
 

 

DOI https://doi.org/10.18690/978-961-286-362-3.52 
ISBN 978-961-286-362-3 

 

 
 

AUTOMATIC GENERATION OF TEST CASES 

FROM USE-CASE SPECIFICATION USING 

NATURAL LANGUAGE PROCESSING 

Keywords: 
test 
case, 
semantic 
analysis, 
logical 
specification, 
natural 
language 
processing, 
croatian 
language. 

 
MARKO PRIBISALIĆ1 

1 University of Rijeka, Department of Informatics, Rijeka, Croatia, e-mail: 
marko.pribisalic@gmail.com 
 
Abstract Software testing often targets natural language 
specification documents. The initial assumption is that 
automation of creating test cases from natural language 
specification is of benefit to speed up testing enabling a better 
coverage of all possible test scenarios. The proposed enabling 
principle for automatic generation of test cases is automatic 
retrieval of logic for the interaction with an application. After 
retrieving, interaction logics is transformed into decision tables. 
Next, from decision tables it is possible to automatically generate 
test cases.  Because in our research we target Croatian natural 
language, the assumption is that is it necessary to create a new 
approach to achieve the set goal. The main research questions 
posed in this paper are: "Is it possible to automatically generate 
test cases from use-case specifications written in the Croatian 
language?"; "Natural language processing tools for automatic 
test-generation save the tester's time and effort while improving 
the quality and coverage of the test cases?". The expected results 
are to defining the method that using test-case generation tools 
reduce the time and effort for software testers and improve the 
test coverage of requirements. 



726 33RD BLED ECONFERENCE 
ENABLING TECHNOLOGY FOR A SUSTAINABLE SOCIETY 

 

 

1 Introduction 
 
Software testing is a fundamental activity to ensure the quality of software systems. 
Test engineers conduct most (if not all) phases of software testing manually. One of 
those phases is test-case design in which the human tester uses written (formal) 
requirements (use-case specification), written often in natural language (NL), to 
derive a set of test cases (Garousi et.al, 2015). IEEE (1998) recommends the 
standard for software requirements specifications in praxis. The standard describes 
consideration for producing a good software requirements specification, parts of 
them and provide templates. Recommendations and standards intended to help: 
software users (customers) to accurately describe what they wish to obtain; software 
suppliers to understand exactly what the customer wants; individuals to develop and 
define the format and content of software requirements specification (SRS) outline 
for their organizations. Usually, test cases are created manually, so test case coverage 
depends upon each individual tester's skill, preferences and knowledge. Under these 
circumstances, it is difficult to create high coverage test cases. High coverage test 
cases systematically consider all functionalities described in corresponding 
specifications. The second characteristic stemming from leaning exclusively on 
tester’s skills and experience is a demand to translate business rules specified in the 
free form of natural language info formal use-case tests. In order to cover all 
functionalities described in use-case specifications, it is important to find the correct 
technique to retrieve software logics needed to test all possible interactions between 
users and software. Semantic analysis technique facilitates the retrieval of interaction 
logics enabling automatic creating of test cases. Once the interaction logics are 
retrieved, they can be represented in the form of a decision table which subsequently 
enables the creation of the test cases (Masuda et.al, 2013). Previous research studies 
(Saeki (1989), Sneed (2007), Kim (2008), Uetsuki (2013)) consider software 
specifications written in the English language. Engaging languages other than 
English requires substantial adjustment of proposed techniques. For instance, if 
specifications are in the Croatian language, for automatic generation of test-case 
scenarios it is a prerequisite to include NLP techniques for the Croatian language. 
Finally, by including adequate semantic analysis technique and tools for automated 
test case generation, we believe that we will get a successful model for automated 
test case generation from specifications written in Croatian. Specifically, we aim of 
combining semantic analysis technique and tools for automated test case generation 



Marko Pribisalić: 
Automatic Generation of Test Cases from Use-Case specification using Natural Language Processing 727 

 

 

to create a model for automated test case generation from specifications written in 
Croatian.  
 
2 Problem definition 
 
Creating test cases is a challenging and time-consuming endeavour in the process of 
software testing which consists of test case generation, test execution, and test 
evaluation. In the software test life cycle, test case generation takes 40-70% of that 
process (Kulkarni & Joglekar, 2014). In the testing process, the practice is to 
manually write the test cases based on the provided functional requirements of the 
software. Under these circumstances, it is challenging to create high coverage test 
cases, while testing requires covering and testing all functionalities in software as 
described in use-case specifications. It is not uncommon that testers created test 
cases that do not match which the product owner’s needs because not all the testers 
have prior knowledge of how the system is working (Broek et.al, 2014). Auto 
generation of test cases can contribute to saving money and time, improving the 
quality of testing and ensuring better test coverage. Automatically generated test case 
preferably ensure easier maintenance and reuse of test cases if deemed necessary. 
 
