
System for Remote Collaborative Embedded
Development

Martin Domajnko
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

martin.domajnko@student.um.si

Nikola Glavina
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

nikola.glavina@student.um.si

Aljaž Žel
University of Maribor,
Faculty of Electrical

Engineering and Computer Science,
Koroška cesta 46, 2000 Maribor, Slovenia

aljaz.zel@student.um.si

Abstract
This paper explores the challenges and devised
solutions for embedded development which arose
during the COVID-19 pandemic. While software
development, nowadays with modern tools and
services such as git, virtual machines and commu-
nication suits, is relatively unaffected by resource
location. That is not the case for firmware and
embedded systems, which relies on physical hard-
ware for design, development, and testing. To
overcome the limitations of remote work and ob-
structed access to actual hardware, two ideas were
implemented and tested. First, based on inte-
grated circuit emulation using QEMU to emulate
an ARM core and custom software to facilitate
communication with the embedded system. Sec-
ond, remote programming and debugging over the
internet with a dedicated computer system acting
as a middle man between a development environ-
ment and physical hardware using OpenOCD de-
bugger.

Keywords embedded development, remote develop-
ment, OpenOCD, QEMU, ARM, ARM semihosting

1 Introduction

During the design, development, and testing phases of
our Passive Floating Probe project [7], we heavily relied
on physical access to the hardware. The restrictions that
were put in place during the COVID-19 pandemic didn’t
stop the development process of our project, but they
heavily limited it. Lack of working hardware for every
member of the team was our major issue, so we tried
to think up solutions to overcome that problem. The
first idea, which would allow our work on the project to

∗Listed in alphabetical order

continue, was based on the QEMU [8] machine emula-
tor. We emulated our integrated circuit with an ARM
core processor and added a custom software layer, which
served as an emulation of the real-world communication
pipeline with the system. The solution proved useful,
albeit with the restriction that it allowed only local de-
velopment, prompting us to develop our second idea. Re-
mote programming and debugging of our hardware over
the internet was the main part of that solution. This
was achieved with a dedicated computer system acting
as a middle man between our development environment
and the targeted hardware, enabling programming and
debugging.
Finally, we present the structure of this paper. In the
second section, we are going to explain in detail the
implementations of both solutions. Following in section
three, where we are going to talk about the limitations of
the implemented solutions and the lessons we learned.
The paper will conclude in section four with possible
improvements.

2 Implementation of remote embedded
development

For the work on the project to continue under COVID-
19 restrictions, a solution had to be devised to solve the
problems that came with remote work on a project depen-
dent on specific hardware. This included hardware devel-
opment, maintenance, and the ability to develop and test
software on the hardware remotely. During the academic
year, two solutions were devised and implemented.

2.1 Solution using emulator

The first solution was based on microcontroller emu-
lation, as seen in figure 1, using a specialized version
of QEMU emulation software called xPack [14] version
2.8.0-9. This enabled us to emulate a variant of STM32

