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Abstract
Graph searching is one of the simplest and most 
widely used tools in graph algorithms. Every 
graph search method is defined using some partic-
ular selection rule, and the analysis of the corre-
sponding vertex orderings can aid greatly in de-
vising algorithms, writing proofs of correctness, 
or recognition of various graph families.
We study graphs where the sets of vertex order-
ings produced by two different search methods 
coincide. We characterise such graph families 
for ten pairs from the best-known set of graph 
searches: Breadth First Search (BFS), Depth 
First Search (DFS), Lexicographic Breadth First 
Search (LexBFS) and Lexicographic Depth First 
Search (LexDFS), and Maximal Neighborhood 
Search (MNS).
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1 Introduction

Graph search methods (for instance, Depth First Search 
and Breadth First Search) are among essential concepts 
classically taught at the undergraduate level of com-
puter science faculties worldwide. Various types of graph 
searches have been studied since the 19th century, and 
used to solve diverse problems, from solving mazes, to 
linear-time recognition of interval graphs, finding mini-
mal path-cover of co-comparability graphs, finding per-
fect elimination order, or optimal coloring of a chordal 
graph, and many others [1, 4, 7, 8, 10, 11].
In its most general form, a graph search (also generic 
search [5]) is a method of traversing vertices of a given 
graph such that every prefix of the obtained vertex order-
ing induces a connected graph. This general definition of 
a graph search leaves much freedom for a selection rule 
determining which node is chosen next. By defining some 
specific rule that r estricts this choice, various different 
graph search methods are defined. Other search methods 
that we focus on in this paper are Breadth First Search, 
Depth First Search, Lexicographic Breadth First Search, 
Lexicographic Depth First Search, and Maximal Neigh-
borhood Search.
We briefly present the studied graph search methods in
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Section 2, and then state the obtained results in Section 3.
Due to lack of space we omit the proofs and provide some
directions for further work in Section 4. All proofs are
available in the full version of paper on www.arxiv.org.

2 Preliminaries

We now briefly describe the above-mentioned graph
search methods, and give the formal definitions. Note
that the definitions below are not given in a historically
standard form, but rather as so-called three-point
conditions, due to Corneil and Kruger [5] and also
Brändstadt et. al. [3]. Two vertices u, v ∈ V (G) satisfy
the relation u <σ v if u appears before v in the ordering
σ : V (G) → {1, 2, . . . , n} of vertices in G.

Breadth First Search (BFS), first introduced in 1959
by Moore [9], is a restriction of a generic search which
puts unvisited vertices in a queue and visits a first vertex
from the queue in the next iteration. After visiting a
particular vertex, all its unvisited neighbors are put at
the end of the queue, in an arbitrary order.

Definition 2.0.1 An ordering σ of V is a BFS-ordering
if and only if the following holds: if a <σ b <σ c and
ac ∈ E and ab /∈ E, then there exists a vertex d such that
d <σ a and db ∈ E.

Any BFS ordering of a graph G starting in a vertex v
results in a rooted tree (with root v), which contains the
shortest paths from v to any other vertex in G (see [6]).
We use this property implicitly throughout the paper.

Depth First Search (DFS), in contrast with the BFS,
traverses the graph as deeply as possible, visiting a neigh-
bor of the last visited vertex whenever it is possible, and
backtracking only when all the neighbors of the last vis-
ited vertex are already visited. In DFS, the unvisited
vertices are put on top of a stack, so visiting a first ver-
tex in a stack means that we always visit a neighbor of
the most recently visited vertex.

Definition 2.0.2 An ordering σ of V is a DFS-ordering
if and only if the following holds: if a <σ b <σ c and
ac ∈ E and ab /∈ E, then there exists a vertex d such that
a <σ d <σ b and db ∈ E.

Lexicographic Breadth First Search (LexBFS) was
introduced in the 1970s by Rose, Tarjan and Lueker [10]
as a part of an algorithm for recognizing chordal graphs in
linear time. Since then, it has been used in many graph
algorithms mainly for the recognition of various graph
classes.
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Figure 1: On the left: Hasse diagram showing how graph searches are refinements of one another. On the right is
a summary of our results: Green pairs are equivalent on {P4, C4}-free graphs. Violet pairs are equivalent on {pan,
diamond}-free graphs. Blue pairs are equivalent on {paw, diamond, P4, C4}-free graphs.

Definition 2.0.3 An ordering σ of V is a LexBFS or-
dering if and only if the following holds: if a <σ b <σ c
and ac ∈ E and ab /∈ E, then there exists a vertex d such
that d <σ a and db ∈ E and dc /∈ E.

LexBFS is a restricted version of Breadth First Search,
where the usual queue of vertices is replaced by a queue
of unordered subsets of the vertices which is sometimes
refined, but never reordered.