These difficulties have led to the incorporation of different sub-fields/disciplines of 
NLP to be ported and tested for automatic generation of test cases form 
specifications written in natural language. Though natural language processing tasks 
are closely intertwined, they are frequently subdivided into sub-fields/categories for 
convenience. In this study, we are mainly tasked with information extraction (IE). 
Information extraction (IE) is the task of automatically extracting structured 
information from unstructured and/or semi-structured machine-readable 
documents and other electronically represented sources. (Berti-Equille & Borge-
Holthoefer, 2015). In planned work focus will be on automatic test-case generation 
from use-case specifications written in the Croatian language. The reason stems 
from the present situation in Croatian IT companies that are focused on the Croatian 
market, hence services, software and specifications as well are written in Croatian. 
Croatian is different from the English language, so it is worth noticing some major 

differences. "Croatian is a highly flective Slavic language and words can have seven 
different cases for singular and seven for plural, genders and numbers. The Croatian 
word order is mostly free, especially in non-formal writing. These features place 
Croatian among morphologically rich and mostly free word-order languages. English 



728 33RD BLED ECONFERENCE 
ENABLING TECHNOLOGY FOR A SUSTAINABLE SOCIETY 

 

 

grammar has minimal inflection compared with most other Indo-European 
languages, therefore it is considered to be analytic. English word order is almost 
exclusively subject-verb-object. Both languages are characterized by an accentuation 

system developed on syllables" (Martinčić-Ipšić et.al, 2016).  
 
The research questions we put forth are: 
 
RQ 1 - Is it possible to automatically generate test cases from use-case specifications 
written in the Croatian language? 
 
Sneed (2007) presented the automated testing of software against natural language 
requirements. The approach was to analyze requirements and automatically extract 
test cases. The tool is the text analyzer developed by the author. The text analyzer 
scans through the requirements text to pick out potential test cases based on 
keywords and sentence structure. The Sneed (2007) approach has an error discovery 
rate of 89%. It is a much cheaper and more efficient way of exposing errors than a 
pure manual test case selection process. In this case, over 95% of the potential 
functions were covered, which means that the approach achieved higher functional 
test coverage. Saeki et.al (1989) presented a software development process from 
natural language specification. That was an approach to solve problems about 
natural language specification by the process, which was defined as “design” and 
“elaborate”. The approach was not applied for automatic derivation of test cases 
from specifications in natural language processing. Kim et.al (2008) presented a 
measurement of the level of quality control activities in software development. 
Overall quality control score can be calculated by evaluation each of fourteen quality 
metrics which are adopted as a key performance index constituting of quality control 
level. As quality metrics are suggested the measurements of specification documents, 
for examples, document defect density, document reusability and so on. Natural 
languages are inherently ambiguous which makes the requirements documented in 
use-case specification document unclear. This unclear requirement causes that 
developers develop software which is different from the specification and discrepant 
with customer needs (Sabriye & Zainon, 2017). Uetsuki et.al (2013) presented an 
efficient software testing method by decision table verification. They propose a 
knowledge creation method of software logic extracted automatically from the 
programme source code.  All possible programme paths are extracted from source 
code, then converted into a decision table. The logic verification can be performed 



Marko Pribisalić: 
Automatic Generation of Test Cases from Use-Case specification using Natural Language Processing 729 

 

 

in a short time by comparing the decision table with a specification of software. 
Matsuodani (2012) showed that retrieving logics from specification documents into 
decision tables is beneficial and suggested the opportunities for future use of 
decision table. The semantic analysis technique can detect ambiguity in the logic of 
specification documents and feedback measurements for document quality. The 
semantic analysis technique can feedback the analyst to write manually specification 
documents more precise. The more exact we can describe logic in the specification 
documents in advance, the less workload to fix of incorrect logic will be needed. 
When experts did not understand the logic of the sentences, it must be something 
incorrect in the sentences, it is called incorrect logic (Masuda et.al, 2015). 
 
