
On Artefact Elimination in High Density Electromyograms by 
Independent Component Analysis

Aljaž Frančič
University of Maribor,
Faculty of Electrical

Engineering and Computer Science, 
Koroška cesta 46, 2000 Maribor, Slovenia 

aljaz.francic@um.si

Aleš Holobar
University of Maribor,
Faculty of Electrical

Engineering and Computer Science, 
Koroška cesta 46, 2000 Maribor, Slovenia 

ales.holobar@um.si

Milan Zorman
University of Maribor,
Faculty of Electrical

Engineering and Computer Science, 
Koroška cesta 46, 2000 Maribor, Slovenia 

milan.zorman@um.si

Abstract
We propose a novel approach to artefact detection 
and elimination in high density electromyograms 
by using previously introduced Activity Index and 
Independent Component Analysis (ICA). 28 elec-
tromyographic recordings of the biceps brachii 
muscle were analysed for the presence of artefacts. 
Using the technique presented in this study, we 
eliminated an average of 1.07 ± 1.18 artefacts per 
HDEMG recording. The mean number of elimi-
nated artefacs per recording with at least one de-
tected artefact was 1.88 ± 0.96. In the HDEMGs 
used in our study, each artefact was found in a 
separate ICA component.

Keywords biomedical signal processing, electromyog-
raphy, blind source separation, independent component 
analysis, activity index, artefact

1 Introduction

In humans, movement and locomotion is regulated by 
muscles. An electrical signal travels from the central ner-
vous system towards muscles, where it is electrically am-
plified. By using non-invasive surface electromyography, 
it is possible to detect the subtle changes in the volt-
age on the surface of the skin that originate from the 
muscles, even through the skin and the subcutaneous fat 
layers. Such recordings are called surface electromyo-
grams (SEMG). When an array of tens of electrodes is 
used, we call the resulting recordings high density elec-
tromyograms (HDEMGs). Due to many factors involved 
in recording of HDEMGs that are often impossible to 
control for, the resulting recordings are prone to con-
tain artefacts from various sources, such as power line 
interference, inadequate electrode-skin contact, electrode 
drift, subpar quality of the equipment, movement arte-
facts, etc.
A motor unit (MU) is made up of a motor neuron and the 
skeletal muscle fibers innervated by that motor neuron’s

axonal terminals. Groups of motor units often work to-
gether to coordinate the contractions of a single muscle.
We can think of the signal that travels from the motor
neuron to the skeletal muscle fiber as a time series of ze-
roes, which represent no firing, and ones, which represent
the firing of a muscle fiber and, thus, the MU. Because of
the refractory period, the spikes are few and far between,
making the resulting signal sparse in time. This signal is
called the MU spike train.
MUs fire asynchronously and their contributions are su-
perimposed into HDEMG, forming a highly complex sig-
nals that are difficult to interpret. By using computer-
aided methods, such as Convolution Kernel Compensa-
tion (CKC) [2], it is possible to decompose the HDEMGs
into contributions of individual MUs and, therefore, iden-
tify the firing times of MUs. This gives us insight into
the status of the motor system in humans.
However, due to the reasons mentioned in the initial
paragraph of this section, HDEMGs often contain various
artifacts. These artefacts hinder the ability of CKC to
decompose the HDEMG into contributions of individual
motor units. Also worth noting: a single artefact might
sometimes be present in multiple EMG channels at the
same time, so eliminating a single HDEMG channel (for
a period of time) is not always effective.
In this study, we exemplified our technique for artefact
detection and elimination in HDEMG by using previously
introduced Activity Index [1] and Independent Compo-
nent Analysis (ICA) techniques [5].

2 Materials and Methods

2.1 HDEMG model and Activity Index

In isometric contractions of skeletal muscles, HDEMG
signals can be modeled by the following convolutive
model [3]:

y(n) = Ht(n) + ω(n) (1)
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where
y(n) = [y1(n) ... y1(n− F + 1) ... yM (n− F + 1)]T (2)

stands for time-wise extended vector of HDEMG signals,
with extension factor F set between 10 and 20 [3],

ω(n) = [ω1(n) ... ωM (n− F + 1)]T (3)
is the time-wise extended noise vector, and
t(n) = [t1(n) ... t1(n−L−F+1) ... tJ(n−L−F+1)]T (4)

is similarly extended vector of MU spike trains. Here, the
spike train of the j-th MU is defined as

tj(n) =
∑

k

δ(n− τj(k)), j = 1, ... , J (5)

where δ() denotes the Delta function and the k-th spike
of the j-th MU appears at time τj(k).
The mixing matrix H comprises L samples long MUAPs
of J active MUs, as detected by M uptake electrodes [3].
The Convolution Kernel Compensation (CKC) method
[3] estimates the MU filter iteratively as

f̂ j = f̂ j + αE(g(t̂j(n))y(n))T C−1
y (6)

f̂ j = f̂ j∥∥∥f̂ j

∥∥∥ (7)

where α determines the speed of convergence, E() stands
for mathematical expectation, g(t) is a nonlinear weight-
ing function, e. g. g(t) = log(1 + t2) and Cy =
E(y(n)yT (n)) represents the correlation matrix of ex-
tended HDEMG measurements. After each iteration of
Eqs. 6 and 7, the estimate of MU spike train gets updated

t̂j(n) = f̂
T

j y(n) (8)