DOI https://doi.org/10.18690/978-961-286-516-0.4
ISBN 978-961-286-516-0 15

family of microcontrollers. The variant chosen was
STM32F407-Discovery development board, since it was
closest to our target hardware, and we had access to
a matching development board on which to test the
differences. Using the emulator method proved to be
a great benefit, since not all members had access to
real hardware at that time, but everyone could set up
the emulator on their computer. Since we didn’t have
previous experience working with STM family micro-
controllers, the emulator also allowed us to focus on
platform-specific software issues without the complexity
of hardware issues in novice programmers. However, this
also came with a cost. First one, the emulator didn’t
work out of the box. Second one, no sensors can be
connected to the board directly since interfaces in the
emulator are virtual.
Before the emulator could be used with the desired fam-
ily, a minor bug inside the emulator source code, that
was causing ROM memory overlap, needed to be patched
manually. After initial setup, we established a basic form
of IO system using a script that allowed us to run the
emulator and automatically redirect the standard output
using UNIX pipes to a file where we could monitor the
output. The emulator approach enabled us to test out the
version of real time operating system FreeRTOS [2] for
STM32 microcontrollers. Some modification to compiler
flags were required, especially the soft floating-point unit
because the emulator was unable to emulate real FPU.
While unable to connect sensors to the virtual environ-
ment, we were mostly focused on creating task manager,
which took care of the correct operation and communica-
tion between individual tasks or sensors. Tasks, that were
supposed to be related to the sensors, were temporarily
replaced with empty functions that returning predefined
values for testing.
To enable outside communication with our embedded
software, semihosting feature of ARM architecture
was used [1]. A custom communication service was
implemented in which standard input and output
were redirected to netcat running locally, creating
a network interface. After successful compilation of
the program, the emulator could be run with the
compiled elf binary and redirect semihosting IO to
stdio. An example in our case: < /dev/null nc -q -1
-l 5000 | qemu-system-gnuarmeclipse –verbose –verbose
–board STM32F4-Discovery –mcu STM32F407VG -d
unimp,guest_errors –image STM32F407-Discovery-
blinky.elf –semihosting-config enable=on,target=native |
nc -l 6000 > /dev/null. This allowed us to emulate a se-
rial connection to and from the emulated microcontroller
over a network connection.

2.2 Solution using remote development

To amend the shortcomings of the development on the
emulator, a remote development solution was devised and
implemented. The solution, as seen on figure 2, is based
on a dedicated computer system leveraging remote con-
nection functionality of GDB or "GNU Project Debugger"
[4] for remote programming and real-time debugging.
The system was built using Raspberry Pi 3 Model B
[9], running ARM version of Ubuntu version 20.04 LTS

Figure 1: Schematic of the development system using
emulation.

Figure 2: Schematic of the remote development system.

[13]. The selected single board computer handled net-
work communications, attached peripherals and services
needed to facilitate remote programming and real-time
debugging. For embedded development, an ST-LINK
in-circuit debugger and programmer [11], in our case
STM32F407G-DISC1 development board [10] providing
ST-LINK/V2-A, was connected via USB connection to
the Raspberry Pi. To connect GDB debugging function-
ality with the ST-LINK programming functionality with
the target integrated circuit, the OpenOCD software [6]
version 0.10.0 was used.
To prepare the setup, two configuration files in
OpenOCD format needed to be created. First one
defining "hla_serial" value, describing the serial number
of the connected ST-LINK device. The second one
defining "-event gdb-detach" behavior as "resume".
Defining this permitted the embedded program to run
even after the debug session disconnected, allowing to
test the functionality over longer periods of time without
constant connection to the host machine.
With the prepared configuration files, a script was
created to start the OpenOCD session with the correct
parameters for the ST-LINK device, target device,
network settings and created configuration files. An
example in our case: openocd -c "bindto $HOSTNAME"

16

-c "gdb_port 3333" -c "tcl_port disabled" -c "telnet_port
disabled" -f /usr/share/openocd/scripts/interface/stlink-
v2.cfg -c "adapter_khz 480" -c "transport select hla_swd"
-f /usr/share/openocd/scripts/target/stm32l4x.cfg -f
./gdb_resume.cfg -f ./serial.cfg » log.txt
The script was started inside a tmux [12] instance. This
allowed for the OpenOCD session to run without an
active user connection to the shell executing the script,
or alternately for multiple users to be connected to the
same shell instance to observe debug in print messages.
Once the system was set up, multiple ST-LINK devices
could be connected and used simultaneously by adding
additional configuration files with serial numbers and
starting OpenOCD sessions on different network ports.

3 Usage and lessons learned

The development process was arranged in the form of the
required hardware development and maintenance to be in
the domain of our mentor and be kept at the university.
Team members could make request for hardware mod-
ifications and then develop and debug the project soft-
ware remotely. While concurrent remote software collab-
oration was achieved through distributed revision control
system Gitea [3] as source code repository and manage-
ment tool.

3.1 Emulator

The emulator provided a good start into getting ac-
quainted with embedded development. This allowed us
to learn and develop embedded software without phys-
ical hardware. The downside was the inability to work
with real sensors, which later made us switch to a remote
system. Another problem was that the emulator was not
capable of running functions that required precise timing,
such as real-time code or interrupt execution.