Our focus will be on applying the results of Croatian natural language processing 
into software testing. We plan to propose a semantic analysis for testing logics 
retrieval from Croatian use-case specifications. Garousi et.al (2018) points out that 
many authors in previous research as dominant language use English for 
requirements specification. Yet several research studies have been reported for other 
languages. Masuda et al. in (Masuda et.al, 2013; Masuda et.al, 2015) have focused on 
automatic test-case generation in Japanese (Masuda et.al, 2013; Masuda et.al, 2015) 
while Yang et al. in (Yang et.al, 2017) develop testing from Chinese specification 
documents. It is worth noticing that each natural language has specifics requiring 
adjusted of semantic analysis techniques for logics retrieval. The semantic analysis 
technique, besides facilitating automatic testing procedures can provide feedback on 
improvement of the manually written specification. The more exact we can express 
software logic in specification documents, the less workload will be in testing and 
subsequently fixing of incorrect logic. To prove that the semantic technique works 
properly, we plan to do a comparative analysis, which will be focused on automatic 
test-case generation from English and Croatian use-case specifications.   
 
RQ 2 - NLP tools for automatic test-generation save the tester's time and effort 
while improving the quality and coverage of the test cases? 
 
Ther are several possibilities for evaluation of the quality of the test cases generated 
from natural language. The first is based on an activity diagram and activity graph.  
Activity diagrams, also known as control flow and object flow diagrams, are one of 
the UML (unified modelling language) behavioural diagrams. These diagrams are 
suitable for business process modelling and can easily be used to capture the logic 



730 33RD BLED ECONFERENCE 
ENABLING TECHNOLOGY FOR A SUSTAINABLE SOCIETY 

 

 

of a single use case, the usage of a scenario, or the detailed logic of a business rule 
(OMG, 2020).  Activity graph is a graphical method for showing dependencies 
between tasks (activities) in a project (Oxford, 2016). 
 
The parameters to assess the quality of the test cases generated from natural language 
or activity diagram are the number of test cases created and the effort required to 
create the test cases. Activity Diagrams are converted into activity graphs for the 
purpose of visualization and to implement the algorithms. Since the test cases are 
generated from the activity graph, the following criteria determine where the testing 
process terminates and how good a test coverage does the generated activity graph 
provide (Mingsong, 2006):  
 

• Activity Coverage - The generated test cases must ensure that all the 
activity states in the diagram are covered sequentially, from the initial node 
to the final node, at least once; 

• Path Coverage - The generated test cases must ensure that all possible 
paths from the initial node to the final node are covered at least once in the 
activity graph. 

• Transition Coverage - The generated test cases must ensure that all 
possible transitions/edges from the initial node to the final node are 
covered at least once in the activity graph. 

• Predicate Coverage or Branch Coverage - In the case of  a decision node, 
the generated test cases must cover the true and false logic paths of  the 
condition. 

 
If the generated test cases are executed and linked to defects in the software 
workflow, parameters such as rework ratio, defect detection percentage, and test 
execution rates can be used to verify the quality of the test cases.  
 
The effort required to generate the test cases is the average time taken to generate 
the test cases (Elghondakly et.al, 2015). 
 
Test Case Productivity (TCP) is defined as the ratio of the number of test 
steps/test case generated to the effort (in hours) taken to generate these test steps 
(Gulechha, 2009). 
  



Marko Pribisalić: 
Automatic Generation of Test Cases from Use-Case specification using Natural Language Processing 731 

 

 

3 Importance of research (why it is worthy of doctoral research) 
 
The focus of  our research is the automatic generation of  test cases from use-case 
specifications using natural language processing to Croatian documents. Software 
testing according to natural language specification documents is the standard 
approach for system and acceptance testing (Sneed, 2007). Since we are targeting the 
Croatian natural language, this is currently an unexplored problem. In this stage of  
the research, we are aiming to find the right methodology, methods and techniques. 
At this point, it is not clear to conclude with certainty whether the studied problem 
will require a creation of  a novel technique or will be possible to adapt the existing 
technique. From previous research dealing with other languages, eg Japanese 
(Masuda et.al, 2013), we see that this technique needs to include the testing logics 
retrieval from harmonization between natural language processing techniques and 
software testing. So our first step will include the study of  portability of  existing 
technique to new software testing domain and in Croatian natural language, 
preferably followed by the development of  new technique. Harmonization between 
natural language processing techniques and software testing is crucial to ensure 
success to develop test cases.   
 