The Activity Index IA at a given time n is defined as [3]
IA(n) = yT (n)C−1

y y(n) (9)

Calculating the Activity Index is the first step of the
CKC decomposition approach [3] and is susceptible to
HDEMG artefacts. Thus, it can also be used to detect
them before further processing. If we do not eliminate
the artefacts in HDEMG, they can cause problems for
decomposition, preventing the convergence of MU filter
in Eq. 6 or segmentation of MU firing moments from
identified MU spike train t̂j(n).

2.2 Independent Component Analysis

In signal processing, ICA is a method for separating a
multivariate signal into its additive subcomponents. This
is done by assuming that the subcomponents are non-
Gaussian signals and that they are statistically indepen-
dent from each other [4]. ICA is a special case of blind
source separation.
In our case, the fastICA [5] decomposition was applied
to HDEMG, yielding the individual independent com-
ponents. Deflation was chosen as the decorrelation ap-
proach in fastICA decomposition, and the nonlinearity
g(u) = u3 was selected in the fixed-point algorithm. The
stopping criterion ε was set to 0.0001 and the maximum
number of iterations was set to 1000 (the default values).
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Figure 1: Representative HDEMG channels recorded
during the isometric contraction of biceps brachii at 10
% MVC contraction (in blue) and the corresponding Ac-
tivity Index (in red), with the detected outliers encircled
in green. The two most prominent artefacts are notice-
able in the 4th and 6th EMG channel at approximately
10th second, in the 9th and 11th EMG channel at ap-
proximately 17th second and in the 15th and 18th EMG
channel at approximately 4th second. A single artefact is
often present in several EMG channels. Also evident, not
all the HDEMG artefacts were detrimental for Activity
index calculation and, therefore, for MU identification.

2.3 Artefact detection and elimination

An example of a few representative HDEMG channels
recorded during isometric contraction of biceps brachii
muscle at 10 % of maximum voluntary contraction
(MVC) is shown in Fig. 1.
The artefact detection process began by calculating the
Activity Index (red line in Fig 1) from HDEMG. In our
study, the extension factor F was set to 1. This yielded
one time series from several HDEMG channels.
Next, the outliers (denoted by green circles on the red
line in Fig 1) were found in the Activity Index. In
our case, an outlier was defined as an element that was
more than 15 scaled median absolute deviations (MAD)
away from the local median. Noteworthy, this could
be parameterized and the outliers could be determined
in some other fashion. The local median was defined
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as the median inside the window, where the window
size was equal to 2048 samples. To the best of our
knowledge there is no established method for artefact
elimination using the Activity Index, hence the MAD
threshold for determining the outliers in the Activity
Index was selected empirically using visual inspection
of the results by an expert. As an additional step, we
also ignored any outlier that was fewer than 200 samples
away from an already detected outlier. In this way,
we prevented the multiple identifications of the same
artefact.
Afterwards, fastICA decomposition was applied to the
HDEMG, yielding the individual independent compo-
nents. All the identified components were taken into con-
sideration, as we would like to preserve as much of the
information as possible after artefact elimination. Each
independent component was then excluded and a new
Activity Index IEX was calculated without the excluded
independent component. Noteworthy, calculating the Ac-
tivity Index from either HDEMG or all it’s ICA compo-
nents will always yield the same result. Then, for each
detected outlier in the Activity Index IA, we tried to iden-
tify the ICA component that contributed the most to the
outlier in the Activity Index (to the HDEMG artefact) by
observing the difference in the Activity Index at the time
of the outlier before and after the exclusion of the indi-
vidual ICA component. We did this by using the interest
metric defined as:

IntMetEX(n) = 1 − IEX(n)/IA(n) (10)
at any given time n. In partucular, for each detected out-
lier at time x in the old Activity Index IA(x), we looked
at all the new Activity Indices IEX(x) (with individual
ICA components excluded) and calculated the interest
metrics IntMetEX(x) at the time x of the outlier in the
Activity Index IA(x).
The interest metric IntMetEX helped to expose the rela-
tionship between the old Activity Index IA and the new
Activity Indices IEX . Higher value of the interest metric
corresponded to a greater chance that there was an arte-
fact in the excluded ICA component. Using this metric
it was possible to determine which ICA component con-
tains the artefact. It was assumed that only a single ICA
component will contain a single artefact, as ICA works
under the assumption that the sources are statistically
independent from each other. If we were to see arte-
facts in multiple ICA components at the same time, this
would imply that they came from statistically indepen-
dent sources. This would imply artefact co-occurrence,
which is unlikely given our findings about the number
of outliers and artefacts found per recording (Section 3).
Interest metric threshold, above which we considered the
artefacts to be successfully eliminated was set to 0.5.
By using the ICA algorithm it would also possible to re-
construct the original recordings from ICA components.
This would allow us to first transform the HDEMGs to
ICA space, eliminate the artefacts to the best of our
ability and then transform the ICA components back to
HDEMG space using simple matrix multiplication. In
our current study, we eliminated the whole ICA compo-
nent, but it would be worth considering “repairing” that
component (e.g. locally setting the component elements
to 0).