Lexicographic Depth First Search (LexDFS) was in-
troduced in 2008 by Corneil and Krueger [5] and repre-
sents a special instance of a Depth First Search.

Definition 2.0.4 An ordering σ of V is a LexDFS or-
dering if and only if the following holds: if a <σ b <σ c
and ac ∈ E and ab /∈ E, then there exists a vertex d such
that a <σ d <σ b and db ∈ E and dc /∈ E.

Maximal Neighborhood Search (MNS), introduced
in 2008 by Corneil and Krueger [5], is a common gen-
eralization of LexBFS, LexDFS, and MCS, and also of
Maximal Label Search (see [2] for definition).

Definition 2.0.5 An ordering σ of V is an MNS or-
dering if and only if the following statement holds: If
a <σ b <σ c and ac ∈ E and ab /∈ E, then there exists a
vertex d with d <σ b and db ∈ E and dc /∈ E.

The MNS algorithm uses the set of integers as the label,
and at every step of iteration chooses the vertex with
maximal label under set inclusion.
Corneil [5] exposed an interesting structural aspect of
graph searches: the particular search methods can be
seen as restrictions, or special instances of some more
general search methods. For six well-known graph search
methods they present a depiction, similar to the one in
Figure 1, showing how those methods are related under
the set inclusion. For example, every LexBFS ordering is
at the same time an instance of BFS and MNS ordering
of the same graph. Similarly, every LexDFS ordering
is at the same time also an instance of MNS, and of
DFS (see Figure 1). The reverse, however, is not true,
and there exist orderings that are BFS and MNS, but
not LexBFS, or that are DFS and MNS but not LexDFS.

3 Problem description and results

Since the connections in Figure 1 represent relations of
inclusion, it is natural to ask under which conditions
on a graph G the particular inclusion holds also in the
converse direction. More formally, we say that two search
methods are equivalent on a graph G if the sets of vertex
orderings produced by both of them are the same. We say
that two graph search methods are equivalent on a graph
class G if they are equivalent on every member G ∈ G.
Perhaps surprisingly, three different graph families suffice
to describe graph classes equivalent for the ten pairs
of graph search methods that we consider. Those are
described in Theorems 3.1 to 3.3 below, but first we need
a few more definitions.
All the graphs considered in the paper are finite and
connected. A k-pan is a graph consisting of a k-cycle,
with a pendant vertex added to it. We say that a graph
is pan-free if it does not contain a pan of any size as an
induced subgraph. A 3-pan is also known as a paw graph.

Theorem 3.1 Let G be a connected graph. Then the
following is equivalent:
A1. Graph G is {P4, C4, paw, diamond}-free.
A2. Every graph search of G is a DFS ordering of G.
A3. Every graph search of G is a BFS ordering of G.
A4. Any vertex-order of G is a BFS, if and only if it is

a DFS.

Theorem 3.2 Let G be a connected graph. Then the
following is equivalent:
B1. Graph G is {pan, diamond}-free.
B2. Every DFS ordering of G is a LexDFS ordering of

G.
B3. Every BFS ordering of G is a LexBFS ordering of

G.
B4. Every graph search of G is an MNS ordering of G.

Theorem 3.3 Let G be a connected graph. Then the
following is equivalent:
C1. Graph G is {P4, C4}-free.
C2. Every MNS ordering of G is a LexDFS ordering of

G.
C3. Every MNS ordering of G is a LexBFS ordering of

G.
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Figure 2: Graphs and corresponding orderings that are MNS and not MCS orderings.

From Theorems 3.1 and 3.2 we can immediately derive
similar results for two additional pairs of graph search
methods.

Corollary 3.3.1 Let G be a connected graph. Then the
following is equivalent:

A1. Graph G is {P4, C4, paw, diamond}-free.
A5. Every graph search of G is a LDFS ordering of G.
A6. Every graph search of G is a LBFS ordering of G.

4 Conclusion and further work

In this paper we consider the major graph search methods
and study the graphs in which vertex-orders of one type
coincide with vertex-orders of some other type. Inter-
estingly, three different graph families suffice to describe
graph classes equivalent for the ten pairs of graph search
methods that we consider, which provides an additional
aspect of similarities between the studied search methods.
Among the natural graph search methods not yet consid-
ered in this setting would be the Maximum Cardinality
Search (MCS), introduced in 1984 (for definition see Tar-
jan and Yannakakis [12]). As shown on Figure 1, every
MCS is a special case of an MNS vertex-order. While it
is easy to verify that {P4, C4,paw, diamond}-free graphs
do not distinguish between MNS and MCS vertex orders,
Figure 2 provides examples of graphs which admit MNS,
but not MNS vertex orders. Characterising graphs equiv-
alent for MNS and MCS remains an open question.
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