4 Methodology 
 
In the first phase, we plan to conduct a survey in the form of a systematic literature 
mapping (classification) and systematic literature review. Objectives are to 
summarize the state-of-the-art in NLP-assisted software testing. It could open 
potential directions in utilizing NLP-based techniques for Croatian language and 
providing an overview of the research areas. For data analysis, we plan to use the 
automated content analysis approach, which is based on algorithms that use 
probabilistic topic models (Blei, 2012). Additionally, for the literature review we plan 
to use a text analytics tool, which automatically analyses text documents to identify 
high-level concepts and provide key ideas and insights from the text, eg 
“Leximancer“ (Leximancer, 2020).  We believe that the literature review will help us 
to find methods to achieve the previously defined aims. 
  



732 33RD BLED ECONFERENCE 
ENABLING TECHNOLOGY FOR A SUSTAINABLE SOCIETY 

 

 

Based on relevant papers, we plan to propose a semantic analysis technique of logics 
retrieval for Croatian use-case specifications. The analysis technique can feedback 
on how we write manually specification documents precisely. The more correct we 
can describe the logic on specification documents in advance, the less workload to 
fix incorrect logic. 
 
After the definition of the analysis technique, we plan to verify their relevance by 
using NLP tools. The success of generating test cases from requirements strongly 
depends on the right selection and usage of an appropriate NLP method. Initially, 
we plan to use the Stanford Parser, which offers a broad variety of NLP-related 
functionalities (Manning et.al, 2014). Stanford Parser supports Croatian (human) 
languages and it is a frequently used parsing tool. Afterwards, there is a possibility 
of adding another NLP tools like “NLTK” (NLTK, 2020)). 
 
Ultimately, we plan to carry out the experiment in the Croatian Financial Agency 
FINA - Informatics Sector / IT Service Development Department / Department 
of verification solutions who is in charge of public service testing on a daily basis. 
Software requirements which testers using in everyday work are defined in use-case 
specifications written on Croatian natural language. We plan to verify that the 
defined model provides answers to our research questions, and what are the specific 
benefits of our approach. 
 
5 Preliminary/Expected results 
 
The expected results of using test-case generation tools are: (1) reducing the time 
and effort for testers and (2) improving the test coverage of requirements. We plan 
to conduct the testing experiment in two groups of testers. The first group of 2 
testers will be given 10 use-case specification for manual test case generation, and 
the same use-case specification will be given to the other set of 2 testers for 
automatic test generation, such as proposed in the doctoral dissertation. The results 
obtained from both groups of testers will be compared with ground truth which will 
be prepared in advance. Expected results are that the automatic method takes less 
time as compared to the manual method (quantified by the number of test cases and 
test steps). We opt to ensure that the increased number of test cases, test steps, and 
Test Case Productivity generated using the automatic method provide more 
coverage of the functionality than the manual method. We will evaluate the coverage 



Marko Pribisalić: 
Automatic Generation of Test Cases from Use-Case specification using Natural Language Processing 733 

 

 

of each of the test cases written by the user manually and generated by the user 
automatically. Also, we expect that we will show that the semantic analysis technique 
could retrieve testing logics from Croatian natural language specification documents. 
Finally, by using the correct semantic analysis technique and NLP tools for 
automated test case generation, we believe that we will develop a successful model 
for automated test case generation from a use-case specification written in Croatian. 
 
 
References 
 
Berti-Equille, L., Borge-Holthoefer, J. (2015). Veracity of Data: From Truth Discovery Computation 

Algorithms to Models of Misinformation Dynamics, Synthesis Lectures on Data Management, 
Morgan & Claypool Publishers https://doi. org/10.2200/S00676ED1V01Y201509DTM042 

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM. 
https://doi.org/10.1145/2133806.2133826. 

Broek, R., Bonsangue, M.,  Chaudron, M., and Merode, H. (2014). Integrating testing into agile software 
development processes,” in Model-Driven Engineering and Software Development 
(MODELSWARD), 2014 2nd International Conference on, pp. 561–574, IEEE 

Elghondakly, R., Moussa, S., Badr, N. (2015). Waterfall and agile requirements-based model for 
automated test cases generation," in Intelligent Computing and Information Systems (ICICIS), 
2015 IEEE Seventh International Conference on, pp. 607-612, IEEE 

Garousi, V., Bauer, S., Felderer, M. (2018) NLP-assisted software testing: A systematic mapping of the 
literature Retrieved March 02, 2020, from 
https://www.researchgate.net/publication/325557382_NLP-
assisted_software_testing_a_systematic_review 

