1 τ(Ci).

The following claim serves also as an example of the
above-mentioned definitions.
Claim 5. For I(n, j, k) where n > 3 and integers k, j <
n/2 there always exists an 8-cycle.

Indeed, if k 6= j it is of the form
C∗ = (w0, w±k, u±k, u±k±j , w±k±j , w±j , u±j , u0).

If k = j it is of the form
C7 = (u0, uk, u2k, u3k, w3k, w2k, wk, w0).

2.2 Characterization of non-equivalent 8-cycles

Our aim is to identify all possible 8-cycles that can appear
in an arbitrary I-graph and determine their contribution
towards the octagon value of the graph. It is easy to
see that an arbitrary 8-cycle can have either 4, 0 or 2
spoke edges, so we obtained this list by distinguishing 8-
cycles by the number of spoke edges they admit. In the
case of the 8-cycle admitting 2 spoke edges, we further
distinguish cases by the number of outer and inner edges
within a given 8-cycle.
Due to space constraints we present the analysis of 8-
cycles admitting 4 spoke edges only, as it is the easiest
case to deal with (for remaining cases see [9]). This
analysis leads to complete characterisation of 8-cycles for
the family of I-graphs, presented in the Table 1.

8-cycles with 4 spoke edges In addition to 4 spoke
edges the 8-cycle must also have two inner and two outer
edges. When using the spoke edge there are two options
for choosing an inner (outer) edge. After considering all
cases it is easy to see that there can be just two such
8-cycles, C∗ (see Claim 5), which exists whenever j 6= k,
and C0, which is of the following form:
C0 = (w0, w±k, u±k, u±k±j , w±k±j , w±2k±j , u±2k±j , u±2k±2j).
Cycle C0 exists whenever 2k + 2j = n. One can verify
easily, that n applications of the rotation ρ to C∗ and n/2
applications of the rotation ρ to cycle C0 maps the cycle
back to itself. Therefore there are n equivalent cycles to
C∗ and n/2 equivalent cycles to C0 in an I-graph I(n, j, k)
and they contribute (2, 4, 2) and (1, 2, 1), respectively, to
the graph octagon value.

2.3 Obtaining constant octagon value

Every 8-cycle of an I-graph contributes to the octagon
value of each edge partition. It turns out that if we can
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Label A representative of an 8-cycle Existence conditions τ (C) γ(C)
C∗ (w0, w±k, u±k, u±k±j , w±k±j , w±j , u±j , u0) k 6= j and n > 4 (2, 4, 2) n
C0 (w0, w±k, u±k, u±k±j , w±k±j , w±2k±j , u±2k±j , u±2k±2j) 2k + 2j = n (1, 2, 1) n/2
C1 (u0, uj , u2j , u3j , u4j , u5j , u6j , u7j) 8j = n or 3n (0, 0, 1) n/8
C2 (w0, wk, w2k, w3k, w4k, w5k, w6k, w7k) 8k = n or 3n (1, 0, 0) n/8
C3

(w0, wk, w2k, w3k, w4k, w5k, u5k, u5k+j) 5k + j = n or 2n (5, 2, 1) n(w0, wk, w2k, w3k, w4k, w5k, u5k, u5k−j) 5k − j = n or 2n
C4

(u0, uj , u2j , u3j , u4j , u5j , w5j , w5j+k) k + 5j = n or 2n (1, 2, 5) n(u0, uj , u2j , u3j , u4j , u5j , w5j , w5j−k) 5j − k = 2n or n or 0
C5

(w0, wk, w2k, w3k, w4k, u4k, u4k+j , u4k+2j) 4k + 2j = n or 2k + j = n (4, 2, 2) n(w0, wk, w2k, w3k, w4k, u4k, u4k−j , u4k−2j) 4k − 2j = n

C6
(u0, uj , u2j , u3j , u4j , w4j , w4j+k, w4j+2k) 2k + 4j = n or k + 2j = n (2, 2, 4) n(u0, uj , u2j , u3j , u4j , w4j , w4j−k, w4j−2k) 4j − 2k = n or 0

C7
(w0, wk, w2k, w3k, u3k, u3k+j , u3k+2j , u3k+3j) 3k + 3j = n or 2n (3, 2, 3) n(w0, wk, w2k, w3k, u3k, u3k−j , u3k−2j , u3k−3j) 3k − 3j = n or 0

Table 1: All non-equivalent 8-cycles of I-graphs, their existence conditions, their contribution towards the octagon
value of an I-graph τ , number of their equivalent cycles in an I-graph γ.

identify at least one edge partition of a graph, we can eas-
ily determine its parameters. Therefore, we want to find
graphs with constant octagon value. These are graphs
for which all edges touch the same number of 8-cycles.
They are called [1, λ, 8]-cycle regular graphs. We con-
sider all possible collections of 8-cycles and determine oc-
tagon values of I-graphs admitting those 8-cycles. Since
I-graphs are defined with 3 parameters and all 8-cycles
give constraints for these parameters, it is enough to con-
sider collections of at most 4 cycles, to uniquely determine
all [1, λ, 8]-cycle regular graphs. After a thorough anal-
ysis (see [9]) we see that the list of [1, λ, 8]-cycle regular
I-graphs consists of 10 members (see Figure 2). Surpris-
ingly, it turns out that all [1, λ, 8]-cycle regular I-graphs
are in the family of generalized Petersen graphs. This
proves Theorem 1.