2.4 Dataset and evaluation

To evaluate our method for artefact detection and elimi-
nation, we used 20 second long HDEMG recordings from
7 neurologically intact young subjects performing isomet-
ric contractions of the biceps brachii muscle, at 5, 10, 15
and 20 % of MVC for a total of 28 HDEMG recordings.
13 × 5 electrode array was used. Visual feedback on
force was provided to the participants. All the experi-
ments were conducted in accordance with the Declara-
tion of Helsinki, and were approved by the local Ethical
Committee.
In Section 3 we reported the mean ± the Standard De-
viation (SD) of the number of outliers found in the Ac-
tivity Index per HDEMG recording, the mean number
of eliminated artefacts per HDEMG recording, the mean
number of outliers per HDEMG, where we identified at
least one outlier, the mean number of eliminated artefacts
per HDEMG where we eliminated at least one artefact as
well as the mean interest metric IntMetEX of the elimi-
nated artefacts. We also provided a visual example of an
elimination of an artefact.

3 Results

The mean number of outliers found in the Activity In-
dex per HDEMG recording was equal to 1.25 ± 1.29.
The mean number of eliminated artefacts per HDEMG
recording was equal to 1.07 ± 1.18. The mean number of
outliers in Activity Index per HDEMG with at least one
outlier was 2.06 ± 1.03 and the mean number of elimi-
nated artefacs per HDEMG with at least one eliminated
artefact present was 1.88 ± 0.96. The mean interest met-
ric IntMetEX of the eliminated artefacts was 0.85 ± 0.11.
In the HDEMGs used in our study, each artefact was
found in a separate ICA component. A representative
example of our results is provided in Fig. 2.

4 Discussion

Our results indicated that it was possible to eliminate
artefacts in HDEMG using Activity Index and ICA. How-
ever, it was difficult to accurately quantify the efficiency
of this approach, as we did not know the ground truth
about the artefacts’ locations in time, nor the HDEMG
channels where they were present. We could simulate
certain kinds of artefacts at known times and in known
HDEMG channels. However this would only account for
certain types of artefacts. For example, we could induce
an artefact by touching certain electrodes during record-
ing at a predefined time, or during the whole recording by
incorrectly applying the contact gel. But we would still
be left with other artefacts that we have little control
over. Moreover, not all the artefacts have a significant
impact on the Activity Index and on MU identification.
By observing the Activity Index and comparing it to the
HDEMG channels, it is quite clear, that certain artefacts
are more detrimental for the Activity Index than others.
Therefore, without using the Activity Index or a simi-
lar metric, the assessment of artefact impact on EMG
decomposition is often difficult.
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Figure 2: Artefact detection and elimination in ICA
components of recorded HDEMG. The bottom panel de-
picts the IA of all the ICA components (in blue) and the
IEX without the excluded component (in red). The green
cross denotes the detected artefact time. The blue and
red circles represent the detected outliers in IA and IEX ,
respectively. The second row from the bottom shows the
200 samples of Activity Index before and after the de-
tected artefact time (green cross from the bottom panel).
The blue line shows the IA and the red line shows IEX .
The first dozen rows show the ICA components 200 sam-
ples before and after the detected artefact time (the green
cross). The excluded component is depicted in red. It
contains an artefact with an interest metric value of 0.96.
All y-axis units are arbitrary.

In our method, determining the outliers in the Activity
Index depend upon several parameters. The first one was
the extension factor F , which was set to 1 for the purposes
of this study. Also important was the scaled median
absolute deviation (MAD) threshold, above which we
considered an element of the Activity Index to be an
outlier. In our case, we set it to 15. Lowering this
threshold would yield more outliers in the Activty Index.
Another parameter was the sliding window size in the
Activity Index outlier detection, which in our case was
set to 2048 samples.
The presented outlier location detection could also be
refined, as using the currently described technique does
not guarantee the identified outlier location to be at the
location of the actual outlier peak. Instead, we aimed at

identifying the first of the 200 samples that is at least 15
MAD away from the local median. This selection could
have significant implications in the case of longer artefacts
in HDEMG signals.
In our dataset, we found the mean interest metric
IntMetEX value of the eliminated artefacts to be 0.85
± 0.11, while the threshold, above which we considered
the artefacts to be eliminated was set to 0.5. We also
found slightly more outliers than actual artefacts as
identified by visual inspection of HDEMG signals. This
indicated that the current parameters (especially the
extension factor for Activity Index calculation F of 1,
the MAD threshold for outlier detection of 15 and the
interest metric threshold of 0.5) were suitable to identify
artefacts in the HDEMGs. However, further tests are
required to confirm these findings in other muscles and
contraction levels.
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