Garousi, V., Coşkunçay, A., Can, A.B., Demirörs, O., (2015). A survey of software engineering practices 
in Turkey, Journal of Systems and Software, vol. 108, pp. 148-177 

Gulechha, L. (2009). Software Testing Metrics, available at: 
https://fdocuments.in/document/software-testing-metrics-558444fda73ef.html, Retrieved 
March 20, 2020, from 
https://fdocuments.in/document/software-testing-metrics-558444fda73ef.html 

IEEE , I. C. S. S. E. S. Committee, & I.-S. S. Board, (1998). IEEE Recommended Practice for Software 
Requirements Specifications, in Institute of Electrical and Electronics Engineers 

Kim, C., Kim, S.-M. Song, K.-W. (2008) Measurement of Level of Quality Control Activities in 
Software Development [Quality Control Scorecards]", in IEEEConvergence and Hybrid 
Information Technology, 2008. ICHIT'08. International Conference on, pp.763-770 

Koehn, P. (2009). Statistical machine translation: Cambridge University Press 
Kulkarni, P., Joglekar, Y. (2014). Generating and analyzing test cases from software requirements using 

nlp and hadoop, International Journal of Current Engineering and Technology (INPRESSCO) 
Lee, D., Y. (2008). Corpora and discourse analysis in Advances in discourse studies, ed: Routledge, pp. 

86-99. 
Leximancer. (2020). https://info.leximancer.com/. Retrieved March 18, 2020, from 

https://info.leximancer.com/ 
Manning, C., D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., J., Mcclosky, D. (2014). The stanford 

core-NLP natural language processing toolkit," in ACL System Demonstrations 
Martinčić-Ipšić, S., Margan, D., Meštrović, A. (2016). Multilayer network of language: A unified 

framework for structural analysis of linguistic subsystems Physica. A, Statistical mechanics and 
its applications 457 pp.117-128  



734 33RD BLED ECONFERENCE 
ENABLING TECHNOLOGY FOR A SUSTAINABLE SOCIETY 

 

 

Matsodani, T. (2012). Application of Decision Table to Software Logic with Designing and Testing", 
in Reliability Enginerring Association of Japan, pp.397-404 

Masuda, S., Matsuodani, T., Tsuda, K. (2013). A Method of Creating Testing Pattern for Pair-wise 
Method by Using Knowledge of Parameter Values, in Procedia Computer Science, pp.521-528 

Masuda, S., Futoshi I., Nobuhiro, H., Tohru, M., Kazuhiko, T. (2015). Semantic analysis technique of 
logics retrieval for software testing from specification documents. International Conference on 
Software Testing, Verification and Validation Workshops, pp. 1-6 

Mingsong, C., Xiaokang, Q., Xuandong, L. (2006). Automatic test case generation for UML activity 
diagrams, in Proceedings of the 2006 international workshop on Automation of software test, 
pp. 2-8, ACM 

NLTK (2020). Natural Language Toolkit — NLTK 3.5 documentation, available at: 
https://www.nltk.org/ Retrieved March 22, 2020, from https://www.nltk.org/ 

OMG (2020). Unified Modeling Language, , available at:  http://www.uml.org/, Retrieved March 28, 
2020, from http://www.uml.org/ 

Oxford (2016). A Dictionary of Computer Science (7th edition), edited by Andrew Butterfield and 
Gerard Ekembe Ngondi, Oxford University Press  

Sabriye A. O. J.  and Zainon, W. M. N. W.  (2017). “A Framework for Detecting Ambiguity in Software 
Requirement Specification” in 2017 8th International Conference on Information Technology 
(ICIT), Amman, Jordan, 2017, pp. 209–2013. 
https://doi.org/10.1109/ICITECH.2017.8080002 

Saeki, M., Horai, H., Enomoto, H. (1989). Software development process from natural language 
specification, in ACMProceedings of the 11th international conference on Software 
engineering, pp.64-73 

Sneed, J H., M. (2007). Testing against natural language requirements, in IEEEQuality Software, 2007. 
QSIC'07. Seventh International Conference on,  pp.380-387 

Uetsuki, K., Matsuodani, T., Tsuda, K. (2013). An efficient software testing method by decision table 
verification, in International Journal of Computer Applications in Technology, pp.54-64 

Yang, Y., Huang, X., Hao, X., Liu, Z., Chen, Z. (2017). An Industrial Study of Natural Language 
Processing Based Test Case Prioritization," IEEE International Conference on Software 
Testing, Verification and Validation, pp. 548-549 