3.2 Remote

The advantage of remote system made it possible for us to
connect to the targeted hardware from anywhere as if it
was accessible locally. This included real-time debugging
with the ability to see microcontroller processor states
and memory values. The problem with this solution was
the restriction of a single connection to the OpenOCD
instance, which limited the work on the hardware to
a single developer at a time. This was resolved with
communication and access scheduling.

4 Conclusions

The system was sufficient to allow our work on the project
to continue. During development, we were fortunate
enough to not have major problems with security. The
system, as it was used, would allow anyone to access
the system if they identified the used network ports and
protocols. This was not a major concern, as it only
allowed to program our particular microcontroller with
a dedicated firmware. As such, this problem was not
addressed during the production. Possible additional

security was tested, with the implementation of username
and password authentication using NGINX reverse proxy
server [5] and httpd access restrictions on the system
URL.

Acknowledgment

The authors acknowledge the financial support from the
Institute of Computer Science of the Faculty of Electri-
cal Engineering and Computer Science and would like to
thank mag. Jernej Kranjec for his guidance and assis-
tance. The authors would also like to acknowledge the
remaining members of the project group, namely Tilen
Koren, Anna Sidorova and Viktorija Stevanoska for their
work on the project.

References

[1] ARM. Arm target input/output facilities.
https://developer.arm.com/documentation/
dui0471/g/Bgbjjgij, 2021. Accessed: 2021-07-30.

[2] FreeRTOS. Real time operating system for mi-
crocontrollers. https://www.freertos.org/, 2021.
Accessed: 2021-07-30.

[3] Gitea. Lightweight code hosting solution. https:
//gitea.io, 2021. Accessed: 2021-07-30.

[4] GNU. The gnu project debugger. https://www.
gnu.org/software/gdb/, 2021. Accessed: 2021-07-
30.

[5] NGINX. Reverse proxy. https://www.nginx.com/,
2021. Accessed: 2021-07-30.

[6] OpenOCD. Open on-chip debugger. http://
openocd.org/, 2021. Accessed: 2021-07-30.

[7] Perrone, M., Knupleš, U., Žalik, M., Keršič,
V., and Šinko, T. Pasive floating probe. In Stu-
CoSReC: Proceedings of the 2019 6th Student Com-
puter Science Research Conference (2019), pp. 13–
17.

[8] QEMU. the fast! processor emulator. https:
//www.qemu.org/, 2020. Accessed: 2020-04-30.

[9] Raspberry Pi. Raspberry pi 3 model b. https:
//www.raspberrypi.org/products/raspberry-
pi-3-model-b/, 2021. Accessed: 2021-07-30.

[10] STM. Discovery kit with stm32f407vg
mcu. https://www.st.com/en/evaluation-
tools/stm32f4discovery.html, 2021. Accessed:
2021-07-30.

[11] STM. Stm st-link/v2 in-circuit debug-
ger/programmer. https://www.st.com/en/
development-tools/st-link-v2.html, 2021.
Accessed: 2021-07-30.

[12] tmux. Terminal multiplexer. https://github.
com/tmux/tmux/wiki, 2021. Accessed: 2021-07-30.

[13] Ubuntu. Ubuntu os. https://ubuntu.com/
download/raspberry-pi, 2021. Accessed: 2021-07-
30.

[14] xPack. The xpack qemu arm. https://xpack.
github.io/qemu-arm/, 2020. Accessed: 2020-04-30.

17

https://developer.arm.com/documentation/dui0471/g/Bgbjjgij
https://developer.arm.com/documentation/dui0471/g/Bgbjjgij
https://www.freertos.org/
https://gitea.io
https://gitea.io
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://www.nginx.com/
http://openocd.org/
http://openocd.org/
https://www.qemu.org/
https://www.qemu.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/development-tools/st-link-v2.html
https://www.st.com/en/development-tools/st-link-v2.html
https://github.com/tmux/tmux/wiki
https://github.com/tmux/tmux/wiki
https://ubuntu.com/download/raspberry-pi
https://ubuntu.com/download/raspberry-pi
https://xpack.github.io/qemu-arm/
https://xpack.github.io/qemu-arm/

18