3 Recognition algorithm

The recognition algorithm relies on the fact that there
is just a small number of I-graphs (ten) with the con-
stant octagon value. In particular, whenever the input
graph G of the Algorithm 1 is a member of the family
of I-graphs and is not [1, λ, 8]-cycle regular, we can im-
mediately identify one of its edge orbits (EI , EJ , or ES),
of size |V (G)|/2. Since the octagon value of each edge is
computed in constant time and there is a finite number of
the [1, λ, 8]-cycle regular I-graphs the Theorem 2 holds.

Correctness and time complexity of the algo-
rithm. We first note, that if G is not cubic then it does
not belong to observed graph families. Since checking
whether a graph is cubic takes linear time we simply
assume that the input graph is cubic. Furthermore, if
G is not connected then it can only be a member of the
family of I-graphs whenever it consists of multiple copies
of a smaller I-graph G′. However, this case can easily
be resolved by separately checking each part, so we can
assume that the input graph is connected. Algorithm 1
consists of the following 3 parts.

1. Partitioning the edges with respect to the
octagon value.
The algorithm determines the octagon value of each
edge e ∈ E(G) and builds a partition set P of graph

Data: connected cubic graph G
Result: parameters (n, j, k) and isomorphism to

I(n, j, k), if they exists.
1 P ← an empty dictionary
2 for e ∈ E(G) do
3 s = octagonValue(e) ; /* calculate

σ(e) */
4 P[s].append(e)
5 end
6 U ← an item of P with minimum positive

cardinality
7 if G[U ] is a 2-factor ; /* 2-factor is a

2-regular graph */
8 then
9 U ← {e | e ∈ E(G), e is adjacent to an edge

of U} /* a perfect matching in G */
10 end
11 return Extend(G,U)

Algorithm 1: Recognition procedure for I-
graphs

edges (see lines 1 – 4). Since G is cubic and all 8-
cycles containing edge e consist of edges which are
at distance at most 4 from e, it is enough to check a
subgraphH of G of order at most 62, to calculate the
octagon value of an edge e. Therefore, calculation of
octagonValue(e) takes O(1) time for each edge e
and this whole part is performed in Θ(|E(G)|) time.

2. Identifying the edge-orbit which corresponds
to the set of spokes.
Throughout lines 6 – 9 we determine the edge-orbit
which corresponds to the set of spokes. It is easy to
see that this requires additional O(|E(G)|/3) time.

3. Using set U for determining parameters of a
given graph.
The algorithm uses computed set U to determine
exact isomorphism between G and an I-graph or
a double generalized Petersen graph, if it exists.
This procedure differentiates regarding the graph
family we are considering. The related procedure
Extend(G,U) is performed in Θ(|E(G)|) time.
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(a) Triangular prism. (b) 3-cube. (c) Petersen graph, Dodecahedral, and Desargues
graph.

(d) Möbius-Kantor graph, Nauru graph, G(13, 5), F048 ∼= G(24, 5), and G(26, 5).

Figure 2: All [1, λ, 8]-cycle regular I-graphs. That is, (a) the graph on no 8-cycles; (b) the graph containing C0
and C7; (c) graphs containing C5, C6 and C∗; and (d) graphs containing C3, C4 and C∗.

3.1 Subprocedure Extend(G,U)

It is easy to see that Extend(G,U) can safely reject G
if |V (G)| is not divisible by 2. For this subprocedure
set n = |V (G)|/2 and denote by H the subgraph of G
induced by the vertices of U . There are two possibilities.

H = G. In this case graph G has a constant octagon
value. Since there are just ten such I-graphs check-
ing G against them takes constant time.

H is of order 2n and is 1-regular. Since U is a per-
fect matching of G the set E(G)\U is a collection of
cycles. If G is an I-graph, then there exist positive
integers i, j, l1, l2 with j ≤ i such that there are j
cycles of length l1 and i cycles of length l2. It re-
mains to determine parameter k and check whether
G ' I(n, j, k). This procedure depends on the struc-
ture of I-graphs and the 8-cycle C∗. It is performed
in Θ(|E(G)|) time (see [9] for details).

4 Conclusion

Studying the cyclic structure as described in this paper
led to the construction of fast recognition algorithms for
three parametric families. To the best of our knowledge,
in addition to this work, such a procedure was so far
only used in [10] for the family of generalized Petersen
graphs. We believe that a similar approach should give
interesting results for other parametric graph families of
bounded degree, such as Johnson graphs, rose window
graphs, Tabačjn graphs, Y -graphs, or H-graphs.
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